
Exame Especial de Linguagens de Programação
- DCC024 -

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e quarenta minutos após seu ińıcio.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• Serão avaliadas somente as sete melhores respostas. Então sinta-se livre para abandonar alguma questão
devido ao tempo.

• A prova não é dif́ıcil, ela é divertida, então aproveite!

1



1. O objetive desta questão é desenvolver um sistema para representação de regiões geométricas. Uma
região é um conjunto de pontos, e a única operação relevante no nosso sistema é pertinência: dado um
ponto e uma região, queremos saber se o ponto está dentro da região. Representaremos uma região
por meio de sua função caracteŕıstica, isto é, uma região é uma função que, dado um ponto, retorna
verdadeiro se o ponto pertencer àquela região. Por exemplo, a função SML abaixo representa uma
região circular com centro (1.0, 3.0) e raio 4.5:

- fun circle (x,y) = (x - 1.0) * (x - 1.0) + (y - 3.0) * (y - 3.0) <= (4.5 * 4.5);

val circle = fn : real * real -> bool

- circle (1.1, 2.87);

val it = true : bool

- circle (10.0, 0.0);

val it = false : bool

(a) (4 pontos) Sejamos mais abstratos que o exemplo dado: crie uma função mc em SML que, dado
um centro (x, y) mais um raio r retorne uma região circular com as coordenadas dadas. A sua
função deve ter a seguinte assinatura: mc = fn : int * int * int -> int * int -> bool.

(b) (3 pontos) O interessante desta abordagem funcional é que podemos combinar regiões. Escreva
uma função SML que, dada uma região g, retorna uma região g′ que é o complemento de g.
Uma região g′ é o complemento de g se, e somente se, g′(x, y) é verdade quando g(x, y) é falso,
e vice-versa. A sua função deve ter a seguinte assinatura: complement = fn : (real * real

-> bool) -> real * real -> bool.

(c) (3 pontos) Por fim, escreva a função SML translate(g, dx, dy) que faça a translação de uma
região. Isto é, sendo g′ a função retornada por translate(g, dx, dy), então g′(x, y) é verdade
se, e somente se, g(x + dx, y + dy) for verdade. A sua função deve ter a seguinte assinatura:
translate = fn : (real * real -> bool) * real * real -> real * real -> bool.

2



2. (10 pontos) Lua é uma linguagem dinamicamente tipada, muito utilizada no desenvolvimento de video-
games. Nesta linguagem, testes condicionais sobre as expressões nil e false retornam negativo. Testes
condicionais sobre qualquer outra expressão retornam positivo. Os operadores and e or possuem a
propriedade de curto-circuito. Entretanto, este operadores podem não retornar um valor booleano.
Por exemplo, "a" and "b" --> "b", pois "a" é considerado verdade, e o resultado da expressão é o
valor da segunda sub-expressão. Considerando que o operador and possui maior precedência que o
operador or, explique, clara e sucintamente, o que faz a função enigma abaixo:

function enigma(x, y) = x >= y and x or y

Ilustre a sua explicação com um pequeno conjunto de exemplos.

3



3. (10 pontos) Considere as duas classes abaixo, implementadas na linguagem Java:

class Mammal extends Animal {

public void eat() {

System.out.println("Mammal is eating");

}

}

public class Animal {

public void eat() {

System.out.println("Animal is eating");

}

public static void main(String args[]) {

Animal a = new Animal();

Animal m = new Mammal();

// Chamada 1:

a.eat();

// Chamada 2:

m.eat();

}

}

Existe alguma diferença, ainda que mı́nima, em termos de eficiência, entre a primeira chamada de
método (Chamada 1) e a segunda (Chamada 2)? Em caso afirmativo, diga qual chamada é mais eficiente,
e explique o por quê. Em caso negativo, justifique a sua resposta.

4



4. Existem muitos mecanismos de coleta de lixo diferentes; alguns destes mecanismos servem domı́nios
bem espećıficos de aplicações. Abaixo são dados dois diferentes cenários. Para cada um, descreva
um mecanismo de coleta de lixo que seria interessante para ele. Neste curso falamos dos seguintes
algoritmos: contagem de referências, marcação e varredura, cópia e coleta. Além destes, você pode
pensar em outros, mais adequados à aplicação em questão.

(a) (5 pontos) Um sistema de tempo real, para controlar o braço de um robô que opera em uma linha
de montagem. O principal requisito deste sistema é que ele deve responder a eventos em um certo
peŕıodo de tempo. Em hipótese alguma o sistema deve demorar mais que esta quantidade de
tempo para produzir uma resposta.

(b) (5 pontos) Um servidor web. O servidor recebe milhares de requisições, todas elas independentes
umas das outras. Uma caracteŕıstica interessante deste sistema é que cada requisição tem um
peŕıodo de vida curto, e leva à criação de uma quantidade pequena, e muitas vezes previśıvel de
dados.

5



5. (10 pontos) Escreva um predicado lotto, usando a linguagem Prolog, tal que lotto(N, L, U, R)

receba um número inteiro N, um inteiro L, um inteiro U e seja verdade se R for uma lista com N

elementos quaisquer da lista [L, L+1, L+2, ..., U]. Por exemplo:

?- lotto(2, 10, 15, L).

L = [10, 11] ;

L = [10, 12] ;

L = [10, 13] ;

L = [10, 14] ;

L = [10, 15] ;

L = [11, 12] ;

L = [11, 13] ;

L = [11, 14] ;

L = [11, 15] ;

L = [12, 13] ;

L = [12, 14] ;

L = [12, 15] ;

L = [13, 14] ;

L = [13, 15] ;

L = [14, 15] ;

false.

6



6. (10 pontos) Muitas linguagens de programação são compiladas diretamente para código de máquina.
Outras são interpretadas. E outras executam sobre uma máquina virtual. É posśıvel um programa exe-
cutando sobre uma máquina virtual ser mais eficiente que um programa que foi compilado diretamente
para código de máquina? Justifique a sua resposta.

7



7. Considere o programa abaixo, escrito em C++:

#include <stdio.h>

#include <string.h>

class Pencil {

public:

int p;

};

class Battleship {

public:

int p;

};

int main () {

Pencil *p = new Pencil();

p->p = 11;

Battleship *b = (Battleship*)p;

printf("p->p = %d, b->b = %d\n", p->p, b->p);

}

(a) (5 pontos) Qual o resultado da execução deste programa? Os resultados posśıveis são:

• O programa não será compilado.

• O programa causará um erro em tempo de execução.

• O programa irá executar, e será impresso p->p = 11, b->b = 11.

(b) (5 pontos) De acordo com a sua resposta para a questão anterior, o que é verdade sobre a linguagem
C++ (mais de uma resposta pode estar correta)?

• C++ é uma linguagem que verifica se as operações de coerção estão corretas estaticamente.

• C++ executa testes, em tempo de execução, para garantir que as coerções são utilizadas
corretamente. Em caso de uso incorreto de coerções, C++ dispara uma exceção, como por
exemplo ClassCastException.

• C++ não verifica se as coerções estão sendo usadas corretamente em nenhum momento.

8



8. (10 pontos) Duas formas de polimorfismo são a coerção e a sobrecarga. Na coerção impĺıcita, um tipo é
convertido em outro, sem a intervenção do programador. Por exemplo, em Java, durante a avaliação da
expressão 1.0 + 2, o segundo parâmetro é convertido de inteiro para número de ponto flutuante, e o
resultado é dado em ponto flutuante. Na sobrecarga, temos o mesmo śımbolo, ou função, representando
diferentes operações. A combinação de coerção com sobrecarga pode complicar bastante o código,
deixando-o próximo de ileǵıvel. Algumas iterações são, na verdade, até proibidas pelo compilador, pois
são amb́ıguas. Escreva um programa em C++, ou em Java, que, embora correto sintaticamente, não
poderia ser compilador, pois o compilador não teria como desambiguar uma chamada de função devido
à combinação de coerção com polimorfismo de sobrecarga. Explique onde a ambiguidade aparece em
seu programa.

9


