
Exame Especial de Linguagens de Programação

Nome:
“Eu dou minha palavra de honra que não trapacearei neste exame.”

Número de matŕıcula:

As regras do jogo:

• A prova é sem consulta.

• Quando terminar, não entregue nada além do caderno de provas para o instrutor.

• Quando escrever código, a sintaxe correta é importante.

• Cada estudante tem direito a fazer uma pergunta ao instrutor durante a prova. Traga o caderno de
provas quando vier à mesa do instrutor.

• A prova termina uma hora e cinquenta minutos após seu ińıcio. O instrutor avisará quando faltarem
somente 15 minutos para o final do exame.

• Seja honesto e lembre-se: você deu sua palavra de honra.

Alguns conselhos:

• Escreva sempre algo nas questões, a fim de ganhar algum crédito parcial.

• Se não entender a questão, e já tiver gasto sua pergunta, escreva a sua interpretação da questão junto
à resposta.

• Serão avaliadas somente as seis melhores respostas. Então sinta-se livre para abandonar alguma questão
devido ao tempo.

• H’a quem diga que estas provas são divertidas, então aproveite!

Tabela 1: Pontos acumulados (para uso do instrutor)

Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7

1



1. Em SML podemos representar conjuntos como listas que não possuem elementos repetidos.

(a) (6 pontos) Implemente em SML uma função union de tipo ’’a list list -> ’’a list que
receba uma lista de conjuntos, isto é, uma lista de listas, e retorne a união de todos estes conjuntos.
Por exemplo:

- union [[1,2], [], [4,5], [4,5]];

val it = [1,2,4,5] : int list

- union [["a", "ab"], ["ab", "c"], ["def"]];

val it = ["a","ab","c","def"] : string list

- union [[(1,2), (2, 4)], [(1,2)]];

val it = [(2,4),(1,2)] : (int * int) list

A propósito: lembre-se de remover elementos repetidos.

(b) (2 pontos) O tipo da função union é ’’a list list -> ’’a list. O que quer dizer o duplo
apostrofo no parâmetro do construtor de tipos?

(c) (2 ponto) Qual é a complexidade assimptótica da função union implementada na letra (a) desta
questão?

2



2. (10 pontos) Nesta questão você deverá implementar uma gramática lógica em Prolog que reconheça
linguagens cujas strings têm a forma anbncn. Frases válidas nesta gramática são, por exemplo, abc,
aabbcc e aaabbbccc. Por outro lado, abcc não é uma frase válida nesta gramática, pois o número de
caracteres c difere do número de a’s e b’s. Note que esta linguagem não pode ser reconhecida por
uma gramática livre de contexto. Você precisará embutir atributos na gramática lógica. Para ajudá-lo
a lembrar a sintaxe, abaixo é dada uma gramática lógica em Prolog que reconhece números inteiros
simples:

number --> digit, number.

number --> digit.

digit --> [0] ; [1] ; [2] ; [3] ; [4] ; [5] ; [6] ; [7] ; [8] ; [9].

3



3. Seja Time uma classe, implementada em Python, que descreve um tempo. O tempo, neste caso, é um
objeto com três campos: hora, minuto e segundo. Uma parte da classe Time é dado logo abaixo:

class BadTimeException(Exception):

"""This exception is used everytime the user enters an invalid number for

minutes or seconds."""

def __init__(self, message):

self.value = message

def __str__(self):

return repr(self.value)

class Time:

"""This class encodes a time, which is defined by a number of hours, minutes

and seconds."""

def __init__(self, h, m, s):

"""IMPLEMENTAR"""

def __str__(self):

return strTm(self.hours) + ’:’ + strTm(self.mins) + ’:’ + strTm(self.secs)

def add(self, t):

"""IMPLEMENTAR"""

(a) (5 pontos) Implemente o método init da classe Time. Este método deve disparar uma
instância de BadTimeException caso a hora (h), o minuto (m) ou o segundo (s) estiverem em
um formato impróprio. Horas são inteiros não negativos. Minutos e segundos são inteiros entre
zero e 60.

(b) (5 pontos) Implemente o método add que receba uma outra instância de Time, chamada t, e some
o tempo em t com o tempo do objeto corrente. Este método não deve retornar nenhum valor, mas
deve ter o efeito colateral de modificar o tempo do objeto corrente. O método add deve preservar
a invariante que os campos segundos e minutos são inteiros entre zero e sessenta inclusive.

4



4. (10 pontos) Dado um grafo, um casamento perfeito entre vértices é um pareamento dos vértices desse
grafo de tal forma que todo vértice receba um, e somente um par. Aproveitando a época, vamos escrever
um predicado santantonio em Prolog que tente realizar um casamento perfeito entre um grupo de
pessoas. Vamos usar o predicado gosta(X, Y) para denotar a idéia de que X e Y são pessoas, e que X

gosta de Y. Note que este predicado é unidirecional, pois gosta(X, Y) não implica em gosta(Y, X).
Por exemplo, na figura abaixo temos uma relação de afinidade entre um grupo de seis pessoas:

gosta(danilo, ana).
gosta(ana, danilo).
gosta(everton, beatriz).
gosta(fernando, beatriz).
gosta(beatriz, fernando).
gosta(beatriz, danilo).
gosta(everton, ana).
gosta(beatriz, everton).
gosta(carla, everton).
gosta(everton, carla).

ana

beatriz

carla

danilo

everton

fernando

Nesta questão você deve escrever em Prolog o predicado santantonio(Solteiros, Casais) que seja
verdade quando:

• Casais for uma lista de predicados par(X, Y) tal que gosta(X, Y) e gosta(Y, X);

• cada elemento X em Solteiros aparece em somente um par em Casais.

Por exemplo, usando as relações na figura acima, teŕıamos 1:

?- santantonio([ana, beatriz, carla, danilo, everton, fernando], Casais).

Casais = [par(danilo, ana), par(fernando, beatriz), par(carla, everton)] ;

...

?- santantonio([ana, beatriz, carla, danilo, everton, fernando],

[par(carla, H1), par(beatriz, H2), par(ana, H3)]).

H1 = everton,

H2 = fernando,

H3 = danilo ;

false.

Você pode utilizar predicados que já estão definidos na biblioteca padrão de Prolog, como member(N,

L), select(E, L, LL) e append(L1, L2, LL).

1O seu predicado santantonio deve ser geral o suficiente para lidar com outras relações diferentes daquelas vistas na figura

5



5. Existem duas formas básicas de polimorfismo em linguagens de programação: polimorfismo universal, e
polimorfismo ad-hoc. O polimorfismo universal é caracterizado por nomes que podem possuir uma gama
infinita de tipos diferentes. Esta forma de polimorfismo se subdivide em duas categorias: o polimorfismo
de subtipagem, e o polimorfismo paramétrico. Este último tipo de polimorfismo é extremamente útil
para podermos construir módulos realmente reutilizáveis.

(a) (3 pontos) Dê um exemplo de polimorfismo paramétrico em SML.

(b) (3 pontos) Dê um exemplo de polimorfismo paramétrico em Java.

(c) (4 pontos) Python é uma linguagem que não possui este tipo de polimorfismo. Porém, isto não
é uma limitação de Python, pois, dadas as caracteŕısticas do sistema de tipos da linguagem o
polimorfismo paramétrico simplesmente não é necessário. Explique o por quê.

6



6. Considere o programa abaixo, escrito em Python. Este programa processa expressões aritméticas
envolvendo somas, multiplicações e números inteiros simples:

class Exp:

def eval(self): return None

class Num(Exp):

def __init__(self, num):

self.num = num

def eval(self): return self.num

class Plus(Exp):

def __init__(self, e1, e2):

self.left = e1

self.right = e2

def eval(self): return self.left.eval() + self.right.eval()

class Mul(Exp):

def __init__(self, e1, e2):

self.left = e1

self.right = e2

def eval(self): return self.left.eval() * self.right.eval()

print (Mul(Num(2), Plus(Num(3), Num(1))))

$> 8

print (Plus(Mul(Num(2), Num(2)), Mul(Num(3), Num(2))))

$> 10

Nesta questão você deve implementar esse mesmo programa em SML. Note que você terá de fazer
profundas adaptações em seu programa. Em particular, SML não possui o conceito de classes, objetos
e métodos.

(a) (5 pontos) Represente as expressões usando um tipo algébrico Exp que possua um rótulo diferente
(Num, Plus e Mul) para casa posśıvel tipo de expressão.

(b) (5 pontos) Implemente uma função eval, de tipo Exp -> int, que receba uma expressão aritmética
e retorne o seu significado. O significado de uma expressão aritmética é o número inteiro que ela
descreve. Por exemplo, eval (Mul (Num 3, Plus (Num 2, Num 3))) deve retornar o valor 15.

7



7. Os registros de ativação guardam as informações necessárias para a execução de funções. Um registro
de ativação t́ıpico é mostrado logo abaixo.

Link de
aninhamento

Parâmetros

Variáveis
Locais

Endereço
de retorno

Valor de
Retorno

Registro de
ativação
anterior

(a) (3 pontos) Normalmente, a mesma memória pode armazenar tanto as instruções quanto os dados
manipulados por um programa. Porém, em geral o sistema operacional separa código e dados em
segmentos de memória diferentes. Na figura logo acima, os três campos do registro de ativação de
onde partem setas são ponteiros. Quais destes ponteiros apontam para dados, e quais apontam
para código?

(b) (7 pontos) Considere a função foo logo baixo:

fun foo n =

let

fun bar 0 = []

| bar m = n :: bar (m - 1)

in

bar n

end

Desenhe os registros de ativação para a chamada da função foo 3 no momento que a última
chamada da função bar está prestes a retornar.

8


