Nome: Matricula:

Lista de Linguagens de Programacao — 16

1. Abaixo existem duas implementacoes diferentes to Crivo de Erastotenes, um algoritmo
bastante conhecido para a listagem de ntimeros primos:

def sievePrimesO(candidates):

"""Removes every non-prime number from the ordered list 1."""
for i in range(0, int(len(candidates) ** 0.5 + 1)):

currentPrime = candidates[i]

if currentPrime != O:

for j in range(i + currentPrime, len(candidates), currentPrime):
if candidates[j] % candidates[i] ==
candidates[j] = 0

return filter(lambda x : x != 0, candidates)

def sievePrimes1(1l):
"""Removes every non-prime number from the ordered list 1."""
if 1[0] * 1[0] <= 1[len(1) - 1]:
1[1:] = sievePrimesl(filter(lambda x: x % 1[0] != 0, 1))
return 1

(a) Um destes algoritmos foi escrito segundo um estilo mais imperativo de pro-
gramagao, enquanto o outro foi escrito em um estilo mais declarativo. Qual é
o algoritmo imperativo? Por que?

(b) Qual destes algoritmos é, em sua opinido, o mais legivel? Esta pergunta, ob-
viamente, é subjetiva, e diferentes pessoas podem escolher diferentes respostas.
Justifique a sua resposta, explicando quais razoes te levam a preferir uma sintéxe
em relacao a outra.

()

(d)

Qual implementacao do crivo é mais eficiente? Tome medidas de tempo das duas
implementagoes. Para isto, vocé pode usar a funcao timeSieve abaixo. Plote um
grafico com medidas de tempo para crivos de tamanho 10, 50, 100, 500, 1.000,
5.000, 10.000, 50.000, 100.000 e 500.000.

def timeSieve(maxPrime, numTimes, sieveFunc):

"""Times the sieve implementations."""

t0 =0

for numTries in range(0, numTimes):
taux = time.clock()
primesO = sieveFunc(range(2, maxPrime))
t0 = t0 + time.clock() - taux

print (tO0 / numTimes)

Quais razoes poderiam explicar a diferenca de eficiéncia observada na questao
anterior? Existe alguma diferenga entre a complexidade assimptotica dos dois
algoritmos?

Escreva uma funcao testPrimes, que torne mais interativo o processo de teste de
eficiéncia. Esta funcao deve ler dois valores da entrada: um nimero numTimes de
vezes que a funcao crivo deve ser chamada, e um niimero maxPrime que determina
o tamanho do crivo gerado. A funcao timeSieve devera ser chamada duas vezes,
uma com sievePrimesO e outra com sievePrimes1, usando os parametros lidos
da entrada. Dé uma olhada nas funcoes raw_input e int. Vocé pode querer
usa-las neste exercicio.

2. Python é uma das poucas linguagens de programacgao modernas em que a indentacao
é parte da sintaxe. A partir desta observacao, responda as perguntas abaixo:

(a) O que queremos dizer quando afirmamos que a indentagao é parte da sintaxe da
linguagem?

(b) A maior parte das linguagens de programagao mais conhecidas separa indentagao
de sintaxe. Esta nao separacao, em Python, foi uma decisao polémica. Qual(is)
a(s) vantagem(ns) e desvantagem(ns) da abordagem de Python?

3. A sintaxe de Python prové uma clausula else para lagos. Em geral, linguagens da
familia BCPL (C, C++, Java, C#) nao contém nada semelhante. O programa abaixo
ilustra o uso deste tipo de else. O que a fun¢ao mystery faz?

def mystery(limit):
nums = []
for n in range(2, limit):
for x in range(2, n):
ifn’ x ==
break
else:
nums . append (n)
return nums

4. Tal qual em SML, em Python nés nao declaramos os tipos das variaveis manipuladas

pelos programas Estas linguagens, contudo, lidam com tipos de maneira muito difer-
ente.

(a) SML é uma linguagem estaticamente tipada, ao contrario de Python, que é tipada
dinamicamente. Qual a diferenca entre tipagem estatica e tipagem dinamica?

(b) Podemos fazer um punhado de estripulias em linguagens dinamicamente tipadas.
Por exemplo, escreva uma fungao pydiv(n, d) em Python, que retorna o resul-
tado da divisao do numero real n pelo niimero real d. Entretanto, se d for zero,
entao o valor especial None devera ser retornado. Note que None é um valor pré-
definido em Python; de fato, é o valor retornado por todas as funcoes que nao
“retornam nada’”.

(¢) Como poderiamos implementar algo parecido em SML? Usando tipos algébricos,
talvez? Escreva uma funcao smldiv, cujo tipo seja real * real -> 777 que
simule da forma mais fidedigna possivel a funcao pydiv.

5. Escreva uma fungao perm(n, 1), que produza todas as permutagoes de n elementos
da lista 1. Por exemplo:

>>> perm(2, ["a", "b", "c"])

([(’a’, ’b’1, [’a’, ’°c’], [’b’, ’a’]l, [’b’, ’c’], [’c’, ’a’], [’c’, ’b’]]
>>>

>>> perm(3, [1, 2, 3])

(ry, 2, 31, [1, 3, 21, [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]1]

6. Considere as seguintes sequéncias de ntimeros:

e {0163,0613,1063}
o {1487,4817,8147}

Estas sequéncias sao especiais por quatro razoes.

e a segunda possui razao 3330.

Existe uma outra sequéncia de trés numeros que preenche estes quatro requisitos.
Escreva um programa em Python que encontre tal sequéncia. Talvez vocé queria
reutilizar a fungao perm do exercicio anterior. Vocé nao precisa re-escrever o cédigo de
perm em seu arquivo. Python prové um mecanismo de retiso de coédigo via a primitiva
import. Por exemplo, supondo que perm estd em um arquivo ex.py, vocé pode torna-
la visivel em seu escopo local com a comando from ex import perm. Este problema é
uma variagao do problema 49 do Projeto Euler. Vocé pode querer dar uma olhadinha
naquele problema, assim que resolver este aqui.

