
Lista de Linguagens de Programação – 16

Nome: Matŕıcula:

1. Abaixo existem duas implementações diferentes to Crivo de Erastótenes, um algoritmo
bastante conhecido para a listagem de números primos:

def sievePrimes0(candidates):

"""Removes every non-prime number from the ordered list l."""

for i in range(0, int(len(candidates) ** 0.5 + 1)):

currentPrime = candidates[i]

if currentPrime != 0:

for j in range(i + currentPrime, len(candidates), currentPrime):

if candidates[j] % candidates[i] == 0:

candidates[j] = 0

return filter(lambda x : x != 0, candidates)

def sievePrimes1(l):

"""Removes every non-prime number from the ordered list l."""

if l[0] * l[0] <= l[len(l) - 1]:

l[1:] = sievePrimes1(filter(lambda x: x % l[0] != 0, l))

return l

(a) Um destes algoritmos foi escrito segundo um estilo mais imperativo de pro-
gramação, enquanto o outro foi escrito em um estilo mais declarativo. Qual é
o algoritmo imperativo? Por que?

(b) Qual destes algoritmos é, em sua opinião, o mais leǵıvel? Esta pergunta, ob-
viamente, é subjetiva, e diferentes pessoas podem escolher diferentes respostas.
Justifique a sua resposta, explicando quais razões te levam a preferir uma sintáxe
em relação à outra.

1

(c) Qual implementação do crivo é mais eficiente? Tome medidas de tempo das duas
implementações. Para isto, você pode usar a função timeSieve abaixo. Plote um
gráfico com medidas de tempo para crivos de tamanho 10, 50, 100, 500, 1.000,
5.000, 10.000, 50.000, 100.000 e 500.000.

def timeSieve(maxPrime, numTimes, sieveFunc):

"""Times the sieve implementations."""

t0 = 0

for numTries in range(0, numTimes):

taux = time.clock()

primes0 = sieveFunc(range(2, maxPrime))

t0 = t0 + time.clock() - taux

print (t0 / numTimes)

(d) Quais razões poderiam explicar a diferença de eficiência observada na questão
anterior? Existe alguma diferença entre a complexidade assimptótica dos dois
algoritmos?

(e) Escreva uma função testPrimes, que torne mais interativo o processo de teste de
eficiência. Esta função deve ler dois valores da entrada: um número numTimes de
vezes que a função crivo deve ser chamada, e um número maxPrime que determina
o tamanho do crivo gerado. A função timeSieve deverá ser chamada duas vezes,
uma com sievePrimes0 e outra com sievePrimes1, usando os parâmetros lidos
da entrada. Dê uma olhada nas funções raw input e int. Você pode querer
usá-las neste exerćıcio.

2

2. Python é uma das poucas linguagens de programação modernas em que a indentação
é parte da sintáxe. A partir desta observação, responda as perguntas abaixo:

(a) O que queremos dizer quando afirmamos que a indentação é parte da sintaxe da
linguagem?

(b) A maior parte das linguagens de programação mais conhecidas separa indentação
de sintaxe. Esta não separação, em Python, foi uma decisão polêmica. Qual(is)
a(s) vantagem(ns) e desvantagem(ns) da abordagem de Python?

3. A sintaxe de Python provê uma cláusula else para laços. Em geral, linguagens da
famı́lia BCPL (C, C++, Java, C#) não contêm nada semelhante. O programa abaixo
ilustra o uso deste tipo de else. O que a função mystery faz?

def mystery(limit):

nums = []

for n in range(2, limit):

for x in range(2, n):

if n % x == 0:

break

else:

nums.append(n)

return nums

3

4. Tal qual em SML, em Python nós não declaramos os tipos das variáveis manipuladas
pelos programas Estas linguagens, contudo, lidam com tipos de maneira muito difer-
ente.

(a) SML é uma linguagem estaticamente tipada, ao contrário de Python, que é tipada
dinamicamente. Qual a diferença entre tipagem estática e tipagem dinâmica?

(b) Podemos fazer um punhado de estripulias em linguagens dinamicamente tipadas.
Por exemplo, escreva uma função pydiv(n, d) em Python, que retorna o resul-
tado da divisão do número real n pelo número real d. Entretanto, se d for zero,
então o valor especial None deverá ser retornado. Note que None é um valor pré-
definido em Python; de fato, é o valor retornado por todas as funções que não
“retornam nada”.

(c) Como podeŕıamos implementar algo parecido em SML? Usando tipos algébricos,
talvez? Escreva uma função smldiv, cujo tipo seja real * real -> ??? que
simule da forma mais fidedigna posśıvel a função pydiv.

5. Escreva uma função perm(n, l), que produza todas as permutações de n elementos
da lista l. Por exemplo:

>>> perm(2, ["a", "b", "c"])

[[’a’, ’b’], [’a’, ’c’], [’b’, ’a’], [’b’, ’c’], [’c’, ’a’], [’c’, ’b’]]

>>>

>>> perm(3, [1, 2, 3])

[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

4

6. Considere as seguintes sequências de números:

• {0163, 0613, 1063}
• {1487, 4817, 8147}

Estas sequências são especiais por quatro razões.

(a) Estes números são permutações de quatro d́ıgitos distintos.

(b) Estes números são primos.

(c) Estes números são todos menores que 9999.

(d) Cada sequência forma uma progressão aritmética. A primeira possui razão 450,
e a segunda possui razão 3330.

Existe uma outra sequência de três números que preenche estes quatro requisitos.
Escreva um programa em Python que encontre tal sequência. Talvez você queria
reutilizar a função perm do exerćıcio anterior. Você não precisa re-escrever o código de
perm em seu arquivo. Python provê um mecanismo de reúso de código via a primitiva
import. Por exemplo, supondo que perm está em um arquivo ex.py, você pode torná-
la viśıvel em seu escopo local com a comando from ex import perm. Este problema é
uma variação do problema 49 do Projeto Euler. Você pode querer dar uma olhadinha
naquele problema, assim que resolver este aqui.

5

