Lista de Linguagens de Programacao — 14

Nome: Matricula:

1. Existem trés formas de alocacao de memoria: memoria estatica, memoria de pilha e
alocacao em heap. Enquanto enderecos estaticos sao conhecidos em tempo de com-
pilagao, as outras formas de alocacao usam enderecos que serao conhecidos somente
durante a execucao do programa. Para cada variavel do programa C abaixo, informe
qual a forma de alocacao de memoria que serd utilizada por ela:

int a =7 ;
const int b = 9 ;
const int c std::rand() ;

void foo() {
int d = 9 ;
int e = 9 ;
const int f = std::rand() ;
static int g = 7 ;

static const int h = 9 ;
static const int i = std::rand() ;
int* j = (int*) malloc (sizeof(int)) ;



2. A classe HeapManager, disponivel na pagina do curso (HeapManager.py), usa uma
estratégia first-fit para encontrar o primeiro bloco de memoéria grande o suficiente para
alocar uma requisicao. Outro mecanismo bem conhecido, e simples, é chamado best-fit.
Conforme vocé pode imaginar, esta estratégia consiste em percorrer a lista de blocos
livres, em busca do pedago de memoéria que seja o menor possivel mas que seja grande o
suficiente para comportar a area de memoria requisitada. Se for encontrada uma area
exatamente do tamanho da requisicao, entao pode-se interromper a busca, retornando
a area encontrada. Do contrario, toda a lista deve ser percorrida, em busca do melhor
pedaco de memoria. A vantagem de best-fit é que esta estratégia nao quebra areas de
memoria muito grandes desnecessariamente. Se houver uma area de tamanho exato,
best-fit a encontrard, nao tendo, portanto, de quebrar nenhum bloco neste caso.

Neste exercicio vocé deve implementar uma nova versao da classe HeapManager, com
esta politica de alocacao de meméria. Comece com uma copia de HeapManager, e entao
modifique o método allocate para implementar esta estratégia.

Assim que vocé testar sua implementacao, e verificar que ela funciona, ache uma
sequéncia simples de requisicoes de memoria para a qual a politica fist-fit sucede e
a politica best-fit falha. Dica: existe uma sequéncia que comega deste jeito:

mm = HeapManager ([0 for x in range(0, 11)]);

a = mm.allocate(4);
b = mm.allocate(1);
c = mm.allocate(3);

mm.deallocate(a);
mm.deallocate(c);

Agora, vocé somente precisa estender esta sequéncia com trés chamadas paramm.allocate,
e voceé terd algo que tera sucesso com first-fit e falhard com best-fit.



3. Coleta de lixo é uma forma de gerenciamento automatico de memoria, e pode-se dizer
que a vida seria bastante dificil para os programadores sem este tipo de ajuda. Dificil,
mas nao impossivel, pois ha linguagens, como C, que nao possuem sistemas de coleta
de lixo. Neste exercicio vocé tera de fazer um pouquinho de pesquisa sobre coleta de
lixo.

(a) Qual linguagem introduziu mecanismos de coleta de lixo para o mundo? Quem
foi o autor desta linguagem?

(b) Conforme dito antes, algumas das linguagens mais populares ndo possuem nen-
hum mecanismo de coleta de lixo. C e C++ sao bons exemplos. Descreva uma
desvantagem de um servico de coleta de lixo.

(c) Escreva um paragrafo explicando cada um dos coletores de lixo a seguir: Marcagao
e varredura (mark and sweep) Copia e coleta (Copying) e Contagem de referéncias
(Reference counting)



4. Muitas linguagens de programagao nao possuem qualquer mecanismo de coleta au-
tomatica de lixo. Um exemplo tipico é C++. Ainda assim, é possivel programar
de forma mais segura via bibliotecas. Uma estratégia comumente adotada em C++
¢ baseada no uso de ponteiros desalocados automaticamente. Uma possivel imple-
mentacao deste tipo de ponteiro é dada logo abaixo:

template <class T> class auto_ptr {
private: T* ptr;
public:
explicit auto_ptr(T* p = 0) : ptr(p) { }
“auto_ptr() { delete ptr; }
T& operator*() { return *ptr; }
T* operator->() { return ptr; }

(a) A classe auto_ptr utiliza pelo menos dois tipos diferentes de polimorfismo. Que
tipos de polimorfismos sao estes?

(b) A funcao abaixo contém um problema de mem?éria ou nao? Em caso afirmativo,
explique que falha é esta. Utilize a ferramenta valgrind para analisar este pro-
grama, por exemplo, tentando o comando valgrind -v ./a.out. Considere que
uma falha de memoéria leva valgrind a fornecer algum aviso. Caso o erro nao
exista, justifique a sua resposta:

void foo0() {
auto_ptr<std::string> p(new std::string("I did one P.0.F!\n"));
p—>print () ;

b

(¢) Novamente: problema de memdria ou ndo? Em caso afirmativo, explique que falha
é esta. Em caso negativo, justifique. Note que excecOes, neste caso, funcionam
como em Java ou Python:

void fool() {

try {
auto_ptr<std::string> p(new std::string("0i!\n"));
throw 20;
} catch (int e) { std::cout << "Qops: " << e << "\n"; }
}



(d) ultima pergunta: problema de mem?éria ou n7ao? Em caso afirmativo, explique
que falha é esta. Em caso negativo, justifique a sua resposta:

void foo2() {

try {
std::string* p = new std::string("0i!\n");
throw 20;
delete p;
} catch (int e) { std::cout << "Oops: " << e << "\n"; %}

by

5. Existem muitos mecanismos de coleta de lixo diferentes; alguns destes mecanismos
servem dominios bem especificos de aplicagoes. Abaixo sao dados dois diferentes
cenarios. Para cada um, descreva um mecanismo de coleta de lixo que seria interes-
sante para ele. Neste curso falamos dos seguintes algoritmos: contagem de referéncias,
marcagao e varredura, cépia e coleta. Além destes, vocé pode pensar em outros, mais
adequados a aplicagao em questao.

(a) Um sistema de tempo real, para controlar o brago de um rob6 que opera em uma
linha de montagem. O principal requisito deste sistema é que ele deve responder
a eventos em um certo periodo de tempo. Em hipdtese alguma o sistema deve
demorar mais que esta quantidade de tempo para produzir uma resposta.

(b) Um servidor web. O servidor recebe milhares de requisigoes, todas elas indepen-
dentes umas das outras. Uma caracteristica interessante deste sistema é que cada
requisicao tem um periodo de vida curto, e leva a criacao de uma quantidade
pequena, e muitas vezes previsivel de dados.



