
Lista de Linguagens de Programação – 14

Nome: Matŕıcula:

1. Existem três formas de alocação de memória: memória estática, memória de pilha e
alocação em heap. Enquanto endereços estáticos são conhecidos em tempo de com-
pilação, as outras formas de alocação usam endereços que serão conhecidos somente
durante a execução do programa. Para cada variável do programa C abaixo, informe
qual a forma de alocação de memória que será utilizada por ela:

int a = 7 ;

const int b = 9 ;

const int c = std::rand() ;

void foo() {

int d = 9 ;

int e = 9 ;

const int f = std::rand() ;

static int g = 7 ;

static const int h = 9 ;

static const int i = std::rand() ;

int* j = (int*) malloc (sizeof(int)) ;

}

1



2. A classe HeapManager, dispońıvel na página do curso (HeapManager.py), usa uma
estratégia first-fit para encontrar o primeiro bloco de memória grande o suficiente para
alocar uma requisição. Outro mecanismo bem conhecido, e simples, é chamado best-fit.
Conforme você pode imaginar, esta estratégia consiste em percorrer a lista de blocos
livres, em busca do pedaço de memória que seja o menor posśıvel mas que seja grande o
suficiente para comportar a área de memória requisitada. Se for encontrada uma área
exatamente do tamanho da requisição, então pode-se interromper a busca, retornando
a área encontrada. Do contrário, toda a lista deve ser percorrida, em busca do melhor
pedaço de memória. A vantagem de best-fit é que esta estratégia não quebra áreas de
memória muito grandes desnecessariamente. Se houver uma área de tamanho exato,
best-fit a encontrará, não tendo, portanto, de quebrar nenhum bloco neste caso.

Neste exerćıcio você deve implementar uma nova versão da classe HeapManager, com
esta poĺıtica de alocação de memória. Comece com uma cópia de HeapManager, e então
modifique o método allocate para implementar esta estratégia.

Assim que você testar sua implementação, e verificar que ela funciona, ache uma
sequência simples de requisições de memória para a qual a poĺıtica fist-fit sucede e
a poĺıtica best-fit falha. Dica: existe uma sequência que começa deste jeito:

mm = HeapManager([0 for x in range(0, 11)]);

a = mm.allocate(4);

b = mm.allocate(1);

c = mm.allocate(3);

mm.deallocate(a);

mm.deallocate(c);

Agora, você somente precisa estender esta sequência com três chamadas para mm.allocate,
e você terá algo que terá sucesso com first-fit e falhará com best-fit.

2



3. Coleta de lixo é uma forma de gerenciamento automático de memória, e pode-se dizer
que a vida seria bastante dif́ıcil para os programadores sem este tipo de ajuda. Dif́ıcil,
mas não imposśıvel, pois há linguagens, como C, que não possuem sistemas de coleta
de lixo. Neste exerćıcio você terá de fazer um pouquinho de pesquisa sobre coleta de
lixo.

(a) Qual linguagem introduziu mecanismos de coleta de lixo para o mundo? Quem
foi o autor desta linguagem?

(b) Conforme dito antes, algumas das linguagens mais populares não possuem nen-
hum mecanismo de coleta de lixo. C e C++ são bons exemplos. Descreva uma
desvantagem de um serviço de coleta de lixo.

(c) Escreva um parágrafo explicando cada um dos coletores de lixo a seguir: Marcação
e varredura (mark and sweep) Cópia e coleta (Copying) e Contagem de referências
(Reference counting)

3



4. Muitas linguagens de programação não possuem qualquer mecanismo de coleta au-
tomática de lixo. Um exemplo t́ıpico é C++. Ainda assim, é posśıvel programar
de forma mais segura via bibliotecas. Uma estratégia comumente adotada em C++
é baseada no uso de ponteiros desalocados automaticamente. Uma posśıvel imple-
mentação deste tipo de ponteiro é dada logo abaixo:

template <class T> class auto_ptr {

private: T* ptr;

public:

explicit auto_ptr(T* p = 0) : ptr(p) { }

~auto_ptr() { delete ptr; }

T& operator*() { return *ptr; }

T* operator->() { return ptr; }

};

(a) A classe auto ptr utiliza pelo menos dois tipos diferentes de polimorfismo. Que
tipos de polimorfismos são estes?

(b) A função abaixo contém um problema de mem?ória ou não? Em caso afirmativo,
explique que falha é esta. Utilize a ferramenta valgrind para analisar este pro-
grama, por exemplo, tentando o comando valgrind -v ./a.out. Considere que
uma falha de memória leva valgrind a fornecer algum aviso. Caso o erro não
exista, justifique a sua resposta:

void foo0() {

auto_ptr<std::string> p(new std::string("I did one P.O.F!\n"));

p->print();

}

(c) Novamente: problema de memória ou não? Em caso afirmativo, explique que falha
é esta. Em caso negativo, justifique. Note que exceções, neste caso, funcionam
como em Java ou Python:

void foo1() {

try {

auto_ptr<std::string> p(new std::string("Oi!\n"));

throw 20;

} catch (int e) { std::cout << "Oops: " << e << "\n"; }

}

4



(d) última pergunta: problema de mem?ória ou n?ão? Em caso afirmativo, explique
que falha é esta. Em caso negativo, justifique a sua resposta:

void foo2() {

try {

std::string* p = new std::string("Oi!\n");

throw 20;

delete p;

} catch (int e) { std::cout << "Oops: " << e << "\n"; }

}

5. Existem muitos mecanismos de coleta de lixo diferentes; alguns destes mecanismos
servem domı́nios bem espećıficos de aplicações. Abaixo são dados dois diferentes
cenários. Para cada um, descreva um mecanismo de coleta de lixo que seria interes-
sante para ele. Neste curso falamos dos seguintes algoritmos: contagem de referências,
marcação e varredura, cópia e coleta. Além destes, você pode pensar em outros, mais
adequados à aplicação em questão.

(a) Um sistema de tempo real, para controlar o braço de um robô que opera em uma
linha de montagem. O principal requisito deste sistema é que ele deve responder
a eventos em um certo peŕıodo de tempo. Em hipótese alguma o sistema deve
demorar mais que esta quantidade de tempo para produzir uma resposta.

(b) Um servidor web. O servidor recebe milhares de requisições, todas elas indepen-
dentes umas das outras. Uma caracteŕıstica interessante deste sistema é que cada
requisição tem um peŕıodo de vida curto, e leva à criação de uma quantidade
pequena, e muitas vezes previśıvel de dados.

5


