Lista de Linguagens de Programacao — 16

Nome: Matricula:

Os exercicios desta lista devem ser todos implementados em Python.

1. Este exercicio faz referéncia as classes implementadas em Python disponiveis no arquivo
List.py na péagina do curso.

(a) Adicione um método contains a classe List, de modo tal que x.contains(n)
retorne true se o valor inteiro n ocorrer na lista x, do tipo List. O método devera
retornar false caso contrario.

(b) Adicione um método equals a classe List, de modo tal que x.equals(y) re-
torne true se x e y possuirem exatamente os mesmos inteiros, na mesma or-
dem. O método retornara falso caso contrario. A invariante que x.equals(y)
e y.equals(x) sao iguais deve ser mantida. Deve ser verdade também que que,
caso x ==y, entao x.equals(y) deve retornar true. O contrario nao é sempre
verdade.

(¢) Adicione um método append a classe List, de modo tal que x.append (y) retorne
uma instancia de List que seja igual a lista x seguida da lista y. Nao podem
haver efeitos colaterais nem em x, tampouco em y. Dica: faca uma copia de x.



(d) Adicione um método reverse a classe List, de modo tal que x.reverse () retorne

um objeto do tipo List que seja o reverso da lista original x. Nao deve haver
nenhum efeito colateral em x.

(e) Adicione um método reverseMe a classe List, de modo tal que x.reverseMe ()

nao retorne nenhum valor, mas tenha o efeito colateral de inverter o conteudo da
lista. Implementar esta funcao, na verdade, é mais facil se fizermos uma copia
de x. Claro, é muito mais interessante, e também mais dificil, fazer a inversao in
place, sem criar novas instancias da classe ConsCell.

Adicione um método sort a classe List, de modo tal que x.sort () retorne um
objeto List que seja uma versao da lista x, ordenada em ordem nao decrescente.
Vocé pode usar qualquer algoritmo de ordenagao que vocé quiser. Nao deve
haver nenhum efeito colateral em x. Passe a operacao de comparagao como um
parametro do método sort.



(g) Adicione um método sortMe a classe List, de modo tal que x.sortMe() néo
retorne qualquer valor, mas tenha o efeito colateral de ordenar o conteido de
x em ordem crescente. Use o algoritmo de ordenacao que quiser, mas nao crie
nenhum novo objeto do tipo ConsCell.

(h) Implemente o método append do exercicio anterior, de modo recursivo, usando
um estilo de programacao mais funcional.



2. Para resolver este exercicio vocé precisard da definicao das classes Node e Stack
disponiveis na pagina do curso (arquivo Worklist.py). Neste exercicio vocé deverd
escrever duas outras classes, conforme descrito a seguir:

(a) Escreva uma classe Queue que implemente uma lista usando um esquema de
colocagao e remocao de dados do tipo first-in/first-out. A sua classe deve im-
plemenar os mesmos métodos que a classe Stack abaixo:

class Stack:
"Describes a simple list data type."

def add(self, element):
"""Adds a new element into this list."""

def remove(self):
"""Removes the next element from this list."""

def hasMore(self):
"""Returns True if this list is not empty."""

A classe deve ser implementada com uma lista encadeada. Nao vale usar alguma
classe ja existente na biblioteca padrao de Python que implemente a lista para
voce.



(b) Escreva uma classe PriorityQueue que implementa os mesmos métodos que
Stack. Independente da ordem em que strings sao inseridos na fila, o método
remove deve sempre retornar a menor string em termos lexicograficos. Para
comparar duas strings lexicograficamente, use os operadores relacionais, isto €,
<, <, >, >,#,=. Vocé nao precisa produzir uma implementacao muito eficiente.
Vocé pode, por exemplo, usar uma implementagao baseada em uma lista en-
cadeada. Vocé pode modificar a classe Node, mas nao de um jeito que quebre a
classe Stack para a qual Node foi originalmente feita. Voceé vai também precisar
escrever algum coédigo para testar a sua classe, por exemplo:

>>> s = Stack()

>>> s.hasMore()

False

>>> g.add("a"

>>> s.add("c")

>>> s.add("b")

>>> while (s.hasMore()):
print s.remove()



(c) Que modificagoes seriam necessarias para que a classe PriorityQueue pudesse
trabalhar com nimeros inteiros, em vez de strings?

(d) Considere o método removeAll logo abaixo:

def removeAll(s):
"""Removes all the elements from the data structure."""
while (s.hasMore()):
print s.remove()

i. Qual o “contrato” que deve ser garantido pelos parametros reais deste método,
Isto é, pelos elementos s passados para o método?

ii. Pesquise o significado da expressao duck typing. O que duck typing tem a ver
com 0 nosso método removeAll?



3. Escreva uma classe Int com os seguintes componentes:

(a) Um campo para armazenar um nimero inteiro.

(b) Um construtor, de forma tal que Int(x) crie uma nova instancia do tipo Int,
com o valor do inteiro x.

(¢) Um método plus, de modo tal que x.plus(y) retorne um novo objeto do tipo
Int.

(d) Um método toString, de forma tal que x.toString() retorna uma string repre-
sentando o objeto x.

(e) Métodos minus, times e div, parecidos com o método plus do item anterior. O
método div deve realizar divisdo inteira, igual o operador barra (/) aplicado sobre
valores inteiros.

(f) Um método isPrime, de tal forma que x.isPrime() retorne true se o valor de
x for um nimero primo.

Em algumas linguagens orientadas por objetos, como Smalltalk, tudo sao objetos —
inteiros, booleans, caracteres, operadores aritméticos, indices de arranjos, tudo, tudo.
Nestas linguagens, a sintaxe de expressoes aritméticas realmente se parece com esta
classe que voceé acabou de criar.



