
Lista de Linguagens de Programação – 16

Nome: Matŕıcula:

Os exerćıcios desta lista devem ser todos implementados em Python.

1. Este exerćıcio faz referência às classes implementadas em Python dispońıveis no arquivo
List.py na página do curso.

(a) Adicione um método contains à classe List, de modo tal que x.contains(n)

retorne true se o valor inteiro n ocorrer na lista x, do tipo List. O método deverá
retornar false caso contrário.

(b) Adicione um método equals à classe List, de modo tal que x.equals(y) re-
torne true se x e y possuirem exatamente os mesmos inteiros, na mesma or-
dem. O método retornará falso caso contrário. A invariante que x.equals(y)

e y.equals(x) são iguais deve ser mantida. Deve ser verdade também que que,
caso x == y, entao x.equals(y) deve retornar true. O contrário não é sempre
verdade.

(c) Adicione um método append à classe List, de modo tal que x.append(y) retorne
uma instância de List que seja igual a lista x seguida da lista y. Não podem
haver efeitos colaterais nem em x, tampouco em y. Dica: faça uma cópia de x.

1



(d) Adicione um método reverse à classe List, de modo tal que x.reverse() retorne
um objeto do tipo List que seja o reverso da lista original x. Não deve haver
nenhum efeito colateral em x.

(e) Adicione um método reverseMe à classe List, de modo tal que x.reverseMe()

não retorne nenhum valor, mas tenha o efeito colateral de inverter o conteúdo da
lista. Implementar esta função, na verdade, é mais fácil se fizermos uma cópia
de x. Claro, é muito mais interessante, e também mais dif́ıcil, fazer a inversão in
place, sem criar novas instâncias da classe ConsCell.

(f) Adicione um método sort à classe List, de modo tal que x.sort() retorne um
objeto List que seja uma versão da lista x, ordenada em ordem não decrescente.
Você pode usar qualquer algoritmo de ordenação que você quiser. Não deve
haver nenhum efeito colateral em x. Passe a operação de comparação como um
parâmetro do método sort.

2



(g) Adicione um método sortMe à classe List, de modo tal que x.sortMe() não
retorne qualquer valor, mas tenha o efeito colateral de ordenar o conteúdo de
x em ordem crescente. Use o algoritmo de ordenação que quiser, mas não crie
nenhum novo objeto do tipo ConsCell.

(h) Implemente o método append do exerćıcio anterior, de modo recursivo, usando
um estilo de programação mais funcional.

3



2. Para resolver este exerćıcio você precisará da definição das classes Node e Stack

dispońıveis na página do curso (arquivo Worklist.py). Neste exerćıcio você deverá
escrever duas outras classes, conforme descrito a seguir:

(a) Escreva uma classe Queue que implemente uma lista usando um esquema de
colocação e remoção de dados do tipo first-in/first-out. A sua classe deve im-
plemenar os mesmos métodos que a classe Stack abaixo:

class Stack:

"Describes a simple list data type."

def add(self, element):

"""Adds a new element into this list."""

def remove(self):

"""Removes the next element from this list."""

def hasMore(self):

"""Returns True if this list is not empty."""

A classe deve ser implementada com uma lista encadeada. Não vale usar alguma
classe já existente na biblioteca padrão de Python que implemente a lista para
você.

4



(b) Escreva uma classe PriorityQueue que implementa os mesmos métodos que
Stack. Independente da ordem em que strings são inseridos na fila, o método
remove deve sempre retornar a menor string em termos lexicográficos. Para
comparar duas strings lexicograficamente, use os operadores relacionais, isto é,
<,≤,≥, >, 6=, =. Você não precisa produzir uma implementação muito eficiente.
Você pode, por exemplo, usar uma implementação baseada em uma lista en-
cadeada. Você pode modificar a classe Node, mas não de um jeito que quebre a
classe Stack para a qual Node foi originalmente feita. Você vai também precisar
escrever algum código para testar a sua classe, por exemplo:

>>> s = Stack()

>>> s.hasMore()

False

>>> s.add("a")

>>> s.add("c")

>>> s.add("b")

>>> while (s.hasMore()):

... print s.remove()

...

a

b

c

5



(c) Que modificações seriam necessárias para que a classe PriorityQueue pudesse
trabalhar com números inteiros, em vez de strings?

(d) Considere o método removeAll logo abaixo:

def removeAll(s):

"""Removes all the elements from the data structure."""

while (s.hasMore()):

print s.remove()

i. Qual o “contrato” que deve ser garantido pelos parâmetros reais deste método,
Isto é, pelos elementos s passados para o método?

ii. Pesquise o significado da expressão duck typing. O que duck typing tem a ver
com o nosso método removeAll?

6



3. Escreva uma classe Int com os seguintes componentes:

(a) Um campo para armazenar um número inteiro.

(b) Um construtor, de forma tal que Int(x) crie uma nova instância do tipo Int,
com o valor do inteiro x.

(c) Um método plus, de modo tal que x.plus(y) retorne um novo objeto do tipo
Int.

(d) Um método toString, de forma tal que x.toString() retorna uma string repre-
sentando o objeto x.

(e) Métodos minus, times e div, parecidos com o método plus do item anterior. O
método div deve realizar divisão inteira, igual o operador barra (/) aplicado sobre
valores inteiros.

(f) Um método isPrime, de tal forma que x.isPrime() retorne true se o valor de
x for um número primo.

Em algumas linguagens orientadas por objetos, como Smalltalk, tudo são objetos –
inteiros, booleans, caracteres, operadores aritméticos, ı́ndices de arranjos, tudo, tudo.
Nestas linguagens, a sintaxe de expressões aritméticas realmente se parece com esta
classe que você acabou de criar.

7


