
Lista de Linguagens de Programação – 17

Nome: Matŕıcula:

1. Costuma-se dizer que Python é uma linguagem orientada por objetos, porém, a ori-
entação por objetos, enquanto uma filosofia de desenvolvimento de software, é muito
mais uma caracteŕıstica do programa, que da linguagem de programação. Considere,
por exemplo, o programa abaixo. Este programa, embora escrito em Python, não segue
qualquer prinćıpio de codificação orientado por objetos.

class Node:

def __init__(self):

self.data = ’’

self.link = 0

class Stack:

def __init__(self):

self.top = Node()

def add(s, data):

n = Node()

n.data = data

n.link = s.top

s.top = n

def hasMore(s):

return s.top.link != 0

def remove(s):

n = s.top

s.top = n.link

return n.data

def test():

s = Stack()

add(s, "AA")

add(s, 0)

while (hasMore(s)):

print remove(s)

(a) Por que o programa foge às caracteŕısticas da programação orientada por objetos?

(b) Reescreva o programa, a fim de torná-lo mais “orientado por objetos”.

1

2. Considere o programa abaixo, e responda o que acontecerá em cada linha numerada.
As opções posśıveis são: (i) Algo será impresso. Neste caso, escreva o que será impresso.
(ii) Um erro será produzido em tempo de execução.

class Animal:

atrb_animal = 0

def __init__(self, name):

self.name = name

def __str__(self):

return self.name + " is an animal"

def eat(self):

print self.name + ", which is an animal, is eating."

class Mammal(Animal):

def __str__(self):

return self.name + " is a mammal"

def suckMilk(self):

print self.name + ", which is a mammal, is sucking milk."

class Dog(Mammal):

def __str__(self):

return self.name + " is a dog"

def bark(self):

print self.name + " is barking rather loudly."

def eat(self):

print self.name + " barks when it eats."

self.bark

def test():

a1 = Animal("Tigrinho")

a2 = Mammal("Oncinha")

a3 = Dog("Mameluco")

print a1 # 1

print a2 # 2

print a3 # 3

a1.eat() # 4

a2.suckMilk() # 5

a2.eat() # 6

a3.bark() # 7

a3.suckMilk() # 8

a3.eat() # 9

a1.bark() # 10

a1 = a3

a1.bark() # 11

2

3. Este exerćıcio é similar ao anterior, porém usaremos Java, em vez de Python. Considere
o programa abaixo, e responda o que acontecerá em cada linha numerada. As quatro
opções posśıveis são: (i) Algo será impresso. Neste caso, escreva o que será impresso.
(ii) Um erro será produzido em tempo de compilação. (iii) Um erro será produzido
em tempo de execução. (iv) Uma atribuição acontece, e nada será impresso. Note que
agora temos a possibilidade de receber avisos de erro em tempo de compilação, o que
não acontecia em Python!

class Animal {

public void eat() { System.out.println(this + " is eating"); }

public String toString () { return "Animal"; }

}

class Mammal extends Animal {

public void suckMilk() { System.out.println(this + " is sucking"); }

public String toString () { return "Mammal"; }

}

class Dog extends Mammal {

public void bark() { System.out.println(this + " is barking"); }

public String toString () { return "Dog"; }

}

public class Zoo {

public static void main (String args[]) {

Animal a1 = new Animal();

Animal a2 = new Mammal();

Animal a3 = new Dog();

System.out.println(a1); // 1

System.out.println(a2); // 2

System.out.println(a3); // 3

a1.eat(); // 4

a2.suckMilk(); // 5

a2.eat(); // 6

Dog d1 = args.length > 1 ? a3 : new Dog(); // 7

Mammal m1 = d1; // 8

d1.bark(); // 9

m1.suckMilk(); // 10

d1.suckMilk(); // 11

Dog d2 = (Dog)a3; // 12

a3.bark(); // 13

d2.bark(); // 14

Dog d3 = (Dog)a2; // 15

}

}

3

4. Considere o programa Java abaixo, e diga o que será impresso pelo método main.

public class Avatar {

public void buy(Knife k) {

System.out.println("Avatar bought a knife");

}

public void buy(Sword s) {

System.out.println("Avatar bought a sword");

}

}

public class Knife {

public void isBoughtBy(Avatar a) {

a.buy(this);

}

}

public class Sword extends Knife {

public void isBoughtBy(Avatar a) {

a.buy(this);

}

}

public class SpiderAv extends Avatar {

public void buy(Knife k) {

System.out.println("Spider bought a knife");

}

public void buy(Sword s) {

System.out.println("Spider bought a sword");

}

public static void main(String args[]) {

Avatar a1 = new Avatar();

Avatar a2 = new SpiderAv();

SpiderAv sa = new SpiderAv();

Knife ks = new Sword();

a1.buy(ks);

a2.buy(ks);

sa.buy(ks);

ks.isBoughtBy(a1);

ks.isBoughtBy(a2);

ks.isBoughtBy(sa);

}

}

4

5. Em Java podemos usar o tipo estático dos parâmetros passados para um método para
decidir qual método chamar, em tempo de compilação. Veja, por exemplo, a classe
Avatar, usada no exerćıcio anterior:

public class Avatar {

public void buy(Knife k) { System.out.println("Avatar bought a knife"); }

public void buy(Sword s) { System.out.println("Avatar bought a sword"); }

public static void main(String args[]) {

Avatar a = new Avatar();

Knife k = new Knife();

Sword s = new Sword();

a.buy(k);

a.buy(s);

}

}

(a) Por que este tipo de estratégia não é posśıvel em Python?

(b) Como o programa acima poderia ser escrito em Python? Na verdade, não é
posśıvel implementar um programa idêntico, porém você pode tentar emular a
funcionalidade daquele programa.

(c) (Questão opcional) Existe um padrão de projetos chamado visitor. Este padrão
lança mão da capacidade que Java – e outras linguagens estaticamente tipadas –
têm de permitir que a correta implementação de um método seja chamada com
base no tipo estático dos parâmetros passados para aquele método. Faça uma
breve pesquisa sobre este padrão e imagine alternativas para implementá-lo em
uma linguagem como Python.

5

6. Considere o programa abaixo:

public interface TreeNode {}

public class Leaf implements TreeNode {

final int value;

public Leaf(int value) {

this.value = value;

}

}

public class Branch implements TreeNode {

final TreeNode l, r;

final int value;

public Branch(int value, TreeNode l, TreeNode r) {

this.value = value;

this.l = l;

this.r = r;

}

public static int computeValue(TreeNode t) {

if (t instanceof Leaf) {

return ((Leaf) t).value;

} else {

int v1 = computeValue(((Branch)t).l);

int v2 = computeValue(((Branch)t).r);

return v1 + v2;

}

}

}

O projeto deste programa contraria alguns prinćıpios básicos da orientação por objetos.
Re-implemente este programa para que ele passe a ser mais “orientado por objetos”.

6

7. Considere as duas classes abaixo, implementadas na linguagem Java:

class Mammal extends Animal {

public void eat() {

System.out.println("Eating. Yummy, yummy!!!");

}

}

public class Animal {

public static void main(String args[]) {

Animal a = new Animal();

Animal m = new Mammal();

// Chamada 1:

a.eat();

// Chamada 2:

m.eat();

}

}

Existe alguma diferença, ainda que mı́nima, em termos de eficiência, entre a primeira
chamada de método (Chamada 1) e a segunda (Chamada 2)? Em caso afirmativo, diga
qual chamada é mais eficiente, e explique o por quê. Em caso negativo, justifique a
sua resposta.

7

8. Este exerćıcio é similar ao anterior, porém usaremos Python em vez de Java. Assim,
considere o programa abaixo:

class Animal:

atrb_animal = 0

def __init__(self, name):

self.name = name

def eat(self):

print "Eating. Yummy, yummy!!!"

class Mammal(Animal):

pass

def test():

a1 = Animal("Tigrinho")

a2 = Mammal("Oncinha")

Chamada 1:

a1.eat()

Chamada 2:

a2.eat()

Existe alguma diferença, ainda que mı́nima, em termos de eficiência, entre a primeira
chamada de método (Chamada 1) e a segunda (Chamada 2)? Em caso afirmativo, diga
qual chamada é mais eficiente, e explique o por quê. Em caso negativo, justifique a
sua resposta.

8

