Lista de Linguagens de Programacao — 17

Nome: Matricula:

1. Costuma-se dizer que Python é uma linguagem orientada por objetos, porém, a ori-
entacao por objetos, enquanto uma filosofia de desenvolvimento de software, é muito
mais uma caracteristica do programa, que da linguagem de programacao. Considere,
por exemplo, o programa abaixo. Este programa, embora escrito em Python, nao segue
qualquer principio de codificacao orientado por objetos.

class Node:
def __init__(self):
self.data = 7’
self.link = O
class Stack:
def __init__(self):
self.top = Node()
def add(s, data):
n = Node()
n.data = data
n.link = s.top
s.top = n
def hasMore(s):
return s.top.link != 0
def remove(s):
n = s.top
s.top = n.link
return n.data
def test():
s = Stack()
add(s, "AA")
add(s, 0)
while (hasMore(s)):
print remove(s)

(a) Por que o programa foge as caracteristicas da programagao orientada por objetos?

(b) Reescreva o programa, a fim de torna-lo mais “orientado por objetos”.

2. Considere o programa abaixo, e responda o que acontecerd em cada linha numerada.
As opgoes possiveis sdo: (i) Algo serd impresso. Neste caso, escreva o que serd impresso.
(ii) Um erro serd produzido em tempo de execugao.

class Animal:
atrb_animal = 0
def __init__(self, name):
self .name = name
def __str__(self):
return self.name + " is an animal"
def eat(self):
print self.name + ", which is an animal, is eating."
class Mammal (Animal):
def __str__(self):
return self.name + " is a mammal"
def suckMilk(self):
print self.name + ", which is a mammal, is sucking milk."
class Dog(Mammal) :
def __str__(self):
return self.name + " is a dog"
def bark(self):
print self.name + " is barking rather loudly."
def eat(self):
print self.name + " barks when it eats."

self.bark

def test():
al = Animal("Tigrinho")
a2 = Mammal ("Oncinha")
a3 = Dog("Mameluco")
print al # 1
print a2 # 2
print a3 # 3
al.eat() # 4
a2.suckMilk() # 5
a2.eat() # 6
a3.bark() #7
a3.suckMilk () # 8
a3.eat() #9
al.bark() # 10
al = a3
al.bark() # 11

3. Este exercicio é similar ao anterior, porém usaremos Java, em vez de Python. Considere
o programa abaixo, e responda o que acontecera em cada linha numerada. As quatro
opgoes possiveis sao: (i) Algo serd impresso. Neste caso, escreva o que serd impresso.
(ii) Um erro serd produzido em tempo de compilagao. (iii) Um erro serda produzido
em tempo de execucao. (iv) Uma atribuigao acontece, e nada serd impresso. Note que
agora temos a possibilidade de receber avisos de erro em tempo de compilacao, o que
nao acontecia em Python!

class Animal {
public void eat() { System.out.println(this + " is eating"); }
public String toString () { return "Animal"; }

}

class Mammal extends Animal {
public void suckMilk() { System.out.println(this + " is sucking"); }
public String toString () { return "Mammal"; }

}

class Dog extends Mammal {
public void bark() { System.out.println(this + " is barking"); }
public String toString () { return "Dog"; }

}

public class Zoo {
public static void main (String args[]) {

Animal al = new Animal();

Animal a2 = new Mammal();

Animal a3 = new Dog();

System.out.println(al); /71

System.out.println(a2); // 2

System.out.println(a3); // 3

al.eat(); /] 4

a2.suckMilk(); // 5

a2.eat(); // 6

Dog d1 = args.length > 1 ? a3 : new Dog(); /7

Mammal ml = di; // 8

d1.bark(); /79

mi.suckMilk(); // 10
d1.suckMilkQ); /7 11
Dog d2 = (Dog)a3; // 12
a3.bark(); // 13
d2.bark() ; // 14
Dog d3 = (Dog)a2; // 15

4. Considere o programa Java abaixo, e diga o que sera impresso pelo método main.

public class Avatar {
public void buy(Knife k) {
System.out.println("Avatar bought a knife");
}
public void buy(Sword s) {
System.out.println("Avatar bought a sword");
}
+

public class Knife {
public void isBoughtBy(Avatar a) {
a.buy(this);
}
}

public class Sword extends Knife {
public void isBoughtBy(Avatar a) {
a.buy(this);
+
+

public class SpiderAv extends Avatar {
public void buy(Knife k) {
System.out.println("Spider bought a knife");
}
public void buy(Sword s) {
System.out.println("Spider bought a sword");
}
public static void main(String args[]) {
Avatar al = new Avatar();
Avatar a2 = new SpiderAv();
SpiderAv sa = new SpiderAv();
Knife ks = new Sword();
al.buy(ks);
a2.buy(ks) ;
sa.buy(ks) ;
ks.isBoughtBy(al);
ks.isBoughtBy(a2) ;
ks.isBoughtBy(sa) ;

5. Em Java podemos usar o tipo estatico dos parametros passados para um método para
decidir qual método chamar, em tempo de compilacao. Veja, por exemplo, a classe
Avatar, usada no exercicio anterior:

public class Avatar {

public void buy(Knife k) { System.out.println("Avatar bought a knife"); }
public void buy(Sword s) { System.out.println("Avatar bought a sword"); }
public static void main(String args([]) {

Avatar a = new Avatar();

Knife k = new Knife();

Sword s new Sword();

a.buy (k) ;

a.buy(s);

(a) Por que este tipo de estratégia nao é possivel em Python?

(b) Como o programa acima poderia ser escrito em Python? Na verdade, nao é
possivel implementar um programa idéntico, porém vocé pode tentar emular a
funcionalidade daquele programa.

(¢) (Questao opcional) Existe um padrao de projetos chamado wisitor. Este padrao
lanca mao da capacidade que Java — e outras linguagens estaticamente tipadas —
tém de permitir que a correta implementacao de um método seja chamada com
base no tipo estatico dos parametros passados para aquele método. Faca uma
breve pesquisa sobre este padrao e imagine alternativas para implementa-lo em
uma linguagem como Python.

6. Considere o programa abaixo:
public interface TreeNode {}

public class Leaf implements TreeNode {
final int value;
public Leaf (int value) {
this.value = value;
b
+

public class Branch implements TreeNode {
final TreeNode 1, r;
final int value;
public Branch(int value, TreeNode 1, TreeNode r) {
this.value = value;
this.1l = 1;
this.r = r;
}
public static int computeValue(TreeNode t) {
if (t instanceof Leaf) {
return ((Leaf) t).value;

} else {
int vl = computeValue(((Branch)t).1l);
int v2 = computeValue(((Branch)t).r);
return vl + v2;
}
}
+

O projeto deste programa contraria alguns principios basicos da orientacao por objetos.
Re-implemente este programa para que ele passe a ser mais “orientado por objetos”.

7. Considere as duas classes abaixo, implementadas na linguagem Java:

class Mammal extends Animal {
public void eat() {
System.out.println("Eating. Yummy, yummy!!!");
}
}
public class Animal {
public static void main(String args[]) {
Animal a = new Animal();
Animal m = new Mammal();
// Chamada 1:
a.eat();

// Chamada 2:
m.eat();

Existe alguma diferenca, ainda que minima, em termos de eficiéncia, entre a primeira
chamada de método (Chamada 1) e a segunda (Chamada 2)7 Em caso afirmativo, diga
qual chamada é mais eficiente, e explique o por qué. Em caso negativo, justifique a
sua resposta.

8. Este exercicio é similar ao anterior, porém usaremos Python em vez de Java. Assim,
considere o programa abaixo:

class Animal:
atrb_animal = 0
def __init__(self, name):
self .name = name
def eat(self):
print "Eating. Yummy, yummy!!!"

class Mammal (Animal) :
pass

def test():
al = Animal ("Tigrinho")
a2 = Mammal("Oncinha")
Chamada 1:
al.eat()
Chamada 2:
a2.eat()

Existe alguma diferenca, ainda que minima, em termos de eficiéncia, entre a primeira
chamada de método (Chamada 1) e a segunda (Chamada 2)7 Em caso afirmativo, diga
qual chamada é mais eficiente, e explique o por qué. Em caso negativo, justifique a
sua resposta.

