Lista de Linguagens de Programacao — 18

Matricula:

Nome:

1. Considere a classe Staff, implementada em Python e mostrada logo abaixo:

class Staff:
payroll = {}
def getSalary(self, name):
if self.payroll.has_key(name):
return self.payroll[name]
else:
return 0.0
def addEmp(self, name, salary):
self.payroll [name] = salary
def raiseSalary(self, name, salary):
self.payroll [name] = self.payroll[name] + salary
(a) O método getSalary utiliza um valor especial, 0.0 como o saldrio de um empre-
gado inexistente. Qual a desvantagem desta forma de tratamento de erros?

(b) Crie uma classe de excecoes NonExistentEmployee para tratar a situagao excep-
cional de uma busca sobre um empregado inexistente.

(¢) Modifique o método getSalary para disparar uma excegao do tipo NonExistentEmployee
caso o nome solicitado nao possua uma entrada no banco de dados.



(d) Agora, crie uma outra classe de excegao, chamada NegativeSalary, para lidar
com tentativas de criar empregados com salarario negativo. Instancias desta classe
devem possuir dois atributos, name e salary, que representam, respectivamente,
o nome do empregado e o salario que deram origem a excecao.

(e) Modifique o método addEmp para disparar uma excegao do tipo NegativeSalary,
caso seja feita a tentativa de adicionar um empregado cujo salario seja negativo.

(f) Modifique o método raiseSalary para tratar tanto erros de empregado nao ex-
istente quanto erros de salario negativo.

(g) Considere o método readEmployees abaixo. Reescreva este método para que ele
implemente o tratamento de erro. Cuide para que sua nova implementacao nao
termine o programa logo que uma excecao for disparada. Isto é, tendo inserido
um nome invalido, o usuario deveria ter uma nova chance de informar um nome.
O mesmo vale para o salario negativo.

def readEmployees(s):
name = raw_input("Please, enter a name (Press RETURN to finish) ")
while name != ’7:
salary = float(raw_input("Please, enter the salary: "))
s.raiseSalary(name, salary)
name = raw_input("Please, enter a name (Press RETURN to finish) ")



2. Cada uma das questoes a seguir diz respeito ao programa abaixo:

class Wrapper<E> {
private E o;
Wraper () {this.o = null;}
Wrapper (E o) {this.o = o;}
E get() {return o;}
}
public class Test {
public static void main(String al]) {
Wrapper<String> w = new Wrapper<String>();
System.out.println(w.get() .toString());
}
}

(a) Que tipo de erro sera causado pelo programa acima?

(b) Defina uma classe de excegao para representar este erro.

(¢) Modifique o método get para disparar a excegao criada anteriormente.

(d) Modifique o método main para tratar esta excegao.



3. Ao contrario de Python, a linguagem Java prové excegoes verificaveis estaticamente.
Estas excegoes precisam ser tratadas explicitamente pelo desenvolvedor. Por exemplo,
o método Java abaixo nao compilaria caso removéssemos as clausulas de tratamento
de erro:

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

public static void fileReader(final String fileName) {

try {
Scanner s = new Scanner(new File(fileName));
// ... read the file here

} catch (FileNotFoundException e) {
e.printStackTrace();

(a) Quais excegbes sao verificadas estaticamente? Isto é, como podemos declarar
excecoes assim?

(b) Cite uma vantagem desta abordagem adotada por Java

(c) Existem excegdes, como por exemplo ClassCastException, que nao sao verifi-
cadas estaticamente. Por que Java prové excegoes assim?

(d) Java é a tnica linguagem muito popular que adota excegoes verificaveis estati-
camente. Obviamente existem desvantagens nesta abordagem, pois linguagens
posteriores a Java nao a seguiram. Cite uma desvantagem das excegoes verifi-
cadas estaticamente.



4. Alguns problemas sao mais faceis em linguagens que provéem aos programadores es-
truturas de dados como dicionarios. Python é uma destas linguagens. Em Python
dicionarios sao built-in na linguagem, isto é, estas estruturas possuem uma sintaxe
prépria, nao sendo implementadas em uma biblioteca, como acontece em Java
(java.util.Map). Veja este exemplo de uso:

>>> a = {"a": [1,2], "b":[4,5,6]%}

>>> a = {"Brasil": [1,2], "Burkina_Faso":[4,5,6]}
>>> a["Brasil"]

[1, 2]

>>> a["Brasil"] = [7,5,4,3]

>>> a["Brasil"]

(7, 5, 4, 3]

O problema 62 do Projeto Euler pode ser resolvido de forma eficiente (e muito elegante),
usando dicionarios. Trata-se de encontrar a primeira sequéncia de cinco nimeros que
sao permutacoes dos mesmos digitos, e que sao cubos perfeitos. Por exemplo, os
trés numeros {41063625, 56623104, 66430125} sao todos cubos perfeitos dos nimeros
{345,384, 405}, e sao todos permutagdes dos mesmos digitos [0, 1, 2, 3, 4, 5, 6,
6]. Porém, esta sequéncia possui somente trés elementos. O problema pede uma com

cinco digitos. E claro que nao precisamos parar por ai:

>>> Please, enter another integer: 32

[11237467249565803L, 11648763955224703L, 13250642619347875L, 13742426579056183L,
19347254507362816L, 21103745854269736L, 22685375419136704L, 24103758793614625L,
25101768364473592L, 25864743621190375L, 31206189625447537L, 32475498673016125L,
32721634685517049L, 34726063458791251L, 35916748405321672L, 37741681329526504L,
43643207961178552L, 43912627356578401L, 45417137892036625L, 47663155012973248L,
48696301552432717L, 56103591473276248L, 59422183570463176L, 63048593772416512L,
63281267415509473L, 64152761380957432L, 68754211423765309L, 75673011395826424L,
83274261515694703L, 86345613279405271L, 90371357248465216L, 94780145162353672L]]

Time to find the answer: 6.243766 secs (cpu clock 2.26GHz)

Implemente um programa, em Python, que resolva o problema 62 do Projeto Euler.
Vocé nao precisa usar dicionarios, mas honre o nome da nossa universidade com uma
solucdo eficiente (e elegante).



