
Lista de Linguagens de Programação – 18

Nome: Matŕıcula:

1. Considere a classe Staff, implementada em Python e mostrada logo abaixo:

class Staff:
payroll = {}
def getSalary(self, name):

if self.payroll.has_key(name):
return self.payroll[name]

else:
return 0.0

def addEmp(self, name, salary):
self.payroll[name] = salary

def raiseSalary(self, name, salary):
self.payroll[name] = self.payroll[name] + salary

(a) O método getSalary utiliza um valor especial, 0.0 como o salário de um empre-
gado inexistente. Qual a desvantagem desta forma de tratamento de erros?

(b) Crie uma classe de exceções NonExistentEmployee para tratar a situação excep-
cional de uma busca sobre um empregado inexistente.

(c) Modifique o método getSalary para disparar uma exceção do tipo NonExistentEmployee
caso o nome solicitado não possua uma entrada no banco de dados.

1



(d) Agora, crie uma outra classe de exceção, chamada NegativeSalary, para lidar
com tentativas de criar empregados com salarário negativo. Instâncias desta classe
devem possuir dois atributos, name e salary, que representam, respectivamente,
o nome do empregado e o salário que deram origem à exceção.

(e) Modifique o método addEmp para disparar uma exceção do tipo NegativeSalary,
caso seja feita a tentativa de adicionar um empregado cujo salário seja negativo.

(f) Modifique o método raiseSalary para tratar tanto erros de empregado não ex-
istente quanto erros de salário negativo.

(g) Considere o método readEmployees abaixo. Reescreva este método para que ele
implemente o tratamento de erro. Cuide para que sua nova implementação não
termine o programa logo que uma exceção for disparada. Isto é, tendo inserido
um nome inválido, o usuário deveria ter uma nova chance de informar um nome.
O mesmo vale para o salário negativo.

def readEmployees(s):

name = raw_input("Please, enter a name (Press RETURN to finish) ")

while name != ’’:

salary = float(raw_input("Please, enter the salary: "))

s.raiseSalary(name, salary)

name = raw_input("Please, enter a name (Press RETURN to finish) ")

2



2. Cada uma das questões a seguir diz respeito ao programa abaixo:

class Wrapper<E> {

private E o;

Wraper() {this.o = null;}

Wrapper(E o) {this.o = o;}

E get() {return o;}

}

public class Test {

public static void main(String a[]) {

Wrapper<String> w = new Wrapper<String>();

System.out.println(w.get().toString());

}

}

(a) Que tipo de erro será causado pelo programa acima?

(b) Defina uma classe de exceção para representar este erro.

(c) Modifique o método get para disparar a exceção criada anteriormente.

(d) Modifique o método main para tratar esta exceção.

3



3. Ao contrário de Python, a linguagem Java provê exceções verificáveis estaticamente.
Estas exceções precisam ser tratadas explicitamente pelo desenvolvedor. Por exemplo,
o método Java abaixo não compilaria caso removêssemos as cláusulas de tratamento
de erro:

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

public static void fileReader(final String fileName) {

try {

Scanner s = new Scanner(new File(fileName));

// ... read the file here ...

} catch (FileNotFoundException e) {

e.printStackTrace();

}

}

(a) Quais exceções são verificadas estaticamente? Isto é, como podemos declarar
exceções assim?

(b) Cite uma vantagem desta abordagem adotada por Java

(c) Existem exceções, como por exemplo ClassCastException, que não são verifi-
cadas estaticamente. Por que Java provê exceções assim?

(d) Java é a única linguagem muito popular que adota exceções verificáveis estati-
camente. Obviamente existem desvantagens nesta abordagem, pois linguagens
posteriores à Java não a seguiram. Cite uma desvantagem das exceções verifi-
cadas estaticamente.

4



4. Alguns problemas são mais fáceis em linguagens que provêem aos programadores es-
truturas de dados como dicionários. Python é uma destas linguagens. Em Python
dicionários são built-in na linguagem, isto é, estas estruturas possuem uma sintaxe
própria, não sendo implementadas em uma biblioteca, como acontece em Java
(java.util.Map). Veja este exemplo de uso:

>>> a = {"a": [1,2], "b":[4,5,6]}

>>> a = {"Brasil": [1,2], "Burkina_Faso":[4,5,6]}

>>> a["Brasil"]

[1, 2]

>>> a["Brasil"] = [7,5,4,3]

>>> a["Brasil"]

[7, 5, 4, 3]

O problema 62 do Projeto Euler pode ser resolvido de forma eficiente (e muito elegante),
usando dicionários. Trata-se de encontrar a primeira sequência de cinco números que
são permutações dos mesmos d́ıgitos, e que são cubos perfeitos. Por exemplo, os
três números {41063625, 56623104, 66430125} são todos cubos perfeitos dos números
{345, 384, 405}, e são todos permutações dos mesmos d́ıgitos [0, 1, 2, 3, 4, 5, 6,
6]. Porém, esta sequência possui somente três elementos. O problema pede uma com
cinco d́ıgitos. É claro que não precisamos parar por áı:

>>> Please, enter another integer: 32

[11237467249565803L, 11648763955224703L, 13250642619347875L, 13742426579056183L,
19347254507362816L, 21103745854269736L, 22685375419136704L, 24103758793614625L,
25101768364473592L, 25864743621190375L, 31206189625447537L, 32475498673016125L,
32721634685517049L, 34726063458791251L, 35916748405321672L, 37741681329526504L,
43643207961178552L, 43912627356578401L, 45417137892036625L, 47663155012973248L,
48696301552432717L, 56103591473276248L, 59422183570463176L, 63048593772416512L,
63281267415509473L, 64152761380957432L, 68754211423765309L, 75673011395826424L,
83274261515694703L, 86345613279405271L, 90371357248465216L, 94780145162353672L]]

Time to find the answer: 6.243766 secs (cpu clock 2.26GHz)

Implemente um programa, em Python, que resolva o problema 62 do Projeto Euler.
Você não precisa usar dicionários, mas honre o nome da nossa universidade com uma
solução eficiente (e elegante).

5


