
Lista de Linguagens de Programação – 2

Nome: Matŕıcula:

1. Esta questão refere-se à gramática abaixo:

<frase> ::= <expr_nominal> <predicado>

<expr_nominal> ::= <artigo> <nome>

| <artigo> <nome> <expr_propos>

<predicado> ::= <verbo>

| <verbo> <expr_nominal>

| <verbo> <expr_nominal> <expr_propos>

<expr_prepos> ::= <preposicao> <expr_nominal>

<nome> ::= "menino" | "menina" | "pato" | "telescopio"

| "musica" | "pena"

<preposicao> ::= "com" | "ate"

<verbo> ::= "viu" | "esta" | "e" | "canta"

| "surpreende" | "toca"

<artigo> ::= "um" | "uma" | "o" | "a"

(a) Uma gramática é amb́ıgua quando uma mesma sentença possui duas ou mais
árvores de derivação diferentes. Construa duas árvores de derivação distintas
para a seguinte sentença: “A menina toca o pato com a pena”.

(b) Se considerarmos que cada palavra da gramática possui o significado dado por
um dicionário de Português, quais seriam as duas interpretações posśıveis para a
frase “A menina toca o pato com a pena”?

1

2. Neste exerćıcio vocês desenvolverão uma gramática lógica em Prolog, e verão que tra-
balhar com gramáticas em Prolog é bem fácil. Existem interpretadores Prolog instal-
ados nas máquinas das salas 2019 e 2020. Por exemplo, sirius.grad.

(a) Construa uma gramática lógica, em Prolog, para a gramática vista na questão
anterior, e a transcreva abaixo:

(b) Como saber que ‘a,menina,toca,o,pato,com,a,pena’ possui duas derivações,
enquanto ‘a,menina,toca,o,pato’ possui somente uma?

(c) Quantas soluções existem para a seguinte busca:
frase([a,Sujeito,toca,o,pato],[]).

2

3. Considere as duas gramáticas abaixo, e diga se alguma delas é amb́ıgua. O śımbolo E

significa a palavra vazia. Estas gramáticas reconhecem a mesma linguagem, formada
por strings enclausuradas por parênteses e colchetes balanceados. Se a gramática for
amb́ıgua, escreva as suas duas árvores de derivação. Do contrário explique porque você
acha que a gramática não apresenta ambiguidades.

(a) Primeira gramática:

<string> ::= <string> <string>

| (<string>)

| [<string>]

| E

(b) Segunda gramática:

<string> ::= (<string>) <string>

| [<string>] <string>

| E

3

4. Existe uma variante das gramáticas formais chamada Sistemas L, em homenagem ao
botânico Aristid lindenmayer, que popularizou o conceito. Um sistema L é formado
por uma quadrupla L = (V, T, ω, P), tal que:

• V é um conjunto de śımbolos não terminais.

• T é um conjunto de terminais.

• ω é um axioma, ou string inicial.

• P é um conjunto de regras de produção.

Porém, ao contrário de nossas gramáticas, as regras de produção em um sistema L são
aplicadas todas de uma vez. Por exemplo, abaixo temos um sistema L que produz
strings sempre com o tamanho dos números da sequência de Fibonacci:
variáveis: {A, B}
terminais: {}
axioma: A
regras: A→ B, B → AB

Temos as seguintes strings, para diferentes números de vezes que as regras de produção
foram aplicadas:
n = 0 : A
n = 1 : B
n = 2 : AB
n = 3 : BAB
n = 5 : BABABBAB
n = 6 : ABBABBABABBAB
n = 7 : BABABBABABBABBABABBAB

Responda com sinceridade: a relação de tamanho entre a string n e a string n − 1 é
visualmente agradável? Os cavalheiros que constrúıram o Paternon achavam que sim...

Enfim... o legal mesmo a respeito de sistemas L é quando damos uma interpretação
geométrica aos terminais e não terminais. Imagine que você possa amarrar uma caneta
à cauda de um exemplar da rara Tartaruga da Patágia. A tartaruga, então, é posta
para analisar, sequencialmente, uma string produzida por um sistema L. Sempre que
ela vê um não terminal, ela caminha dez passinhos, marcando o chão, de papel, com
a sua caneta. Sempre que ela vê um terminal ela dá uma guinada, cujo ângulo é uma
constante associada ao não terminal. Se você quiser saber mais sobre o assunto, note
que sistemas L são um tipo de fractal.

4

Nesta questão faremos o experimento da tartaruga, para as trê primeiras iterações de
diferentes sistemas L:

(a) Um + significa que a tartaruga deve virar 90 graus. Um − comanda a pobre a
virar 270:
variáveis: {F}
terminais: {+,−}
axioma: F
regras: F → F + F − F − F + F

(b) Um + manda a tartaruga virar 60 graus. Um − comanda a miserável a virar 300:
variáveis: {A, B}
terminais: {+,−}
axioma: A
regras: A→ B − A−B, B → A + B + A

(c) Mesma interpretação que na questão anterior, isto é: um + significa que a nossa
turtle deve virar 60 graus. Um − a comanda a virar 300:
variáveis: {F}
terminais: {+,−}
axioma: F + +F + +F
regras: F → F − F + +F − F

5

