Lista de Linguagens de Programacao — 20

Nome: Matricula:

Os exercicios 1-6 usam os predicados abaixo:

parent (kim,holly) .
parent (margaret,kim) .
parent (margaret,kent) .
parent (esther ,margaret) .
parent (herbert,margaret) .
parent (herbert, jean) .
greatgrandparent (GGP,GGC) :-
parent (GGP,GP), parent(GP,P), parent(P,GGC) .

1. Defina um predicado mother, tal que mother (X, Y) seja verdade se X for mae de Y.

2. Defina um predicado father, tal que father (X, Y) seja verdade se X for o pai de Y.

3. Defina um predicado sister, tal que sister (X, Y) seja verdade se X for uma irma de
Y. Note que ninguém pode ser sua propria irma.

4. Defina um predicado grandson, tal que grandson(X,Y) seja verdade se X for um neto
de Y.



10.

Defina um predicado firstCousin, tal que firstCousin(X, Y) seja verdade se X for
um primo primeiro de Y. Lembre-se que uma pessoa nao € primo primeiro dela mesma.
Tampouco irmaos sao primos.

Defina um predicado descendant, tal que descendant (X, Y) seja verdade se X for um
descendente de Y.

Defina um predicado third, tal que third(X, Y) seja verdade se Y for o terceiro
elemento da lista X. Isto pode ser expresso como um fato. Note que este predicado
devera produzir um erro se a lista possuir menos que trés elementos.

Defina um predicado firstPair, tal que firstPair (X) seja verdade se X for uma lista
com pelo menos dois elemento, sendo o primeiro elemento o mesmo que o segundo.
Este predicado também pode ser expresso como um fato.

Defina um predicado del3, tal que del3(X, Y) seja verdade se Y for uma lista igual a
X, mas com o terceiro elemento removido. Este predicado também pode ser expresso
como um fato. Para facilitar as coisas, ele pode gerar erro se X possuir menos que trés
elementos.

Defina um predicado dupList, tal que dupList (X, Y) seja verdade se X for a mesma
lista que Y, mas com cada elemento de Y repetido uma vez. Por exemplo, se X for a
lista [1, 2, 3], entao Y devera ser a lista [1, 1, 2, 2, 3, 3]. Se X for [], entao Y
serd [] também. Verifique se seu predicado funcione em ambas as direcoes. Isto é, a
busca dupList (X, [1, 1, 2, 2, 3, 3] deve retornar a o resultado X = [1, 2, 3].

2



11.

12.

13.

14.

Defina um predicado isDuped, tal que isDuped(Y) seja verdade se Y for uma lista igual
a lista Y do exercicio anterior. Ou seja, o predicado é verdade se Y for uma lista com
o primeiro elemento igual ao segundo, o terceiro igual ao quarto, e assim por diante.

Defina um predicado oddSize, tal que oddSize (X) seja verdade se X for uma lista de
tamanho impar. Nao é necessario computar o tamanho da lista. Na verdade, nao é
preciso realizar nenhuma aritmética para resolver este exercicio.

Defina um predicado evenSize, tal que evenSize(X) seja verdade se X for uma lista
de tamanho par.

Defina um predicado prefix, tal que prefix(X, Y) seja verdade se X for um prefixo
da lista Y. Isto é, cada elemento de X deve unificar com cada elemento correspondente
de Y, mas Y pode conter mais elementos que X. Seu predicado deve funcionar quando X
nao estiver instanciado. Por exemplo, a busca prefix(X, [1, 2, 3]) deve retornar
todos os prefixos da lista [1, 2, 3].



15. Nos préoximos exercicios, de 15 até 20, vamos implementar conjuntos como listas. Cada
elemento de um conjunto aparece somente uma vez em sua lista, mas as listas nao estao
necessariamente ordenadas. Voceé pode assumir que as listas de entrada nao possuem
elementos duplicados, mas vocé precisa garantir que as listas de saida nao possuem
nenhum elemento duplicado. Uma coisa: nao vale usar fungoes predefinidas de
manipulagao de listas, tipo member, por exemplo.

Vamos comecar definindo um predicado isMember, tal que isMember (X, Y) seja ver-
dade se o elemento X for estiver presente no conjunto Y.

16. Defina um predicado isUnion, tal que isUnion(X, Y, Z) seja verdade se Z for a
uniao de X e Y. Seu predicado nao precisa funcionar direito quando X ou Y nao estao
instanciados.

17. Defina um predicado isIntersection, tal que isIntersection(X, Y, Z) seja ver-
dade se Z for for a intersecao de X e Y. Como no caso anterior, seu predicado nao precisa
funcionar direito quando X ou Y nao estao instanciados.

18. Defina um predicado isEqual, tal que isEqual(X, Y) seja verdade se X e Y forem
conjuntos iguais. Dois conjuntos sao iguais se eles possuem os mesmos elementos, in-
dependente da ordem. Novamente, seu predicado nao precisa funcionar direito quando
X ou Y nao estao instanciados.



19.

20.

Defina um predicado powerSet, tal que poserSet (X, Y) seja verdade se Y for o con-
junto poténcia de X. O conjunto poténcia de um dado conjunto s é o conjunto de todos
os subconjuntos de s. Por exemplo, se s = {1, 2,3}, entao o conjunto poténcia p é:

{zle © s} = {{} {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2,3}}

No caso deste exercicio, se X é uma lista, representando o conjunto, Y sera uma lista
de listas. Assim, powerSet([1, 2], Y) ird produzir a unificacao Y = [[1, 2], [1],
[2], [1] (ndo necessariamente nesta ordem). Seu predicado ndo precisa funcionar
direito quando X nao estiver instanciado.

Defina um predicado isDifference, tal que isDifference(X, Y, Z) seja verdade
se Z contiver os elementos de X que nao aparecem em Y. Ao contrario dos exercicios
anteriores, seu predicado devera funcionar independente da ordem em que os elementos
de Z sao dados. Contudo, assim como nos exercicios anteriores, seu predicado nao
precisa funcionar quando X ou Y nao estiverem instanciados.



