
Lista de Linguagens de Programação – 20

Nome: Matŕıcula:

Os exerćıcios 1–6 usam os predicados abaixo:

parent(kim,holly).
parent(margaret,kim).
parent(margaret,kent).
parent(esther,margaret).
parent(herbert,margaret).
parent(herbert,jean).
greatgrandparent(GGP,GGC) :-
parent(GGP,GP), parent(GP,P), parent(P,GGC).

1. Defina um predicado mother, tal que mother(X, Y) seja verdade se X for mãe de Y.

2. Defina um predicado father, tal que father(X, Y) seja verdade se X for o pai de Y.

3. Defina um predicado sister, tal que sister(X, Y) seja verdade se X for uma irmã de
Y. Note que ninguém pode ser sua própria irmã.

4. Defina um predicado grandson, tal que grandson(X,Y) seja verdade se X for um neto
de Y.

1



5. Defina um predicado firstCousin, tal que firstCousin(X, Y) seja verdade se X for
um primo primeiro de Y. Lembre-se que uma pessoa não é primo primeiro dela mesma.
Tampouco irmãos são primos.

6. Defina um predicado descendant, tal que descendant(X, Y) seja verdade se X for um
descendente de Y.

7. Defina um predicado third, tal que third(X, Y) seja verdade se Y for o terceiro
elemento da lista X. Isto pode ser expresso como um fato. Note que este predicado
deverá produzir um erro se a lista possuir menos que três elementos.

8. Defina um predicado firstPair, tal que firstPair(X) seja verdade se X for uma lista
com pelo menos dois elemento, sendo o primeiro elemento o mesmo que o segundo.
Este predicado também pode ser expresso como um fato.

9. Defina um predicado del3, tal que del3(X, Y) seja verdade se Y for uma lista igual a
X, mas com o terceiro elemento removido. Este predicado também pode ser expresso
como um fato. Para facilitar as coisas, ele pode gerar erro se X possuir menos que três
elementos.

10. Defina um predicado dupList, tal que dupList(X, Y) seja verdade se X for a mesma
lista que Y, mas com cada elemento de Y repetido uma vez. Por exemplo, se X for a
lista [1, 2, 3], então Y deverá ser a lista [1, 1, 2, 2, 3, 3]. Se X for [], então Y

será [] também. Verifique se seu predicado funcione em ambas as direções. Isto é, a
busca dupList(X, [1, 1, 2, 2, 3, 3] deve retornar a o resultado X = [1, 2, 3].

2



11. Defina um predicado isDuped, tal que isDuped(Y) seja verdade se Y for uma lista igual
a lista Y do exerćıcio anterior. Ou seja, o predicado é verdade se Y for uma lista com
o primeiro elemento igual ao segundo, o terceiro igual ao quarto, e assim por diante.

12. Defina um predicado oddSize, tal que oddSize(X) seja verdade se X for uma lista de
tamanho ı́mpar. Não é necessário computar o tamanho da lista. Na verdade, não é
preciso realizar nenhuma aritmética para resolver este exerćıcio.

13. Defina um predicado evenSize, tal que evenSize(X) seja verdade se X for uma lista
de tamanho par.

14. Defina um predicado prefix, tal que prefix(X, Y) seja verdade se X for um prefixo
da lista Y. Isto é, cada elemento de X deve unificar com cada elemento correspondente
de Y, mas Y pode conter mais elementos que X. Seu predicado deve funcionar quando X

não estiver instanciado. Por exemplo, a busca prefix(X, [1, 2, 3]) deve retornar
todos os prefixos da lista [1, 2, 3].

3



15. Nos próximos exerćıcios, de 15 até 20, vamos implementar conjuntos como listas. Cada
elemento de um conjunto aparece somente uma vez em sua lista, mas as listas não estão
necessariamente ordenadas. Você pode assumir que as listas de entrada não possuem
elementos duplicados, mas você precisa garantir que as listas de sáıda não possuem
nenhum elemento duplicado. Uma coisa: não vale usar funções predefinidas de
manipulação de listas, tipo member, por exemplo.

Vamos começar definindo um predicado isMember, tal que isMember(X, Y) seja ver-
dade se o elemento X for estiver presente no conjunto Y.

16. Defina um predicado isUnion, tal que isUnion(X, Y, Z) seja verdade se Z for a
união de X e Y. Seu predicado não precisa funcionar direito quando X ou Y não estão
instanciados.

17. Defina um predicado isIntersection, tal que isIntersection(X, Y, Z) seja ver-
dade se Z for for a interseção de X e Y. Como no caso anterior, seu predicado não precisa
funcionar direito quando X ou Y não estão instanciados.

18. Defina um predicado isEqual, tal que isEqual(X, Y) seja verdade se X e Y forem
conjuntos iguais. Dois conjuntos são iguais se eles possuem os mesmos elementos, in-
dependente da ordem. Novamente, seu predicado não precisa funcionar direito quando
X ou Y não estão instanciados.

4



19. Defina um predicado powerSet, tal que poserSet(X, Y) seja verdade se Y for o con-
junto potência de X. O conjunto potência de um dado conjunto s é o conjunto de todos
os subconjuntos de s. Por exemplo, se s = {1, 2, 3}, então o conjunto potência p é:

{x|x ⊆ s} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

No caso deste exerćıcio, se X é uma lista, representando o conjunto, Y será uma lista
de listas. Assim, powerSet([1, 2], Y) irá produzir a unificação Y = [[1, 2], [1],

[2], []] (não necessariamente nesta ordem). Seu predicado não precisa funcionar
direito quando X não estiver instanciado.

20. Defina um predicado isDifference, tal que isDifference(X, Y, Z) seja verdade
se Z contiver os elementos de X que não aparecem em Y. Ao contrário dos exerćıcios
anteriores, seu predicado deverá funcionar independente da ordem em que os elementos
de Z são dados. Contudo, assim como nos exerćıcios anteriores, seu predicado não
precisa funcionar quando X ou Y não estiverem instanciados.

5


