
Lista de Linguagens de Programação – 21

Nome: Matŕıcula:

1. Consideremos a funo resolution que vimos em aula:

• function resolution(clause, goals)

– seja sub = MGU de head(clause) e head(goals)

– retorna ((sub(tail(clause) concatenado com tail(goals)))

Com base neste interpretador, qual é o MGU usado nas resoluções abaixo, e qual é a
nova lista de metas que será criada?

(a) resolution([p, q, r], [p, x, y])

(b) resolution([p(a)], [p(X)])

(c) resolution([p(X, b), q(X)], [p(a, Y), r(Y)])

(d) resolution([append(X, Y, [1, 2]), [append([], B, B)])

1



2. Considere o predicado append abaixo:

append([], B, B)

append([Head|TailA], B, [Head|TailC]) :-

append(TailA, B, TailC).

Mostre um traço de resolução para a chamada solve([append(X, Y, [1, 2])]). Não
pare após o primeiro sucesso – mostre todas as chamadas de solve. Lembre-se de
renomear as variáveis antes de cada chamada da clausula append.

2



3. Cúmulo é um joguinho de sorte e racioćınio rápido. Dado uma lista de números L, e
um alvo (M, N), o objetivo do jogo é encontrar uma combinação de M números de L
cuja soma mais se aproxime de N . As combinações não podem conter elementos repeti-
dos. Normalmente cúmulo é jogado entre um grupo de participantes. A cada rodada,
participantes acumulam pontos, onde os pontos de um participante são a distância
de sua combinação de M números até o objetivo N . A distância é o valor absoluto
da diferença entre N e a soma da combinação escolhida. Ao final de um número de
rodadas, ganha aquele participante que houver acumulado o menor número. Nesta
questão faremos um programa em Prolog para resolver uma rodada de cúmulos. O ob-
jetivo é criar um predicado cumulo(L, M, N, Result, Distance) que é verdadeiro
quando Result é a combinação de M elementos tomados de L mais próxima de N , e
Distance é a distância de Result até N . O nosso predicado está escrito abaixo:

cumulo(L, M, N, Result, Distance) :-

allCombs(L, M, ListCombinations),

findClosest(ListCombinations, N, Result),

distance(Result, N, Distance).

Por exemplo:

?- cumulo([7, 11, 13, 17, 19, 23, 29], 4, 52, Result, Distance).

Result = [7, 11, 13, 19],

Distance = 2

Parte do exerćıcio já está resolvida. O problema agora é preencher as lacunas:

(a) Crie um predicado sumList(L, S), que seja verdadeiro quando S for a soma de
todos os números da lista L.

(b) Crie um predicado distance(L, N, D) que seja verdadeiro quando D for o valor
absoluto da diferença entre a soma dos elements de L e N.

(c) Nós precisamos de um predicado allCombs(L, M, ListResults) que seja ver-
dadeiro quando ListResults for uma lista contendo todas as posśıveis combinações
de M elementos tomados de L. Este predicado é definido assim:

allCombs(L, M, ListResults) :- findall(C, comb(M, L, C), ListResults).

allCombs usa um predicado comb(N, L, C), que é verdadeiro quando C é uma
combinação de N elementos tomados da lista L. Defina comb.

(d) Finalmente, precisamos de um predicado findClosest(L, N, X), que seja ver-
dadeiro quando X for a lista de menor distância de N dentre as listas contidas
em L. Escreva este predicado.

3



4. Considere o predicado reverse abaixo:

reverse([], [])

reverse([Head|Tail], X) :-

reverse(Tail, Y), append(Y, [Head], X).

Desenhe a árvore de prova para a busca reverse(X, [1, 2]). Como nos slides do
livro, cada novo solve com um termo reverse como a primeira meta deve ter dois
filhos, um para cada uma das cláusulas reverse. Cada nodo solve que tem um termo
append como a primeira chamada terá somente um filho: ou um nodo nothing, se o
termo textttappend não puder ser resolvido, ou um nodo solve, com o textttappend
resolvido, e o restante das metas substitúıdas a contento.

Lembre-se de renomear variáveis antes de cada cláusula do programa. A árvore para
reverse(X, [1, 2]) é uma árvore infinita. Assim, quando você ver que um ramo da
árvore não vai ter fim, você pode cortá-lo, explicando isto. Com base nesta árvore de
prova, explique a seguinte chamada:

?- reverse(X, [1, 2, 3, 4]).

X = [4, 3, 2, 1]

Action (h for help) ? a

% Execution Aborted

?-

4


