Lista de Linguagens de Programacao — 21

Nome: Matricula:

1. Consideremos a funo resolution que vimos em aula:

e function resolution(clause, goals)

— seja sub = MGU de head(clause) e head(goals)
— retorna ((sub(tail(clause) concatenado com tail(goals)))

Com base neste interpretador, qual é o MGU usado nas resolucoes abaixo, e qual é a
nova lista de metas que sera criada?

(a) resolution([p, q, rl, [p, %, yl)

(b) resolution([p(a)], [p(X)1)

(c) resolution([p(X, b), q(X)1, [p(a, Y), r(N1)

(d) resolution([append(X, Y, [1, 2]1), [append([], B, B)1)



2. Considere o predicado append abaixo:

append([], B, B)
append ([Head|TailA], B, [Head|TailC]) :-
append(TailA, B, TailC).

Mostre um traco de resolucao para a chamada solve ([append (X, Y, [1, 2])]). Nao
pare apds o primeiro sucesso — mostre todas as chamadas de solve. Lembre-se de
renomear as variaveis antes de cada chamada da clausula append.



3. Cumulo é um joguinho de sorte e raciocinio rapido. Dado uma lista de nimeros L, e
um alvo (M, N), o objetivo do jogo é encontrar uma combinac¢ao de M ntumeros de L
cuja soma mais se aproxime de N. As combinacoes nao podem conter elementos repeti-
dos. Normalmente cimulo é jogado entre um grupo de participantes. A cada rodada,
participantes acumulam pontos, onde os pontos de um participante sao a distancia
de sua combinacao de M numeros até o objetivo N. A distancia é o valor absoluto
da diferenca entre N e a soma da combinacao escolhida. Ao final de um nimero de
rodadas, ganha aquele participante que houver acumulado o menor nimero. Nesta
questao faremos um programa em Prolog para resolver uma rodada de cimulos. O ob-
jetivo é criar um predicado cumulo(L, M, N, Result, Distance) que é verdadeiro
quando Result é a combinacgao de M elementos tomados de L mais proxima de N, e
Distance ¢ a distancia de Result até N. O nosso predicado estd escrito abaixo:

cumulo(L, M, N, Result, Distance) :-
allCombs(L, M, ListCombinations),
findClosest (ListCombinations, N, Result),
distance(Result, N, Distance).

Por exemplo:

?- cumulo([7, 11, 13, 17, 19, 23, 29], 4, 52, Result, Distance).
Result = [7, 11, 13, 19],
Distance = 2

Parte do exercicio ja estd resolvida. O problema agora é preencher as lacunas:

(a) Crie um predicado sumList (L, S), que seja verdadeiro quando S for a soma de
todos os niimeros da lista L.

(b) Crie um predicado distance(L, N, D) que seja verdadeiro quando D for o valor
absoluto da diferenca entre a soma dos elements de L e N.

(¢) No6s precisamos de um predicado allCombs(L, M, ListResults) que seja ver-
dadeiro quando List Results for uma lista contendo todas as possiveis combinagoes
de M elementos tomados de L. Este predicado é definido assim:

allCombs(L, M, ListResults) :- findall(C, comb(M, L, C), ListResults).

allCombs usa um predicado comb(N, L, C), que é verdadeiro quando C é uma
combinacgao de N elementos tomados da lista L. Defina comb.

(d) Finalmente, precisamos de um predicado findClosest(L, N, X), que seja ver-
dadeiro quando X for a lista de menor distancia de N dentre as listas contidas
em L. Escreva este predicado.



4. Considere o predicado reverse abaixo:

reverse([], [1)
reverse([Head|Taill, X) :-
reverse(Tail, Y), append(Y, [Head], X).

Desenhe a arvore de prova para a busca reverse(X, [1, 2]). Como nos slides do
livro, cada novo solve com um termo reverse como a primeira meta deve ter dois
filhos, um para cada uma das cldusulas reverse. Cada nodo solve que tem um termo
append como a primeira chamada tera somente um filho: ou um nodo nothing, se o
termo textttappend nao puder ser resolvido, ou um nodo solve, com o textttappend
resolvido, e o restante das metas substituidas a contento.

Lembre-se de renomear variaveis antes de cada clausula do programa. A arvore para
reverse(X, [1, 2]) é uma arvore infinita. Assim, quando vocé ver que um ramo da
arvore nao vai ter fim, vocé pode corté-lo, explicando isto. Com base nesta arvore de
prova, explique a seguinte chamada:

?- reverse(X, [1, 2, 3, 4]).
X =[4, 3, 2, 1]

Action (h for help) 7 a

% Execution Aborted
?_



