Lista de Linguagens de Programacao — 22

Nome: Matricula:

1. Uma funcao recursiva é dita de cauda rasa quando a ultima coisa que ela faz é chamar-
se recursivamente. Re-implemente cada um dos predicados abaixo, para que eles sejam
predicados de cauda rasa:

(a) O predicado que soma os elementos de uma lista:

sum([], 0).
sum([H|T], X) :- sum(T, XAux), X is XAux + H.

(b) O predicado que inverte os elementos de uma lista:

myappend([], L, L).
myappend ([H|T], L, [H|LAux]) :- myappend(T, L, LAux).

myreverse([], [1).
myreverse([H|T], R) :- myreverse(T, RT), myappend(RT, [H], R).

(c) Afinal de contas, qual a vantagem de implementarmos fungoes de cauda rasa?

2. O problema do subconjunto de soma N é um problema NP-completo cléssico. Dado um
conjunto U de inteiros, e um numero inteiro /N, o problema pede que seja encontrado
um subconjunto S de U cuja soma seja N. Por exemplo, caso U = {1,2,3,4,5} e
N = 6, temos S = {1,2,3},S = {1,5} e S = {2,4}. Dado que o problema do
subconjunto de soma N é NP-completo, pouca esperanca existe de que exista uma
solugao polinomial para ele. Logo, algoritmos que resolvem este problema baseiam-se
em buscas exponenciais.

Implemente este algoritmo em Prolog.

3. Descubra o que faz o predicado riddle e o implemente de modo mais eficiente.

riddle(X,_) :-
length(X, XL),
XL = 0.

riddle(_,Y) :-
length(Y,YL)
YL = 0.

4. Descubra o que faz o predicado enigma e o implemente de modo mais eficiente.

enigma(Listl, N, List2) :-
length (Dummy, N),
append(List2, Dummy, Listl).

5. Reescreva o predicado factorial abaixo, para que ele seja de cauda rasa:

xfactorial(l, 1).
xfactorial (N, FN) :-
NextN is N-1,
xfactorial (NextN, FNestN),
FN is FNextN * N.

6. Linguagens como SML e Prolog, que utilizam listas pesadamente, muitas vezes reusam
parte da estrutura das listas. Por exemplo, se considerarmos o programa abaixo,
teremos:

Em geral, a reutilizacao de estruturas de dados ¢é transparente para o programador,
em uma linguagem que nao possui efeitos colaterais.

(a) Em uma linguagem que possui efeitos colaterais, como Java, como saber se a
implementagao da linguagem reutiliza partes de estruturas de dados?

(b) E em uma linguagem que nao possui efeitos colaterais, como a parte de SML que
vimos neste curso, como saber se a implementagao da linguagem reutiliza partes
de estruturas de dados?

7. Considere o programa C abaixo, que faz a multiplicagao de matrizes:

const int N = 600;

void multi(int Z[N][N], int X[N][N], int Y[N][N]) {

int i, j, k;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
Z[i]1[j] += X[il1[k] = Y[k][j];

}
void mult2(int Z[N][N], int X[N][N], int Y[N][N]) {

int i, j, k;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
Z[i] k] += X[i1[3] = Y[jl[x];

}
int main() {

int X[NI[N], Y[NIIN], Z[N]I[N];

init (X);

init(Y);

zero(Z);

mult2(Z, X, Y);
}

(a) Implemente a fun¢do init que inicialize uma matriz N x N, de tipo int** com
dados aleatérios. Aproveite também e implemente uma fungao zero, que inicialize
as posicoes de uma matriz de inteiros com o valor zero.

(b) Use a fungao time, do UNIX, para medir o tempo de execucao do programa acima.
Em seguida, substitua a chamada a mult2 por uma chamada a mult1, e faga uma
nova tomada de tempo. Repita o processo trés vezes. Qual a média dos tempos
obtidos com multl e com mult2? Que versao do programa ¢é entao mais eficiénte?

(c) Qual a explicacdo para a diferenca de tempo obtida na questdao anterior? Se
nao houver nenhuma diferenca, experimente aumentar a constante N, e repita as
tomadas de tempo.

