
Lista de Linguagens de Programação – 22

Nome: Matŕıcula:

1. Uma função recursiva é dita de cauda rasa quando a última coisa que ela faz é chamar-
se recursivamente. Re-implemente cada um dos predicados abaixo, para que eles sejam
predicados de cauda rasa:

(a) O predicado que soma os elementos de uma lista:

sum([], 0).

sum([H|T], X) :- sum(T, XAux), X is XAux + H.

(b) O predicado que inverte os elementos de uma lista:

myappend([], L, L).

myappend([H|T], L, [H|LAux]) :- myappend(T, L, LAux).

myreverse([], []).

myreverse([H|T], R) :- myreverse(T, RT), myappend(RT, [H], R).

(c) Afinal de contas, qual a vantagem de implementarmos funções de cauda rasa?

1

2. O problema do subconjunto de soma N é um problema NP-completo clássico. Dado um
conjunto U de inteiros, e um número inteiro N , o problema pede que seja encontrado
um subconjunto S de U cuja soma seja N . Por exemplo, caso U = {1, 2, 3, 4, 5} e
N = 6, temos S = {1, 2, 3}, S = {1, 5} e S = {2, 4}. Dado que o problema do
subconjunto de soma N é NP-completo, pouca esperança existe de que exista uma
solução polinomial para ele. Logo, algoritmos que resolvem este problema baseiam-se
em buscas exponenciais.

Implemente este algoritmo em Prolog.

3. Descubra o que faz o predicado riddle e o implemente de modo mais eficiente.

riddle(X,_) :-

length(X, XL),

XL = 0.

riddle(_,Y) :-

length(Y,YL)

YL = 0.

4. Descubra o que faz o predicado enigma e o implemente de modo mais eficiente.

enigma(List1, N, List2) :-

length(Dummy, N),

append(List2, Dummy, List1).

2

5. Reescreva o predicado factorial abaixo, para que ele seja de cauda rasa:

xfactorial(1, 1).

xfactorial(N, FN) :-

NextN is N-1,

xfactorial(NextN, FNestN),

FN is FNextN * N.

6. Linguagens como SML e Prolog, que utilizam listas pesadamente, muitas vezes reusam
parte da estrutura das listas. Por exemplo, se considerarmos o programa abaixo,
teremos:

?- D = [2, 3].

?- E = [1|D].

?- F = [1,2,3].

2D

E

F

3

1

2 31

Em geral, a reutilização de estruturas de dados é transparente para o programador,
em uma linguagem que não possui efeitos colaterais.

(a) Em uma linguagem que possui efeitos colaterais, como Java, como saber se a
implementação da linguagem reutiliza partes de estruturas de dados?

(b) E em uma linguagem que não possui efeitos colaterais, como a parte de SML que
vimos neste curso, como saber se a implementação da linguagem reutiliza partes
de estruturas de dados?

3

7. Considere o programa C abaixo, que faz a multiplicação de matrizes:

const int N = 600;

void mult1(int Z[N][N], int X[N][N], int Y[N][N]) {
int i, j, k;
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
for (k = 0; k < N; k++)

Z[i][j] += X[i][k] * Y[k][j];
}
void mult2(int Z[N][N], int X[N][N], int Y[N][N]) {
int i, j, k;
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
for (k = 0; k < N; k++)

Z[i][k] += X[i][j] * Y[j][k];
}
int main() {
int X[N][N], Y[N][N], Z[N][N];
init(X);
init(Y);
zero(Z);
mult2(Z, X, Y);

}

(a) Implemente a função init que inicialize uma matriz N ×N , de tipo int** com
dados aleatórios. Aproveite também e implemente uma função zero, que inicialize
as posições de uma matriz de inteiros com o valor zero.

(b) Use a função time, do UNIX, para medir o tempo de execução do programa acima.
Em seguida, substitua a chamada a mult2 por uma chamada a mult1, e faça uma
nova tomada de tempo. Repita o processo três vezes. Qual a média dos tempos
obtidos com mult1 e com mult2? Que versão do programa é então mais eficiênte?

(c) Qual a explicação para a diferença de tempo obtida na questão anterior? Se
não houver nenhuma diferença, experimente aumentar a constante N, e repita as
tomadas de tempo.

4

