
Lista de Linguagens de Programação – 23

Nome: Matŕıcula:

1. Escreva um predicado max(X, Y, Z), que receba dois números, X e Y e unifique Z com
o maior deles.

2. Escreva um predicado maxList(L, M), que receba uma lista L de números e unifique
M com o maior número nesta lista. O predicado deve falhar se a lista estiver vazia.

3. Escreva um predicado ordered(L), que seja verdadeiro se a lista L estiver em ordem
crescente.

1



4. Escreva um predicado mergesort(In, Out), que receba duas listas, In e Out, e seja
verdadeiro se Out for uma versão da lista In, ordenada em ordem crescente. Seu
predicado deve usar o algoritmo de ordenação mergesort. Note que SWI-PL já possui
um predicado merge, que obviamente você não vai usar. Use um outro nome para seu
predicado, ou haverá conflito com SWI-PL.

2



5. Escreva um predicado nqueens(N, X), que receba um inteiro N e encontre uma solução
para o problema das N rainhas. O problema das N rainhas é parecido com o problema
das oito rainhas, que é explicado nas transparências do livro usado no curso. Só que
agora você precisa colocar N rainhas em um tabuleiro de tamanho N × N. Você pode
começar a partir do código que o autor do livro disponibilizou. Há um link para este
código na página do curso.

6. Escreva um predicado multiknap(Pantry, Capacity, Knapsack), que funcione como
o predicado knapsackOptimization, visto nas transparências do livro, mas que resolva
o problema permitindo múltiplas ocorrências do mesmo item. Isto quer dizer que nesta
versão do problema você pode pegar qualquer quantidade de itens da geladeira. Assim,
se Pantry for:

[food(break, 4, 9200),

food(pasta, 2, 4600),

food(peanutButter, 1, 6700),

food(babyFood, 3, 6900)].

Então sua mochila irá conter zero ou mais cópias de food(bread, 4, 9200), zero ou
mais cópias de food(pasta, 2, 4600), etc.

3



7. Um outro problema que é notoriamente dif́ıcil é o problema da cobertura de conjuntos.
Você recebe duas listas: Set e Subsets. A primeira lista, Subsets é uma lista de listas,
cada uma com uma sendo uma subsequência de Set. O problema é então encontrar
o conjunto Cover: uma cobertura mı́nima, isto é, uma subsequência de Subsets com
a propriedade que todo elemento de Set seja um elemento de alguma lista de Cover.
Por exemplo, assuma que Set é a lista [1, 2, 3, 4, 5] e Subsets é a lista [[1, 2],

[2, 4], [3, 5], [1, 3], [3, 4, 5]]. Então a cobertura mı́nima seria a lista [[1,

2], [3, 4, 5]].

(a) Escreva um predicado CoverDecision(Set, Subsets, Goal, Cover), que re-
ceba uma lista Set, uma lista Subsets contendo subsequências de Set, e um
inteiro positivo Goal. Este predicado deve unificar Cover com a subsequência de
Subsets que cubra Set e tenha tamanho menor ou igual Goal. O predicado falha
se não houver nenhuma cobertura posśıvel. A sua solução deverá ser capaz de
produzir todas as coberturas que satisfazem Goal.

(b) Escreva um predicado coverOptimization(Set, Subsets, Cover) que receba
uma lista Set e uma lista Subsets, como anteriormente. Este predicado deve
unificar Cover com a subsequência da lista Subsets que cubra Set, e que tenha
tamanho mı́nimo. O predicado falhará se não houver alguma sequência assim. A
sua solução deverá ser capaz de gerar todas as sequências de tamanho mı́nimo.

4



8. Uma clique é um grafo completo. O problema de decidir se um grafo G possui uma
clique de tamanho N é um problema NP-completo bem conhecido. Esse problema,
inclusive, é parte da lista de 21 problemas proposta por Richard Karp em 1972. Embora
não conheçamos qualquer algoritmo eficiente para encontrar cliques em grafos, é muito
fácil resolver esse problema por força bruta em Prolog. Nesse caso, podemos representar
um grafo como um conjunto de arestas, conforme feito na figura abaixo:

edge(a, b).
edge(a, c).
edge(b, c).
edge(a, d).
edge(b, e).
edge(d, e).
edge(a, e).

a b

c

d e Cliques:

a, b, c

a, b, e

a, e, d

O predicado cliqueN, definido abaixo, é verdade quando G é uma lista de vértices de
um grafo, N é um número inteiro, e L é uma sublista de G que forma uma clique:

cliqueN(N, G, L) :- sublist(G, L), length(L, N), clique(L).

Por exemplo:

?- consult(clique).

% clique compiled 0.00 sec, 64 bytes

true.

?- cliqueN(3, [a, b, c, d, e], L).

L = [a, b, c] ;

L = [a, b, e] ;

L = [a, d, e] ;

false.

(a) Defina o predicado sublist(G, L), que seja verdade quando L for uma sublista
de G.

(b) Defina o predicado clique(L), que seja verdade quando L for uma lista de vértices
que forme um grafo completo.

5


