Lista de Linguagens de Programacao — 23

Nome: Matricula:

1. Escreva um predicado max (X, Y, Z), que receba dois nimeros, X e Y e unifique Z com
o maior deles.

2. Escreva um predicado maxList (L, M), que receba uma lista L. de niimeros e unifique
M com o maior nimero nesta lista. O predicado deve falhar se a lista estiver vazia.

3. Escreva um predicado ordered (L), que seja verdadeiro se a lista L estiver em ordem
crescente.



4. Escreva um predicado mergesort(In, Out), que receba duas listas, In e Out, e seja
verdadeiro se Out for uma versao da lista In, ordenada em ordem crescente. Seu
predicado deve usar o algoritmo de ordenacao mergesort. Note que SWI-PL ja possui
um predicado merge, que obviamente vocé nao vai usar. Use um outro nome para seu
predicado, ou havera conflito com SWI-PL.



5. Escreva um predicado nqueens (N, X), que receba um inteiro N e encontre uma solugao
para o problema das N rainhas. O problema das N rainhas é parecido com o problema
das oito rainhas, que é explicado nas transparéncias do livro usado no curso. S6 que
agora voceé precisa colocar N rainhas em um tabuleiro de tamanho N x N. Vocé pode
comegcar a partir do cédigo que o autor do livro disponibilizou. Ha um link para este
c6digo na pagina do curso.

6. Escreva um predicado multiknap(Pantry, Capacity, Knapsack), que funcione como
o predicado knapsackOptimization, visto nas transparéencias do livro, mas que resolva
o problema permitindo multiplas ocorréncias do mesmo item. Isto quer dizer que nesta
versao do problema vocé pode pegar qualquer quantidade de itens da geladeira. Assim,
se Pantry for:

[food(break, 4, 9200),
food(pasta, 2, 4600),
food(peanutButter, 1, 6700),
food(babyFood, 3, 6900)].

Entao sua mochila ird conter zero ou mais copias de food(bread, 4, 9200), zero ou
mais copias de food(pasta, 2, 4600), etc.



7. Um outro problema que é notoriamente dificil é o problema da cobertura de conjuntos.
Voceé recebe duas listas: Set e Subsets. A primeira lista, Subsets é uma lista de listas,
cada uma com uma sendo uma subsequéncia de Set. O problema é entao encontrar
o conjunto Cover: uma cobertura minima, isto ¢, uma subsequéncia de Subsets com
a propriedade que todo elemento de Set seja um elemento de alguma lista de Cover.
Por exemplo, assuma que Set € a lista [1, 2, 3, 4, 5] e Subsets é a lista [[1, 2],
(2, 41, [3, 5], [1, 3], [3, 4, 5]]. Entao a cobertura minima seria a lista [[1,
2], [3, 4, 5]1].

(a) Escreva um predicado CoverDecision(Set, Subsets, Goal, Cover), que re-
ceba uma lista Set, uma lista Subsets contendo subsequéncias de Set, e um
inteiro positivo Goal. Este predicado deve unificar Cover com a subsequéncia de
Subsets que cubra Set e tenha tamanho menor ou igual Goal. O predicado falha
se nao houver nenhuma cobertura possivel. A sua solucao devera ser capaz de
produzir todas as coberturas que satisfazem Goal.

(b) Escreva um predicado coverOptimization(Set, Subsets, Cover) que receba
uma lista Set e uma lista Subsets, como anteriormente. Este predicado deve
unificar Cover com a subsequéncia da lista Subsets que cubra Set, e que tenha
tamanho minimo. O predicado falhard se nao houver alguma sequéncia assim. A
sua solucao deverd ser capaz de gerar todas as sequéncias de tamanho minimo.



8. Uma clique é um grafo completo. O problema de decidir se um grafo G possui uma
clique de tamanho N é um problema NP-completo bem conhecido. Esse problema,
inclusive, é parte da lista de 21 problemas proposta por Richard Karp em 1972. Embora
nao conhegamos qualquer algoritmo eficiente para encontrar cliques em grafos, é muito
facil resolver esse problema por forca bruta em Prolog. Nesse caso, podemos representar
um grafo como um conjunto de arestas, conforme feito na figura abaixo:

edge (a, b) d — ¢ Cliques:
edge (a, c)

edge (b, c) \ \ a, b, c
edge (a, d). a—Db a, b, e
edge (b, e) //////

edge (d, e) a, e d
edge (a, e) c

O predicado cliqueN, definido abaixo, é verdade quando G é uma lista de vértices de
um grafo, N é um nimero inteiro, e L é uma sublista de G que forma uma clique:

cliqueN(N, G, L) :- sublist(G, L), length(L, N), clique(L).
Por exemplo:

7- consult(clique).

% clique compiled 0.00 sec, 64 bytes

true.

?7- cliqueN(3, [a, b, c, d, e], L).
L=1[a, b, c];

L = [a, b, €] ;
L=1[a, d, e] ;
false.

(a) Defina o predicado sublist(G, L), que seja verdade quando L for uma sublista
de G.

(b) Defina o predicado clique (L), que seja verdade quando L for uma lista de vértices
que forme um grafo completo.



