Lista de Linguagens de Programacao — 24

Nome: Matricula:

Os proximos dois exercicios dizem respeito a linguagem Three, cuja gramatica esta tran-
scrita abaixo. Existe um interpretador para esta linguagem, em Prolog, na pagina do curso.
Este intepretador foi escrito pelo autor do livro adotado no curso.

<erp> = fn <wvar>— <exp>

| < addexp >

< addexp > = < adderp > + < mulexpr >
| < mulexpr >

< mulexp > = < mulexpr > % < funexp >
| < funexp >

< funexp > = < funexp > < rootexp >
| < rootexp >

< rootexrp > = let val <wvar > = <exp> in <exp > end
| (<exp>)
| <war >
| < const >

1. Considere as duas expressoes: let val x = el in e2 e (fn x => e2) el. Estas
expressoes sao equivalentes.

(a) A partir do interpretador de Three que implemente associa¢ao dinamica (dynamic
binding), prove que as expressoes sao de fato equivalentes. Para isto, mostre que,
dada a semantica natural de Three, as condigoes para avaliar a expressao
(apply(fn(x,ez),e1),C’) — v sao equivalentes as condigoes necessarias para avaliar
(let(z,el,e2),C) — .

(b) Mostre a mesma coisa, mas desta vez usando o interpretador que implementa
associacao estatica.



2. O objetivo deste exercicio é definir a linguagem Four, que é uma extensao da linguagem
Three. Um exemplo de programa na linguagem Four ¢ dado abaixo:

let

val fact = fn x => if x < 2 then x else x * x fact(x-1)
in

fact 5
end

Como vocé pode ver, a linguagem Four estende a linguagem Three com trés novos
constructos: o operador < para comparagoes, o operador — para subtragoes, e a ex-
pressao condicional if-then-else. O programa de exemplo acima define a funcao
fatorial recursiva, e a utiliza para calcular o fatorial de 5.

(a) Defina a sintaxe da linguagem Four a partir da linguagem Three. Isto é, estenda
Three com sintaxe para incorporar os trés novos constructos. Cuide para que a
sua gramatica nao seja ambigua.

(b) Defina trés novos tipos de nodos AST para incorporar a nova sintaxe. Estenda a
implementacao de nosso interpretador Prolog para lidar com estes novos nodos.
Voce vai ter de usar a implementacao que usa escopo dinamico, pois a imple-
mentagao que usa escopo estatico nao consegue lidar com definigoes recursivas.
Isto quer dizer que aquele programa de exemplo nao é ML padrao. Verifique que
a sua implementacao avalie programas corretamente. Por exemplo, o fatorial de
5 ¢ 120.



(c) Dé uma semantica natural para a linguagem Four.

3. A semantica com escopo estatico da linguagem Three nao suporta recursao porque o
escopo de uma definicao de variavel nao inclui o corpo da funcao. ML funciona do
mesmo jeito. O escopo de uma definigao de £, que é produzido por fun f... inclui
o corpo da funcao que estd sendo definida, mas o mesmo nao acontece com o escopo
da definicao produzido por val £ = fn... Assim, em ML apenas funcoes declaradas
com fun podem ser recursivas.

(a) Estenda a sintaxe da linguagem Four vista no exercicio anterior para que esta
permita defini¢coes simples de fun¢oes, como por exemplo:

let fun f x = x + 1 in f 1 end

(b) Defina os novos tipos de nodos AST que vocé ird precisar para incorporar a sua
sintaxe estendida. Estenda o interpretador Prolog da linguagem Four para lidar
com eles. Use uma implementacao de escopo estatico para ambos os tipos de
funcoes: fun f... eval f = fn... Fungoes definidas com fun precisam poder
ser recursivas. Dica: dé uma olhada no termo fval, no interpretador exemplo
(disponivel na pagina do curso). Em particular, dé uma olhada em val3. Use
um termo diferente para representar fungoes criadas com fun — um termo que
armazene o nome da funcao — e uma cldusula diferente para apply. Teste sua



implementagao em uma versao recursiva da funcao fatorial, que vocé deve definir
usando fun.

(c) Dé uma semantica natural para a sua linguagem estendida.

4. Mudando um pouco de assunto, escreva um predicado gcd (N1, N2, Q) em Prolog que
seja verdadeiro se Q for o maior divisor comum de N1 e N2. Por exemplo:

?- gcd(36, 63, G).
G=09



