
Lista de Linguagens de Programação – 3

Nome: Matŕıcula:

1. Insira parênteses no comando abaixo, de acordo com a precedência dos operadores:

a = b < c ? * p + b * c : 1 << d ()

2. Esta questão refere-se à gramática abaixo, que representa uma linguagem muito sim-
ples, de somas de números. Por simplicidade nós não mostraremos as regras de
produção para números:

〈E〉 ::= 〈E〉+ 〈E〉
| 〈Number〉

(a) Prove que a gramática em questão é amb́ıgua.

(b) Mostre como esta ambiguidade compromete a semântica da linguagem que a
gramática representa.

(c) Forneça uma gramática que reconheça a mesma linguagem, mas que não seja
amb́ıgua.

1

3. As questões a seguir referem-se ao conceito de associatividade de operadores.

(a) O que significa dizer que um operador é associativo à esquerda ou à direita?

(b) Considere o operador de soma aritmética +, usado na linguagem C. Este operador
é associativo à esquerda ou à direita?

(c) Dê um exemplo de um operador em C que seja associativo à direita.

(d) Modifique a gramática abaixo para que operadores sejam associativos á esquerda:

<exp> ::= <mulexp> + <exp>

| <mulexp>

<mulexp> ::= <rootexp> * <mulexp>

| <rootexp>

<rootexp> ::= (<exp>)

| <number>

2

4. Considere a gramática abaixo, usada no exerćıcio anterior:

<exp> ::= <mulexp> + <exp>

| <mulexp>

<mulexp> ::= <rootexp> * <mulexp>

| <rootexp>

<rootexp> ::= (<exp>)

| <number>

(a) Escreva esta gramática em Prolog.

(b) Modifique a gramática constrúıda no exerćıcio anterior para que ela compute o
valor da expressão aritimética. Por exemplo, o predicado
expr(N, [2,*,’(’,3,+,4,’)’], [])., é verdade se N = 14.

3

5. Este exerćıcio solidifica alguns conceitos relacionados à hierarquia de gramáticas pro-
posta por Noam Chomsky.

(a) As gramáticas mais simples são chamadas Gramáticas Regulares. Estas gramáticas
possuem três regras de produa̧ão muito rudimentares: um não-terminal produz
um terminal seguido de um não terminal, ou um terminal, ou a palavra vazia.
Embora muito simples, estas gramáticas são muito úteis. Por exemplo, elas são
usadas pelos compiladores para separar um arquivo de entrada em palavras in-
dependentes, isto é, números, palavras-chave, identificadores, etc. Converta a
gramática abaixo para a forma regular:

number --> digit.

number --> digit, number.

digit --> [0] ; [1] ; [2] ; [3] ; [4] ; [5] ; [6] ; [7] ; [8] ; [9].

(b) A linguagem {anbn | n ∈ N} não pode ser reconhecida por uma gramática regular,
mas ela pode ser reconhecida por uma gramática livre de contexto. Construa uma
gramática que reconheça esta linguagem em Prolog.

(c) Há muitas linguagens que não são livres de contexto. Por exemplo, não é posśıvel
usar uma gramática destas para verificar se um programa usa as variáveis com
os tipos corretos. Tampouco é posśıvel reconhecer a linguagem {anbncn | n ∈ N}
via uma gramática livre de contexto. Ainda assim é posśıvel reconhecer esta
linguagem em Prolog, via atributos. Escreva uma gramática, em Prolog, que
reconheça esta linguagem.

4

