
Lista de Linguagens de Programação – 7

Nome: Matŕıcula:

1. Dizemos que uma linguagem é segura quando esta linguagem não permite que operações
sejam aplicadas a argumentos que não possuam os tipos previstos por estas operações.
C e C++ são linguagens inseguras, pois muitas vezes valores armazenados em memória
são utilizados sem qualquer fiscalização de seus tipos.

(a) Escreva um programa em C ou C++ que evidencie o caráter inseguro de uma
dessas linguagens.

(b) Existem linguagens mais antigas que C ou C++ que são consideradas seguras,
logo, a possibilidade de uso inseguro de tipos não é devido à ignorância sobre os
perigos dessa abordagem. ML, por exemplo, já havia sido definida dez anos antes
de C++, porém enquanto ML é uma linguagem considerada segura, C++ não é.
Cite um fator que motivou o desenho inseguro de C++.

1

2. Essa questão refere-se ao programa abaixo, escrito na linguagem C. Esse programa foi
compilado com gcc 4.2, e testado em um sistema operacional Mac OS X 10.5.8:

1 include <stdio.h>

2 void function() {

3 int buffer[1];

4 buffer[4] += 3;

5 }

6 int main() { int x; x = 13; function(); x++; printf("%d\n",x); }

(a) Compile e execute esse programa. O que será impresso?

(b) Comente a linha 4 do código fonte de nosso programa, compile-o novamente e
re-execute. O que será impresso?

(c) Compile esse programa com informações de depuração usando o comando gcc -g
f.c, e o execute com o depurador gdb, via o comando gdb a.out. No terminal
do depurador, execute os seguintes comandos:

(gdb) b function

(gdb) run

(gdb) print buffer[4]

$1 = 8156 // <--- provavelmente voce obterah outro valor

(gdb) x 8152 // aqui. Adapte sua saida de acordo.

(gdb) disassemble main

O que é o valor armazenado em buffer[4]?

(d) Qual o efeito da atribuição buffer[4] += 3?

(e) Esse exerćıcio ilustra uma vulnerabilidade de programas escritos na linguagem C,
chamada buffer overrun. Por que essa vulnerabilidade não ocorre em linguagens
fortemente tipadas?

2

3. Uma linguagem é estaticamente tipada quando o tipo de cada expressão pode ser
resolvido em tempo de compilação. Uma linguagem é dinamicamente tipada quando o
tipo da variável é resolvido em tempo de execução. Neste exerćıcio reforçaremos estes
conceitos.

(a) Dê um exemplo de uma linguagem estaticamente tipada. Como o compilador
consegue descobrir o tipo das variáveis, no caso desta linguagem?

(b) Dê um exemplo de uma linguagem dinamicamente tipada. Escreva um programa,
muito simples, que evidencie o caráter dinâmico desta linguagem.

(c) Cite uma vantagem da tipagem estática sobre a tipagem dinâmica.

(d) Agora, cite uma vantagem da tipagem dinâmica sobre a tipagem estática.

3

4. O objetivo deste exerćıcio é completar a função abaixo, que computa o Crivo de

Erastótenes:

fun filterNonPrimes _ nil = 0

| filterNonPrimes limit (h::t) =

if h * h <= limit

then h + filterNonPrimes limit (filter (fn e => (e mod h) <> 0) t)

else h + sum t

fun sieve n = filterNonPrimes n (inv (range n) nil)

(a) Escreva a função sum, de tipo int list -> int, que calcula a soma de uma lista
de inteiros.

(b) Escreva a função range, de tipo int -> int list, que produza listas de inteiros
em ordem descrescente, isto é, range 4 = [4,3,2].

(c) Escreva a função inv, de tipo ’a list -> ’a list -> ’a list, que receba duas
listas: l1 e l2. A função deve inverter a lista l1, usando a lista l2 como um acumu-
lador da lista invertida. Isto é, inv [4,3,2] nil = [2,3,4] e inv [5, 4, 3]

[8, 9, 10] = [3, 4, 5, 8, 9, 10]. Note que o propósito do parâmetro l2 é
tornar a implementação da função mais eficiente.

4

5. O autor de ML, Robin Milner, ganhou um prêmio Turing. Uma de suas maiores con-
tribuições à ciência da computação foi um algoritmo para a inferência de tipos. ML
é uma linguagem estaticamente tipada, porém o desenvolvedor em geral não precisa
escrever o tipo durante a declaração de expressões. Os tipos são inferidos automatica-
mente pelo compilador ou pelo interpretador. O objetivo deste exerćıcio é fazer com
que você pense como um compilador, quando este realiza a inferência de tipos. Tente
descobrir o tipo de cada uma das funções abaixo. Assim que achar que tem uma re-
sposta, escreva a função em SML, e verifique se a resposta está correta. Escreva o tipo
de cada função.

(a) f(x) = 1

(b) f(x, y) = 1

(c) f(x) = x

(d) f(x, y) = x

(e) f(g) = g(1)

(f) f(g, x) = g(x)

(g) f(g, x, y) = g(x, y)

(h) f(g, h, x) = g(h(x))

(i) f(g, x) = g(g(x))

5

6. Essa questão refere-se à seção de Python abaixo, em que se define e usa-se uma função
fatorial.

~/fernando$ python

Python 2.5.1 (r251:54863, May 5 2011, 18:37:34)

>>> def fact(n):

... if n > 1:

... return n * fact(n-1)

... else:

... return 1

...

>>> type(fact(10))

<type ’int’>

>>> type(fact(100))

<type ’long’>

>>>

(a) Quando o tipo de fact(10) é conhecido? As duas opções são: (i) em tempo de
compilação da função fact, quando sua declaração passa a ser conhecida, ou, (ii)
durante a execução do programa, quando a chamada fact(10) é feita.

(b) Por que o tipo de fact(10) é diferente do tipo de fact(100)?

(c) Considere a função abaixo, escrita na linguagem C. Qual é, nesse caso, o tipo das
variáveis x e y?

int fact(int n) { return n > 1 ? n * fact(n-1) : 1; }

void main() {

int x = fact(10);

int y = fact(100);

printf("%d, %d\n", x, y);

}

(d) Do ponto de vista de facilidade de programação, qual forma de tipagem torna o
programador mais produtivo?

6

