Lista de Linguagens de Programacao — 7

Nome: Matricula:

1. Dizemos que uma linguagem ¢é segura quando esta linguagem nao permite que operacoes
sejam aplicadas a argumentos que nao possuam os tipos previstos por estas operagoes.
C e C++ sao linguagens inseguras, pois muitas vezes valores armazenados em meméria
sao utilizados sem qualquer fiscalizacao de seus tipos.

(a) Escreva um programa em C ou C++ que evidencie o cardter inseguro de uma
dessas linguagens.

(b) Existem linguagens mais antigas que C ou C++ que sdo consideradas seguras,
logo, a possibilidade de uso inseguro de tipos nao é devido a ignorancia sobre os
perigos dessa abordagem. ML, por exemplo, ja havia sido definida dez anos antes
de C++, porém enquanto ML é uma linguagem considerada segura, C4++ nao é.
Cite um fator que motivou o desenho inseguro de C++.

2. Essa questao refere-se ao programa abaixo, escrito na linguagem C. Esse programa foi
compilado com gcc 4.2, e testado em um sistema operacional Mac OS X 10.5.8:

1
2
3
4
5
6
(a)

(b)

}

int main() { int x; x = 13; function(); x++; printf("%d\n",x); }

include <stdio.h>
void function() {

int buffer[1];
buffer[4] += 3;

Compile e execute esse programa. O que sera impresso?

Comente a linha 4 do cédigo fonte de nosso programa, compile-o novamente e
re-execute. O que serd impresso?

Compile esse programa com informagoes de depuragao usando o comando gcc -g
f.c, e o execute com o depurador gdb, via o comando gdb a.out. No terminal
do depurador, execute os seguintes comandos:

(gdb) b function

(gdb) run

(gdb) print buffer[4]

$1 = 8156 // <--- provavelmente voce obterah outro valor
(gdb) x 8152 // aqui. Adapte sua saida de acordo.

(gdb) disassemble main

O que é o valor armazenado em buffer[4]7?

Qual o efeito da atribuicao buffer[4] += 37

Esse exercicio ilustra uma vulnerabilidade de programas escritos na linguagem C,
chamada buffer overrun. Por que essa vulnerabilidade nao ocorre em linguagens
fortemente tipadas?

3. Uma linguagem ¢é estaticamente tipada quando o tipo de cada expressao pode ser
resolvido em tempo de compilagao. Uma linguagem é dinamicamente tipada quando o
tipo da variavel é resolvido em tempo de execucao. Neste exercicio reforcaremos estes
conceitos.

(a) Dé um exemplo de uma linguagem estaticamente tipada. Como o compilador
consegue descobrir o tipo das variaveis, no caso desta linguagem?

(b) Dé um exemplo de uma linguagem dinamicamente tipada. Escreva um programa,
muito simples, que evidencie o carater dinamico desta linguagem.

(c) Cite uma vantagem da tipagem estética sobre a tipagem dinamica.

(d) Agora, cite uma vantagem da tipagem dinamica sobre a tipagem estatica.

4. O objetivo deste exercicio é completar a fungao abaixo, que computa o Crivo de
Erastétenes:

fun filterNonPrimes _ nil = 0
| filterNonPrimes limit (h::t) =
if h *x h <= limit
then h + filterNonPrimes limit (filter (fn e => (e mod h) <> 0) t)
else h + sum t

fun sieve n = filterNonPrimes n (inv (range n) nil)

(a) Escreva a funcao sum, de tipo int list -> int, que calcula a soma de uma lista
de inteiros.

(b) Escreva a funcdo range, de tipo int -> int list, que produza listas de inteiros
em ordem descrescente, isto é, range 4 = [4,3,2].

(c) Escreva afuncdo inv, de tipo ’a list -> ’a list -> ’a list, que receba duas
listas: [; e l5. A funcao deve inverter a lista [y, usando a lista [, como um acumu-
lador da lista invertida. Isto é, inv [4,3,2] nil = [2,3,4] e inv [5, 4, 3]
(8, 9, 10] = [3, 4, 5, 8, 9, 10]. Note que o proposito do parametro [é
tornar a implementacao da funcao mais eficiente.

5. O autor de ML, Robin Milner, ganhou um prémio Turing. Uma de suas maiores con-
tribuigoes a ciéncia da computacao foi um algoritmo para a inferéncia de tipos. ML
¢ uma linguagem estaticamente tipada, porém o desenvolvedor em geral nao precisa
escrever o tipo durante a declaracao de expressoes. Os tipos sao inferidos automatica-
mente pelo compilador ou pelo interpretador. O objetivo deste exercicio é fazer com
que voceé pense como um compilador, quando este realiza a inferéncia de tipos. Tente
descobrir o tipo de cada uma das fungoes abaixo. Assim que achar que tem uma re-
sposta, escreva a funcao em SML, e verifique se a resposta estd correta. Escreva o tipo
de cada fungao.

(a) £(x) =1

(b) f(x, y) =1

(c) £(x) = x

(d) £(x, y) = x

(e) £(g) = g(1)

(f) £(g, x) = gx)

g(x, y)

»

<
N2

I

(2) £(g,

(h) £(g, h, x) = ghx))

(i) £(g, x) = glg(x))

6. Essa questao refere-se a segao de Python abaixo, em que se define e usa-se uma fungao
fatorial.

~/fernando$ python
Python 2.5.1 (r251:54863, May 5 2011, 18:37:34)
>>> def fact(n):
if n > 1:
return n * fact(n-1)
else:
return 1

>>> type(fact(10))
<type ’int’>

>>> type(fact(100))
<type ’long’>

>>>

(a) Quando o tipo de fact(10) é conhecido? As duas opgoes sao: (i) em tempo de
compilagao da funcdo fact, quando sua declaragao passa a ser conhecida, ou, (ii)
durante a execucao do programa, quando a chamada fact (10) é feita.

(b) Por que o tipo de fact(10) é diferente do tipo de fact(100)7

(c) Considere a fungao abaixo, escrita na linguagem C. Qual é, nesse caso, o tipo das
variaveis x e y?

int fact(int n) { returnn > 1 ? n * fact(n-1) : 1; }
void main() {

int x = fact(10);

int y = fact(100);

printf ("%d, %d\n", x, y);
}

(d) Do ponto de vista de facilidade de programagao, qual forma de tipagem torna o
programador mais produtivo?

