
Lista de Linguagens de Programação – 9

Nome: Matŕıcula:

1. Nós podemos representar números inteiros usando o cálculo λ. Uma das convenções
mais comuns é assumir que um número n é uma função que recebe dois argumentos, e
aplica o primeiro ao segundo n vezes. Por exemplo:

• 0 = λs.λz.z

• 1 = λs.λz.sz

• 2 = λs.λz.s(sz)

Podemos também representar valores booleanos usando o cálculo λ. Por exemplo:

• F = λx.λy.y

• T = λx.λy.x

(a) Considere a função MUL = λn1.λn2.λz.n1(n2 z). Usando a definição do número
2 acima, mostre todos os passos da redução MUL 2 2.

(b) Usando a função sucessor, SUCC = λn.λy.λx.y(n y x), defina a função ADD, que
soma dois números.

(c) Defina uma função XOR, que receba dois valores booleanos b1 e b2, definidos como
convencionado acima, e retorne T caso b1 6= b2 e F caso contrário.

1

2. Encontre o conjunto de variáveis livres para as seguintes expressões λ:

(a) λx.xyλz.xz

(b) (λx.xy)λz.wλw.wzyx

(c) xλz.xλw.wzy

(d) λx.xyλx.yx

3. Podemos usar a notação e[x → y] para denotar a aplicação (λx.e)y. Execute as
substituições abaixo:

(a) (f(λx.xy)λz.xyz)[x→ g]

(b) ((λx.fx)λf.fx)[f → gx]

(c) (λx.λy.fxy)[y → x]

(d) (λf.λy.fxy)[x→ fy]

2

4. Essa questão diz respeito as regras de precedência usadas para construir e interpretar
expressões λ.

(a) Qual a diferença entre λx.(xy) e (λx.x)x? Pelas nossas convenções de precedência
e associatividade, qual daquelas duas expressões é equivalente a λx.x y?

(b) A gramática abaixo descreve as expressões λ de forma não amb́ıgua. Segundo essa
gramática, qual deveria ser a intepretação de λx.x y? Justifique a sua resposta
exibindo uma árvore de derivação.

< expr > ::= < atom > | < app > | < fun >
< atom > ::= < head > | < app >
< head > ::= < var > | (< fun >)
< app > ::= < head >< atom > | < app >< atom >
< fun > ::= λ < var > . < expr >

5. Uma expressão λ como (λx.x)y pode ser reduzida, via uma redução β, em y. A
expressão y já não pode mais ser reduzida. Se uma expressão não pode mais sofrer
qualquer redução, dizemos que aquela expressão está na forma normal.

(a) Nem toda expressão λ possui uma forma normal. Escreva uma expressão para a
qual a forma normal não existe.

(b) O fato de existirem expressões que não possuem forma normal é essencial para
que o cálculo λ seja computacionalmente equivalente à Máquina de Turing. Por
que?

3

6. Considere as expressões S = λxyz.(xz)(yz) e K = λxy.x. Qual a forma normal de
S K K? Note que esse exerćıcio aparentemente simples pode ficar complicado se você
não aplicar as reduções com cuidado. Dica: use as abreviações S e K tanto quanto
posśıvel; isto é, faça as substituições com termos λ apenas quando você realmente
precisar.

7. Suponha que um único śımbolo no cálculo λ possua 5 miĺımetros de largura. Escreva
uma expressão λ com no máximo 20 cent́ımetros de largura cuja forma normal possua
pelo menos 101010 anos-luz de comprimento.

8. Uma linguagem que possui: (i) chamadas recursivas de função; (ii) o valor zero; (iii)
a função predecessor; (iv) a função successor e (v) a função zero?, que testa se um
número é zero, é Turing Completa. O nosso cálculo λ é Turing Completo, logo é
posśıvel escrever a função zero? nessa linguagem. Escreva tal função. Lembre-se:
números possuem a forma λf.λx.f(. . . (fx)), de forma tal que o número n representa
n aplicações da função f sobre o parâmetro x.

4

9. Esta questão refere-se ao programa SML abaixo:

fun insertHead _ nil = nil

| insertHead e (h::t) = (e::h) :: insertHead e t

fun comb 0 _ = [[]]

| comb _ [] = []

| comb n (h::t) = insertHead h (comb (n-1) t) @ comb n t

(a) Qual o tipo da função insertHead?

(b) Qual o resultado da chamada insertHead 3 [[1], [2]]?

(c) Qual o tipo da função comb?

(d) Qual o resultado da chamada comb 2 [1,2,3]?

(e) Qual a complexidade assimptótica da função comb?

5

