/* weight(L,N) takes a list L of food terms, each of the form food(Name,Weight,Calories). We unify N with the sum of all the Weights. */ weight([],0). weight([food(_,W,_) | Rest], X) :- weight(Rest,RestW), X is W + RestW. /* calories(L,N) takes a list L of food terms, each of the form food(Name,Weight,Calories). We unify N with the sum of all the Calories. */ calories([],0). calories([food(_,_,C) | Rest], X) :- calories(Rest,RestC), X is C + RestC. /* subseq(X,Y) succeeds when list X is the same as list Y, but with zero or more elements omitted. This can be used with any pattern of instantiations. */ subseq([],[]). subseq([Item | RestX], [Item | RestY]) :- subseq(RestX,RestY). subseq(X, [_ | RestY]) :- subseq(X,RestY). /* knapsackDecision(Pantry,Capacity,Goal,Knapsack) takes a list Pantry of food terms, a positive number Capacity, and a positive number Goal. We unify Knapsack with a subsequence of Pantry representing a knapsack with total calories >= Goal, subject to the constraint that the total weight is =< Capacity. */ knapsackDecision(Pantry,Capacity,Goal,Knapsack) :- subseq(Knapsack,Pantry), weight(Knapsack,Weight), Weight =< Capacity, calories(Knapsack,Calories), Calories >= Goal. /* legalKnapsack(Pantry,Capacity,Knapsack) takes a list Pantry of food terms and a positive number Capacity. We unify Knapsack with a subsequence of Pantry whose total weight is =< Capacity. */ legalKnapsack(Pantry,Capacity,Knapsack):- subseq(Knapsack,Pantry), weight(Knapsack,W), W =< Capacity. /* maxCalories(List,Result) takes a List of lists of food terms. We unify Result with an element from the list that maximizes the total calories. We use a helper predicate maxC that takes four parameters: the remaining list of lists of food terms, the best list of food terms seen so far, its total calories, and the final result. */ maxC([],Sofar,_,Sofar). maxC([First | Rest],_,MC,Result) :- calories(First,FirstC), MC =< FirstC, maxC(Rest,First,FirstC,Result). maxC([First | Rest],Sofar,MC,Result) :- calories(First,FirstC), MC > FirstC, maxC(Rest,Sofar,MC,Result). maxCalories([First | Rest],Result) :- calories(First,FirstC), maxC(Rest,First,FirstC,Result). /* knapsackOptimization(Pantry,Capacity,Knapsack) takes a list Pantry of food items and a positive integer Capacity. We unify Knapsack with a subsequence of Pantry representing a knapsack of maximum total calories, subject to the constraint that the total weight is =< Capacity. */ knapsackOptimization(Pantry,Capacity,Knapsack) :- findall(K,legalKnapsack(Pantry,Capacity,K),L), maxCalories(L,Knapsack).