DCCS888 — Constraint Based Analysis

1. Consider the program below, which has been implemented in Python. Finish the im-
plementation of the function create_binding(), in such a way that the call obj.get ()
at line 19 invoke each of the functions defined at lines 4, 10 and 15 of the program.

class A: Line 4: Line 15:

def __init_ (self): def create_binding(): def create_binding():
selfx=0 -

]
2
3
4 def get(self):
5 return self.x
6

7 class B:

8 def__init_ (self, start):
9 self.x = start

10 def get(self):

1 return self.x Line 10: o

12 def inc(self): def create_binding():
13 self.x +=1

15 def foo(obj):
16 return obj.x

18 def bar(obj):
19 return obj.get()

20
21| create_binding() |

2. Consider the two programs below, which have been written in SML/NJ, a functional
programming language:

elet f=fnx=>fny=>xy
in let g = fn x => x + 1
inf gl
o let £ =fn x =>x1
in let g=fny =>y + 2
in let h = fn z =>2z + 3
in (f g + (f h)

(a) Add labels to these programs, in such a way that each label describes a syntactic
block that can be bound to a function.

(b) Find a solution to the control flow analysis problem for these programs. Your
solution must associate labels or variable names to sets of functions that can be
bound to them.

3. A solution to the control flow analysis satisfies a function application such as (£4'¢%)!
if the following rules hold true:

(C,R) 1 A (C.R) = t3 A
(V(fnz=>t0) e C(l) : (C,R) =t A C(ly) € R(z) A C(ly) C C(1))

However, these rules do not take into consideration the ordering in which the expres-
sions are evaluated. For instance, in a language that admits parameter passing by
value, an expression such as F;FEs requires first the evaluation of E;, before we move
on to the evaluation of Fj. Yet, if £} does not produce any closure, then we do not
need to evaluate Fjy. Is it possible to modify the rule above, to evaluate the operand
[y only if the operator [; produces a closure? How could this be done?

4. Prove that the algorithm to solve constraints based on the constraint graph terminates.
Use an argument based on saturation. The algorithm uses a few data-structures to
record information. This structures keep track of a finite amount of information during
the execution of the algorithm. Once the information is inserted in the data-structure,
this information will never be removed from it.

5. In an object oriented programming language, it is desirable to know what are the
implementations of a method m, once we find a call such as o.m(a, b, c). A way to
solve this problem relies on a control flow analysis. However, there are other ways —
much faster, yet less precise — to find the targets of method calls. In this question,
you must discuss different techniques to find out the different implementations of m,
without resorting to a full-fledged control flow analysis.

. This question refers to the program below, which was written in Python.

1 class A: 22 def foo1(obj):

2 def __init__(self): 2 return obj.x

? selfx=0 -

s def get(self, term): 26 def foo2(obj, factor):

s return self.x + term 27 return obj.x * factor

7 28

2 class B: 2> def bar(obj1, obj2):

1o def __init__(self, start): 31 return obj1.get() + obj2.get(2.0)
1 self.x = start 32

12 def get(self, factor): S~ a=A(

1 return self.x * factor 35 if int(raw_input("Enter: ")) > 1:
15 s a=B(1)

16 class C: 57 B.get = foo1

7 def __init__(self): ¥ c=0()

18 39

o Selfx=-1 20 C.get =foo2

20 def get(self): 41 bar(a, c)

21 return self.x

(a) What are the possible bindings for obj1, the first argument of bar, at line 417

(b) What are the possible bindings for obj2, the second argument of bar, at line 417

(¢) An exception can happen in this program, due to an incompatible method invo-
cation. How can this event take place? You may consider to run the program, to
observe the actual exception happening.

(d) Can the constraint based analysis be adapted to flag the possibility of such ex-
ception happening? In this case, the constraint based analysis is a bit similar to
the type system of a statically typed language. Can you explain this similarity?

