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Abstract. In this paper we describe Dinamica EGO, a domain specific
languages (DSL) for geomodeling. Dinamica EGO provides users with
a rich suite of operators available in a script language and in a graphi-
cal interface, which they can use to process information extracted from
geographic entities, such as maps and tables. We analyze this language
through the lens of compiler writers. Under this perspective we describe
a key optimization that we have implemented on top of the Dinamica
EGO execution environment. This optimization consists in the system-
atic elimination of memory copies that Dinamica EGO uses to ensure
referential transparency. Our algorithm is currently part of the official
distribution of this framework. We show, via a real-life case study, that
our optimization can speedup geomodeling applications by almost 100x.

1 Introduction

Domain Specific Languages (DSLs) are used in the most varied domains, and
have been shown to be effective to increase the productivity of programmers [10].
In particular, DSLs enjoy remarkable success in the geomodeling domain [2].
In this case, DSLs help non-professional programmers to extract information
from maps, to blend and modify this information in different ways, and to infer
new knowledge from this processing. A tool that stands out in this area is Di-
namica EGO [11, 14, 13, 15]. This application, a Brazilian home-brew created in
the Centro de Sensoriamento Remoto of the Federal University of Minas Gerais
(UFMG), today enjoys international recognition as an effective and useful frame-
work for geographic modeling. Applications of it include, for instance, carbon
emissions and deforestation [3], assessment of biodiversity loss [12], urbanization
and climate change [9], emission reduction(REDD) [8] and urban growth [17].

Users interact with this framework via a graphical programming language
which allows them to describe how information is extracted from maps, possibly
modified, and written back into the knowledge base. Henceforth we will use
the term EGO Script to describe the graphical programming language that is
used as the scripting language in the Dinamica EGO framework. This language,
and its underlying execution environment, has been designed to fulfill two main
goals. Firstly, it must be easy to use; hence, requiring a minimum of programming



skill. Users manipulate maps and other geographic entities via graphical symbols
which can be connected through different data-flow channels to build patterns
for branches and loops. Secondly, it must be efficient. To achieve this goal, it
provides a 64-bit native version written in C++ and java with multithreading
and dynamic compilation. Being a dynamic execution environment, EGO Script
relies heavily on Just-in-time compilation to achieve the much necessary speed.

Dinamica’s current success is the result of a long development process, which
includes engineering decisions that have not been formally documented. In this
paper we partially rectify this omission, describing a key compiler optimization
that has been implemented in the Dinamica EGO execution environment. In
order to provide users with a high-level programming environment, one of the
key aspects of Dinamica’s semantics is referential transparency, as we explain
in Section 3. Scripts are formed by components, and these components must
not modify the data that they receive as inputs. This semantics imposes on the
tool a heavy burden, because tables containing data to be processed must be
copied before been passed from one component to the other. Removing these
copies is a non-trivial endeavor, inasmuch as minimizing such copies is a NP-
complete problem, as we show in Section 3. Because this problem is NP-complete,
we must recourse to heuristics to eliminate redundant copies. We discuss these
heuristics in Section 4. Although we have discussed this algorithm in the context
of Dinamica EGO, we believe that it can also be applied in other data-flow based
systems, such as programs built on top of the filter-stream paradigm [16].

We provide empirical evidence that supports our design decisions in Sec-
tion 5, by analyzing the runtime behavior of a complex application in face of our
optimization. This application divides an altitude map into slices of same height.
In order to get more precise ground information, we must decrease the height of
each slice; hence, increasing the amount of slices in the overall database. In this
case, for highly accurate simulations our copy elimination algorithm boosts the
performance of Dinamica EGO by almost 100x.

2 A Bird’s Eye View of Dinamica EGO

We illustrate EGO Script through an example that, although artificial, contains
some of the key elements that we will discuss in the rest of this paper. Consider
the following problem: “what is the mean slope of the cities from a given region?”
We can answer this query by combining data from two maps encompassing the
same geographic area. The first map contains the slope of each area. We can
assume that each cell of this matrix represents a region of a few hectares, and
that the value stored in it is the average inclination of that region. The second
map is a matrix that associates with each region a number that identifies the
municipality where that region is located. Regions that are part of the same city
jurisdiction have the same identifier. The EGO script that solves this problem
is shown in Figure 1. An EGO Script program is an ensemble of components,
which are linked together by data channels. Some components encode data,
others computation. Components in this last category are called functors. The
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Fig. 1. An EGO Script program that finds the average slope of the cities that form a
certain region. The parallel bars (||) denote places where the original implementation
of Dinamica EGO replicates the table T .

order in which functors must execute is determined by the runtime environment,
and should obey the dependencies created by the data channels.

EGO Script uses the trapezoid symbol to describe data to be processed,
which is usually loaded from files. In our example, this data are the two maps.
We call the map of cities a categorical map, as it divides a matrix into equivalence
classes. Each equivalence class contains the cells that belong to the same city
administration. The large rectangle named Lp with smaller components inside
it is a container, which represents a loop. It will cause some processing to be
executed for each different category in the map of cities. The results produced
by this script will be accumulated in the table T. Some functors can write into
T. We use names starting with W to refer to them. Others only read the table.
Their names start with R. In our example, the positive indices of T represent
city entries. Once the script terminates, T will map each city to its slope. Addi-
tionally, this accumulator will have in its -1 index the total number of cities that
have been processed, and in its -2 index the average slope of the entire map of
slopes.

The functor called W1 is responsible for filling the table with the results
obtained for each city. The element called mux works as a loop header: it passes
the empty accumulator to the loop, and after the first iteration, it is in charge of
merging the newly produced data with the old accumulator. W1 always copies
the table before updating it. We denote this copy by the double pipes after the
table name in the input channel, e.g., T||. The attentive reader must be wonder-
ing: why is this copy necessary? Even more if we consider that it is performed
inside a loop? The answer is pragmatic: before we had implemented the opti-
mization described in this paper, each component that could update data should
replicate this data. In this way, any component could be reused as a black box,
without compromising the referential transparency that is a key characteristics
of the language. We have departed from this original model by moving data repli-
cation to the channels, instead of the components, and using a whole program
analysis to eliminate unnecessary copies.
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Fig. 2. Two examples in which copies are necessary.

The functor called R1 counts the number of cities in the map, and gives
this information to W3, which writes it in the index -1 of the table. Functor
R2 computes the mean slope of the entire map. This information is inserted
into the index -2 of the table by W2. Even though the updates happen in dif-
ferent locations of T, the components still perform data replication to preserve
referential transparency. The running example cannot trivially discover that up-
dates happen at different locations of the data-structure. In this simple example,
each of these indices, -1 and -2, are different constants. However, the locations
to be written could have been derived, instead, from much more complicated
expressions whose values could only be known at execution time.

As we will show later in this paper, we can remove all the three copies in the
script from Figure 1. However, there are situations in which copies are necessary.
Figure 2 provides two such examples. A copy is necessary in Figure 2(a), either
in channel α or in channel β – but not in both – because of a write-write hazard.
Both functors, W1 and W2 need to process the original data that comes out of
the loader L. Without the copy, one of them would read a stained value. Data
replication is necessary in Figure 2(b), either in channel α or β, because there
is a read-write hazard between R and W1, and it is not possible to schedule
R to run before W1. W1 is part of a container, Lp, that precedes R in any
scheduling, i.e., a topological ordering, of the script.

3 The Core Semantics

In order to formally state the copy minimization problem that we are interested,
we will define a core language, which we call µ-Ego. A µ-Ego program is defined
by a tuple (S, T,Σ), where S, a scheduling, is a list of processing elements to
be evaluated, T is an output table, and Σ is a storage memory. Each processing
element is either a functor or a container. Functors are three element tuples
(N, I, P ), where N is this component’s unique identifier in T , I is the index
of the storage area that the component owns inside Σ, and P is the list of
predecessors of the component. We let T : N 7→ N, and Σ : I 7→ N. A container
is a pair (N, S), where S is a scheduling of processing elements.

Figure 3 describes the operational semantics of µ-Ego. Rule Cont defines
the evaluation of a container. Containers work like loops: the evaluation of (N,Sl)



[Null] ([], T,Σ)→ (T,Σ)

[Cont]
S′ = SK

l @ S (S′, T,Σ)→ (T ′, Σ′)

((K,Sl) :: S, T,Σ)→ (T ′, Σ′)

[Func]

V = max(P,Σ)
Σ′ = Σ \ [I 7→ V + 1] T ′ = T \ [N 7→ V + 1] (S, T ′, Σ′)→ (T ′′, Σ′′)

((N, I, P ) :: S, T,Σ)→ (T ′′, Σ′′)

Fig. 3. The operational semantics of µ-Ego.

consists in evaluating sequentially N copies of the scheduling Sl. We let the
symbol @ denote list concatenation, like in the ML programming language. The
expression SK

l @ S denotes the concatenation of K copies of the list Sl in front
of the list S. Rule Func describes the evaluation of functors. Each functor
(N, I, P ) produces a value V . If we let Vm be the maximum value produced
by any predecessor of the component, i.e., some node in P , then V = Vm + 1.
When processing the component (N, I, P ), our interpreter binds V to N in T ,
and binds V to I in Σ.

Figure 4 illustrates the evaluation of a simple µ-Ego program. The digraph in
Figure 4(a) denotes a program with five functors and a container. We represent
each functor as a box, with a natural number on its upper-right corner, and
a letter on its lower-left corner. The number is the component’s name N , and
the letter is its index I in the store. The edges in Figure 4(a) determine the
predecessor relations among the components. Figure 4(b) shows the scheduling
that we are using to evaluate this program. We use the notation (p1, . . . , pn)k

to denote a container with k iterations over the processing elements p1, . . . , pn.
Figure 4(c) shows the store Σ, and Figure 4(d) shows the output table T , after
each time the Rule Func is evaluated. In this example, Σ and T have the same
number of indices. Whenever this is the case, these two tables will contain the
same data, as one can check in Rule Func. We use gray boxes to mark the value
that is updated at each iteration of the interpreter. These boxes, in Figure 5(d),
also identify which component is been evaluated at each iteration.

We say that a µ-Ego program is canonical if it assigns a unique index I in
the domain of Σ to each component. We call the evaluation of such a program
a canonical evaluation. The canonical evaluation provides an upper bound on
the number of storage cells that a µ-Ego program requires to execute correctly.
Given that each component has its own storage area, data is copied whenever
it reaches a new component. In this case, there is no possibility of data races.
However, there is a clear waste of memory in a canonical evaluation. It is possible
to re-use storage indices, and still to reach the same final configuration of the
output table. This observation brings us to Definition 1, which formally states
the storage minimization problem.
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Fig. 4. Canonical evaluation of an µ-Ego program. (a) The graph formed by the com-
ponents. (b) The scheduling. (c) The final configuration of Σ. (d) The final configura-
tion of T .

Definition 1. Storage Minimization with Fixed Scheduling [Smfs]
Instance: a scheduling S of the components in a µ-Ego program, plus a

natural K, the number of storage cells that any evaluation can use.
Problem: find an assignment of storage indices to the components in S with

K or less indices that produces the same T as a canonical evaluation of S.

For instance, the program in Figure 5 produces the same result as the canon-
ical evaluation given in Figure 4; however, it uses only 3 storage cells. In this
example, the smallest number of storage indices that we can use to simulate a
canonical evaluation is three. Figure 6 illustrates an evaluation that does not
lead to a canonical result. In this case, we are using only two storage cells to
keep the values of the components. In order to obtain a canonical result, when
evaluating component 4 we need to remember the value of components 2 and 3.
However, this is not possible in the configuration seen in Figure 6, because these
two different components reuse the same storage unit.

3.1 SMFS has polynomial solution for schedulings with no
back-edges

If a scheduling S has a component c” scheduled to execute after a component
c′ = (N, I, P ), and c” ∈ P , then we say that the scheduling has a back-edge

−−→
c”c′.

Smfs has a polynomial time - exact - solution for programs without back-edges,
even if they contain loops. We solve instances of Smfs that have this restriction
by reducing them to interval graph coloring. Interval graph coloring has an O(N)
exact solution, where N is the number of lines in the interval [7]. The reduction
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Fig. 5. Evaluation of an optimized µ-Ego program.

(        )

Σ[a] Σ[b]

0 0

1 0

1 2

3 2

1 4

5 4

2 4

3 4

1

2

3

4

5

6

7

8
1

a
2

b
3

a
4

a
5

a

2

(a)

(b) (c)

T[1] T[2] T[3] T[4] T[5]

0 0 0 0 0

1 0 0 0 0

1 2 0 0 0

1 2 3 0 0

1 4 3 0 0

1 4 5 0 0

1 4 5 2 0

1 4 5 2 3

1

2

3

4

5

6

7

8

(d)

1
a

2
b

3
a

4
a

5
a

2

Fig. 6. Evaluation of an µ-Ego program that does not produce a canonical result.

is as follows: given a scheduling S, let sc be the order of component c in S; that
is, if component c appears after n− 1 other components in S, then sc = n. For
each component c we create an interval that starts at sc and ends at sx, where
sx is the greatest element among:

– s′c, where c′ is a successor of c.
– scf

, where cf is the first component after any component in a loop that
contains a successor of c.
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Fig. 7. Reducing Smfs to interval graph coloring for schedulings without back-edges.
(a) The input µ-Ego program. (b) The input scheduling. (c) The corresponding inter-
vals. The integers on the left are the orderings of each component in the scheduling.

Figure 7 illustrates this reduction. A coloring of the interval graph consists
of an assignment of colors to the intervals, in such a way that two intervals may
get the same color if, and only if, they have no common overlapping point, or
they share only their extremities. Theorem 1 shows that a coloring of the in-
terval graph can be converted to a valid index assignment to the program, and
that this assignment is optimal. In the figure, notice that the interval associated
to component three goes until component five, even though these components
have no direct connection. This happens because component five is the leftmost
element after any component in the two loops that contain successors of compo-
nent three. Notice also that, by our definition of interval coloring, components
six and eight, or five and seven, can be assigned the same colors, even though
they have common extremities.

Theorem 1. A tight coloring of the interval graph provides a tight index as-
signment in the µ-Ego program.

proof: See [4].

3.2 SMFS is NP-complete for general programs with fixed
scheduling.

We show that Smfs is NP-complete for general programs with fixed schedulings
by reducing this problem to the coloring of Circular-Arc graphs. A circular-arc
graph is the intersection graph formed by arcs on a circle. The problem of finding
a minimum coloring of such graphs is NP-complete, as proved by Garey et al [6].
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Notice that if the number of colors k is fixed, then this problem has an exact
solution in O(n× k!× k × ln k), where n is the number of arcs [5].

We define a reduction R, such that, given an instance Pg of the coloring of
arc-graphs, R(Pg) produces an equivalent instance Ps of Smfs as follows: firstly,
we associate an increasing sequence of integer number with each end point of
an arc, in clockwise order, starting from any arc. If i and j are the integers
associated with a given arc, then we create two functors, ci and cj . We let ci be
the single element in the predecessor set of cj , and we let the predecessor set
of ci be empty. We define a fixed scheduling S that contains these components
in the same order their corresponding integers appear in the input set of arcs.
Figure 8 illustrates this reduction. We claim that solving Smfs to this µ-Ego
program is equivalent to coloring the input graph.

Theorem 2. Let Ps be an instance of Smfs produced by R(Pg). Ps can be
allocated with K indices, if, and only if, Pg can be colored with K colors.

proof: See [4].

4 Copy Minimization

Data-Flow Analysis: We start the process of copy pruning with a backward-
must data-flow analysis that determines which channels can lead to places where
data is written. Our data-flow analysis is similar to the well-known liveness
analysis used in compilers [1, p.608]. Figure 9 defines this data-flow analysis via
four inference rules. If (N, I, P ) is a component, and N ′ ∈ P , then the relation
channel(N ′, N) is true. If N is a component that writes data, then the relation
write(N) is true. Contrary to the original semantics of µ-Ego, given in Figure 3,



[Df1]
channel(N1, N2) write(N2)

abs(N1, N2, {N2})
[Df2]

abs(N1, N2, A
′) out(N1, A)

A′ ⊆ A

[Df3]
channel(N1, N2) ¬write(N2) out(N2, A)

abs(N1, N2, A)

[Df4]
channel(N1, N2) read(N2) out(N2, A)

abs(N1, N2, A ∪ {r})

Fig. 9. Inference rules that define our data-flow analysis.

we also consider, for the sake of completeness, the existence of functors that only
read the data. If N is such a functor, than the predicate read(N) is true. This
analysis uses the lattice constituted by the power-set of functor names, plus a
special name “r”, that is different from any functor name. We define the abstract
state of each channel by the predicate abs(N1, N2, P ), which is true if P is the
set of functors that can write data along any path that starts in the channel
(N1, N2), or P = {r}. Rule Df1 states that if a functor N2 updates the data,
then the abstract state of any channel ending at N2 is a singleton that contains
only the name of this functor. We associate with each functor N a set (out) of all
the functor names present in abstract states of channels that leave N . This set
is defined by Rule Df2. According to Rule Df3, if a functor N does not write
data, the abstract state of any channel that ends at N is formed by N ’s out set.
Finally, Rule Df4 back propagates the information that a functor reads data.

Figure 10 shows the result of applying our data-flow analysis onto the ex-
ample from Section 2. The channels that lead to functors where table T can be
read or written have been labeled with the abstract states that the data-flow
analysis computes, i.e., sets of functor names. In this example each of these sets
is a singleton. There is no information on the dashed-channels, because T is
not transmitted through them. Notice that we must run one data-flow analysis
for each data whose copies we want to eliminate. In this sense, our data-flow
problem is a partitioned variable problem, following Zadeck’s taxonomy [18]. A
partitioned variable problem can be decomposed into a set of data-flow problems
– usually one per variable – each independent on the other.
Criteria to Eliminate Copies: Once we are done with the data-flow analysis,
we proceed to determine which data copies are necessary, and which can be
eliminated without compromising the semantics of the script. Figure 11 shows
the two rules that we use to eliminate copies: (Cp1) write-write race, and (Cp2)
write-read race. Before explaining each of these rules, we introduce a number of
relations used in Figure 11. The rules Pt1 and Pt2 denote a path between two
components. Rule Dom defines a predicate dom(C,N), which is true whenever
the component N names a functor that is scheduled to execute inside a container
C. We say that C dominates N , because N will be evaluated if, and only if, C
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[Pt1]
channel(N1, N2)

path(N1, N2)
[Pt2]

channel(N1, N) path(N, N2)

path(N1, N2)

[Dom]
C = (N, S) N ∈ S

dom(C, N)
[Ori]

channel(N, N1) channel(N, N2) N1 6= N2

orig(N, N1, N2)

[Dp1]
path(N1, N2)

dep(N1, N2)
[Dp2]

path(N1, N) dom(N2, N)

dep(N1, N2)

[Dp3]
dom(N1, N) path(N, N2)

dep(N1, N2)
[Dp4]

dom(N1, N
′
1) dom(N2, N

′
2) path(N

′
1, N

′
2)

dep(N1, N2)

[Lcd]
dom(N, N1) dom(N, N2) @N

′
, dom(N

′
, N1), dom(N

′
, N2), dom(N, N

′
)

lcd(N1, N2, N)

[Prd]
orig(O, N1, N2) lcd(N1, N2, D) dom(D, O) ¬dep(N2, N1)

pred(N1, N2)

[Cp1]
orig(N, N1, N2) out(N1, {. . . , f1, . . . , }) out(N2, {. . . , f2, . . .}) f1 6= f2 6= N

need copy(N, N1)

[Cp2]
orig(N, N1, N2) out(N1, {. . . , f1, . . .}) out(N2, {r}) f1 6= N ¬pred(N2, N1)

need copy(N, N1)

Fig. 11. Criteria to replicate data in Ego Script programs.

is evaluated. Rule Lcd defines the concept of least common dominator. The
predicate lcd(N1, N2, N) is true if N dominates both N1 and N2, and for any
other component N ′ that also dominates these two components, we have that
N ′ dominates N . The relation orig(N,N1, N2) is true whenever the functor N is
linked through channels to two different components N1 and N2. As an example,
in Figure 7(a) we have orig(3, 4, 6).

Rules Dp1 through Dp4 define the concept of data dependence between com-
ponents. A component N2 depends on a component N1 if a canonical evaluation
of the script requires N1 to be evaluated before N2. The relation pred(N1, N2)



indicates that N1 can always precede N2 in a canonical evaluation of the Ego
Script program, where components N1 and N2 have a common origin. In order
for this predicate to be true, N1 and N2 cannot be part of a loop that does
not contain O. Going back to Figure 7(a), we have that pred(4, 6) is not true,
because 3, the common origin of components 4 and 6, is located outside the loop
that dominates these two components. Furthermore, N1 should not depend on
N2 for pred(N1, N2) to be true.

By using the predicates that we have introduced, we can determine which
copies need to be performed in the flow chart of the Ego Script program. The
first rule, Cp1, states that if there exist two channels leaving a functor f , and
these channels lead to other functors different than f where the data can be
overwritten, then it is necessary to replicate the data in one of these channels.
Going back to the example in Figure 10, we do not need a copy between the
components W1 and mux, because this channel is bound to the name of W1
itself. This saving is possible because any path from mux to all the other functors
that can update the data must go across W1. Otherwise, we would have also
the names of these functors along the W1-mux channel. On the other hand, by
this very Rule Cp1, a copy is necessary between one of the channels that leave
L in Figure 2(a). The second rule, Cp2, is more elaborated. If two components,
N1 and N2 are reached from a common component N , N2 only reads data, and
N1 writes it, it might be possible to avoid the data replication. This saving is
legal if it is possible to schedule N2 to be executed before N1. In this case, once
the data is written by N1, it will have already been read by N2. If that is not
the case, e.g., pred(N2, N1) is false, then a copy is necessary along one of the
channels that leave out N . This rule lets us avoid the data replication in the
channel that links W1 and W3 in Figure 1. In this case, there is no data-hazard
between W3 and either R1 or R2. These components that only read data can
be scheduled to execute before W3.

4.1 Correctness

In order to show that the rules in Figure 11 correctly determine the copies
that must be performed in the program, we define a correctness criterion in
Theorem 3. A µ-Ego program is correct if its evaluation produces the same
output table as a canonical evaluation. The condition in Theorem 3 provides
us with a practical way to check if the execution of a program is canonical.
Given a scheduling of components S, we define a dynamic scheduling S as the
complete trace of component names observed in an execution of S. For instance,
in Figure 5, we have S = 1, (2, 3)2, 4, 5, and we have S = 1, 2, 3, 2, 3, 4, 5. We let
S[i] be the i-th functor in the trace S, and we let |S| be the number of elements
in this trace. In our example, we have S[1] = 1, S[7] = 5, and |S| = 7. Finally,
if p = S[j] is a predecessor of the functor S[i], and for any k, j < k < i, we have
that S[k] 6= S[j], then we say that S[j] is an immediate dynamic predecessor of
S[i].



Theorem 3. The execution of an µ-Ego program (S, T,Σ) is canonical if, for
any n, 1 ≤ n ≤ |S|, we have that, for any predecessor p of S[n], if S[i] = p
and i, 1 ≤ i < n is an immediate dynamic predecessor of S[i], then for any
j, i < j < n, we have that Σ[S[j]] 6= Σ[p].

proof: See [4].
We prove that the algorithm to place copies is correct by showing that each

copy that it eliminates preserves the condition in Theorem 3. There is a tech-
nical inconvenient that must be circumvented: the Rules Cp1 and Cp2 from
Figure 11 determine which copies cannot be eliminated. We want to show that
the elimination of a copy is safe. Thus, we proceed by negating the conditions
in each of these rules, and deriving the correctness criterion from Theorem 3.

Theorem 4. The elimination of copies via the algorithm in Figure 11 preserves
the correctness criterion from Theorem 3.

proof: See [4].

5 Experiments

We show how our optimization speeds up Dinamica EGO via a case study. This
case study comes from a model used to detect hilltops in protected areas, which
is available in Dinamica’s webpage. Figure 12 gives a visual overview of this
application. This model receives two inputs: an elevation map and a vertical
resolution value. The EGO script divides the elevation map vertically into slices
of equal height. This height is defined by the vertical resolution. Then the map
is normalized and divided in discrete regions, as we see in Figure 12(b) and (c).
Before running the functor that finds hilltops, this script performs other analyses
to calculate average slopes, to compute the area of each region and to find the
average elevation of each region. The model outputs relative height, plateau iden-
tifiers, hilltops, plus coordinates of local minima and local maxima. This EGO
script uses tables intensively; hence, data replication was a bottleneck serious
enough to prevent it from scaling to higher resolutions before the deployment of
our optimization.

Figure 13 shows the speedup that we obtain via our copy elimination al-
gorithm. These numbers were obtained in an Intel Core2Duo with a 3.00 GHz
processor and 4.00 GB RAM. We have run this model for several different verti-
cal resolution values. The smaller this value, more slices the map will have and,
therefore more regions and more table inputs. This model has three operators
that perform data replication, but given that they happen inside loops, the dy-
namic number of copies is much greater. Figure 13 shows the number of dynamic
copies in the unoptimized program. High resolution, plus the excessive number
of copies, hinders scalability, as we can deduce from the execution times given in
Figure 13. This model has three components that copy data, and our optimiza-
tion has been able to eliminate all of them. The end result is an improvement of
almost 100x in execution speed, as we observe in the fourth column of Figure 13.



Fig. 12. Hilltop detection. (a) Height map. (b) Normalized map. (c) Extracted discrete
regions.

V D Tu To R

20 1,956 20 20 1
15 2,676 28 26 1.0769
13 3,270 30 29 1.0344
11 4,677 32 32 1
10 6,126 36 36 1
9 9,129 39 36 1.08333
8 15,150 49 39 1.25641
7 29,982 87 50 1.74
5 137,745 995 76 13.0921
4 279,495 4,817 116 41.5258
3 518,526 18,706 197 94.9543

Fig. 13. V: Vertical resolution(m). D: Number of dynamic copies without optimization.
Tu: Execution time without optimization (sec). To: Execution time with optimization
(sec). R: Execution time ratio: ( time non optimized / time optimized).

6 Conclusion

This paper has described a compiler optimization that we have implemented
on top of the Dinamica EGO domain specific language for geomodeling. This
optimization is, nowadays, part of the official distribution of Dinamica EGO, and
is one of the key elements responsible for the high scalability of this framework.
Dinamica EGO is freeware, and its use is licensed only for educational or scientific
purposes. The entire software, and accompanying documentation can be found
in Dinamica’s website at http://www.csr.ufmg.br/dinamica/.
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