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Abstract. The Single Instruction, Multiple Data (SIMD) execution model has
been receiving renewed attention recently. This awareness stems from the rise of
graphics processing units (GPUs) as a powerful alternative for parallel comput-
ing. Many compiler optimizations have been recently proposed for this hardware,
but register allocation is a field yet to be explored. In this context, this paper de-
scribes a register spiller for SIMD machines that capitalizes on the opportunity
to share identical data between threads. It provides two different benefits: first, it
uses less memory, as more spilled values are shared among threads. Second, it
improves the access times to spilled values. We have implemented our proposed
allocator in the Ocelot open source compiler, and have been able to speedup the
code produced by this framework by 21%. Although we have designed our al-
gorithm on top of a linear scan register allocator, we claim that our ideas can be
easily adapted to fit the necessities of other register allocators.

1 Introduction

The increasing programmability, allied to the decreasing costs of graphics processing
units (GPUs), is boosting the interest of the industry and the academia in this hard-
ware. Today it is possible to acquire, for a few hundred dollars GPUs with a thousand
processing units on the same board. This possibility is bringing together academics,
engineers and enthusiasts, who join efforts to develop new programming models that fit
the subtleties of the graphics hardware. The compiler community is taking active part
in such efforts. Each day novel analyses and code generation techniques that specifi-
cally target GPUs are designed and implemented. Examples of this new breed include
back-end optimizations such as Branch Fusion [10], thread reallocation [29], iteration
delaying [7] and branch distribution [17]. Nevertheless, register allocation, which is ar-
guably the most important compiler optimization, has still to be revisited under the light
of graphics processing units.

Register allocation is the problem of finding locations for the values manipulated
by a program. These values can be stored either in registers, few but fast, or in memory,
plenty but slow. Values mapped to memory are called spills. A good allocator keeps
the most used values in registers. Register allocation was already an important issue
when the first compilers where designed, sixty years ago [2]. Since then, this problem
has been explored in a plethora of ways, and today an industrial-strength compiler is as
good as a seasoned assembly programmer at assigning registers to variables. However,
GPUs, with their Single Instruction, Multiple Data (SIMD) execution model, pose new
challenges to traditional register allocators. By taking advantage of explicit data-level



parallelism, GPUs provide about ten times the computational throughput of compara-
ble CPUs [19]. They run tens of thousands of instances (or threads) of a program at
the same time. Such massive parallelism causes intense register pressure, because the
register bank is partitioned between all threads. For instance, the GeForce 8800 has
8,192 registers per multiprocessor. This number might seem large at first, but it must be
shared with up to 768 threads, leaving each thread with at most 10 registers. It is our
goal, in this paper, to describe a register allocator that explores the opportunity to share
identical data between threads to relieve register pressure.

In this paper we propose a Divergence Aware Spilling Strategy. This algorithm is
specifically tailored for SIMD machines. In such model we have many threads, also
called processing elements (PEs), executing in lock-step. All these PEs see the same
set of virtual variable names; however, these names are mapped into different physical
locations. Some of these variables, which we call uniform, always hold the same value
for all the threads at a given point during the program execution. Our register allocator is
able to place this common data into fast-access locations that can be shared among many
threads. When compared to a traditional allocator, the gains that we can obtain with our
divergence aware design are remarkable. We have implemented the register allocator
proposed in this paper in the Ocelot open source CUDA compiler [12], and have used
it to compile 46 well-known benchmarks to a high-end GPU. The code that we produce
outperforms the code produced by Ocelot’s original allocator by almost 21%. Notice
that we are not comparing against a straw-man: Ocelot is an industrial quality compiler,
able to process the whole PTX instruction set, i.e., the intermediate format that NVIDIA
uses to represent CUDA programs. The divergence aware capabilities of our allocator
have been implemented as re-writing rules on top of Ocelot’s allocator. In other words,
both register allocators that we empirically evaluate use the same algorithm. Thus, we
claim in this paper that most of the traditional register allocation algorithms used in
compilers today can be easily adapted to be divergence aware.

2 Background

C for CUDA is a programming language that allows programmers to develop applica-
tions to NVIDIA’s graphics processing units. This language has a syntax similar to stan-
dard C; however, its semantics is substantially different. This language follows the so
called Single Instruction, Multiple Thread (SIMT) execution model [14, 15, 20, 21]. In
this model, the same program is executed by many virtual threads. Each virtual thread
is instantiated to a physical thread, and the maximum number of physical threads si-
multaneously in execution depends on the capacity of the parallel hardware. In order
to keep the hardware cost low, GPUs resort to SIMD execution. Threads are bundled
together into groups called warps in NVIDIA’s jargon, or wavefronts in ATI’s. Threads
in a warp execute in lockstep, which allows them to share a common instruction con-
trol logic. As an example, the GeForce GTX 580 has 16 Streaming Multiprocessors,
and each of them can run 48 warps of 32 threads. Thus, each warp might perform 32
instances of the same instruction in lockstep mode.

Regular applications, such as scalar vector multiplication, fare very well in GPUs, as
we have the same operation being independently performed on different chunks of data.



However, divergences may happen in less regular applications when threads inside the
same warp follow different paths after processing the same branch. The branching con-
dition might be true to some threads, and false to others. Given that each warp has ac-
cess to only one instruction at each time, in face of a divergence, some threads will have
to wait, idly, while others execute. Hence, divergences may be a major source of per-
formance degradation. As an example, Baghsorkhi et al. [3] have analytically showed
that approximately one third of the execution time of the prefix scan benchmark [18],
included in the CUDA software development kit (SDK), is lost due to divergences.

Divergence Analysis. A divergence analysis is a static program analysis that identifies
variables that hold the same value for all the threads in the same warp. In this paper
we will be working with a divergence analysis with affine constraints, which we have
implemented previously [25]. This analysis binds each integer variable in the target
program to an expression a1Tid+a2, where the special variable Tid is the thread identifier,
and a1, a2 are elements of a lattice C. C is the lattice formed by the set of integers Z
augmented with a top element > and a bottom element ⊥, plus a meet operator ∧. We
let c1 ∧ c2 = ⊥ if c1 , c2, c ∧ > = > ∧ c = c, and c ∧ c = c. Similarly, we let
c + ⊥ = ⊥ + c = ⊥. Notice that C is the lattice normally used to implement constant
propagation; hence, for a proof of monotonicity, see Aho et al [1, p.633-635]. We define
A as the product lattice C ×C. If (a1, a2) are elements of A, we represent them using the
notation a1Tid + a2. We define the meet operator of A as follows:

(a1Tid + a2) ∧ (a′1Tid + a′2) = (a1 ∧ a′1)Tid + (a2 ∧ a′2) (1)

A divergence analysis with affine constraints classifies the program variables in the
following groups:

– Constant: every processing element sees the variable as a constant. Its abstract
state is given by the expression 0Tid + c, c ∈ Z.

– Uniform: the variable has the same value for all the processing elements, but this
value is not constant along the execution of the program. Its abstract state is given
by the expression 0Tid + ⊥.

– Constant affine: the variable is an affine expression of the identifier of the process-
ing element, and the coefficients of this expression are constants known at compi-
lation time. Its abstract state is given by the expression cTid + c′, {c, c′} ⊂ Z.

– Affine: the variable is an affine expression of the identifier of the processing ele-
ment, but the free coefficient is not known. Its abstract state is given by the expres-
sion cTid + ⊥, c ∈ Z.

– Divergent: the variable might have possibly different values for different threads,
and these values cannot be reconstructed as an affine expression of the thread iden-
tifier. Its abstract state is given by the expression ⊥Tid + ⊥.

Figure 1 illustrates how the divergence analysis is used. The kernel in Figure 1(a)
averages the columns of a matrix m, placing the results in a vector v. Figure 1(b) shows
this kernel in assembly format. We will be working in this representation henceforth.
It is clear that all the threads that do useful work, e.g., that enter the gray area in 1(a)
iterate the loop the same number of times. Some variables in this program always have



d = 0
s = 0.0F
t0 = c * c
N = tid + t0
i = tid

if i ≥ N jp L12

t1 = i * 4
ld.global [m+t1] t2
s = t2 + s
d = d + 1
i = i + c
jp L5

t3 = s / d
t4 = 4 * tid
st.global t3 [v+t4]

__global__ void avgColumn(float* m, float* v, int c) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  if (tid < c) {
    int d = 0;
    float s = 0.0F;
    int N = tid + c * c;
    for (int i = tid; i < N; i += c) {
      s += m[i];
      d += 1;
    }
    v[tid] = s / d;
  }
}

[c] = 0 × tid + ⊥
[d] = 0 × tid + ⊥
[s] = ⊥ × tid + ⊥

[t0] = 0 × tid + ⊥
[N] = 1 × tid + ⊥
[i] = 1 × tid + ⊥

(a) (b)

(c) [t1] = 4 × tid + ⊥
[t3] = ⊥ × tid + ⊥
[t4] = 4 × tid + 0

L0:

L5:

L6:

L12:

Fig. 1. (a) A kernel, written in C for CUDA, that fills a vector v with the averages of the columns
of matrix m. (b) The control flow graph (CFG) of the gray area in the kernel code. (c) The results
of a divergence analysis for this kernel.

the same value for all the threads. The constant c, and the base addresses m and v,
for instance. Furthermore, variable d, which is incremented once for each iteration is
also uniform. Other variables, like i, do not have the same value for all the processing
elements, but their values are functions of the thread identifier Tid; hence, these variables
are classified as affine. The limit of the loop, N, is also an affine expression of Tid.
Because i and N are both affine expression of Tid with the same coefficient 1, their
difference is uniform. Therefore, the divergence analysis can conclude that the loop is
non-divergent; that is, all the threads that enter the loop iterate it the same number of
times. Finally, there are variables that might have a completely different value for each
processing element, such as s, the sum of each column, and t3, the final average which
depends on s. Figure 1(c) summarizes the results of the divergence analysis.

3 Divergence Aware Register Allocation

In this section we explain why register allocation for GPUs differs from traditional
register allocation. We also show how the divergence analysis can improve the results
of register allocation. Finally, we close this section discussing some important design
decisions that we chose to apply in our implementation.

3.1 Defining the register allocation problem for GPUs

Similar to traditional register allocation we are interested in finding storage area to
the values produced during program execution. However, in the context of graphics



processing units, we have different types of memory to consider. Thus, in the rest of
this paper we assume that a value can be stored in one of the following locations:

– Registers: these are the fastest storage regions. A traditional GPU might have a
very large number of registers, for instance, one streaming multiprocessor (SM) of
a GTX 580 GPU has 32,768 registers. However, running 1536 threads at the same
time, this SM can afford at most 21 registers (32768 / 1536) to each thread in order
to achieve maximum hardware occupancy.

– Shared memory: this fast memory is addressable by each thread in flight, and
usually is used as a scratchpad cache. It must be used carefully, to avoid common
parallel hazards, such as data races. Henceforth we will assume that accessing data
in the shared memory is less than 3 times slower than in registers [24].

– Local memory: this off-chip memory is private to each thread. Modern GPUs pro-
vide a cache to the local memory, which is as fast as the shared memory. We will
assume that a cache miss is 100 times more expensive than a hit.

– Global memory: this memory is shared among all the threads in execution, and
is located in the same chip area as the local memory. The global memory is also
cached. We shall assume that it has the same access times as the local memory.

As we have seen, the local and the global memories might benefit from a cache, which
uses the same access machinery as the shared memory. Usually this cache is small: the
GTX 580 has 64KB of fast memory, out of which 48KB are given to the shared memory
by default, and only 16KB are used as a cache. This cache area must be further divided
between global and local memories. Equipped with these different notions of storage
space, we define the divergence aware register allocation problem as follows:

Definition 1. Given a set of variables V, plus a divergence analysis D : V 7→ A, find
a mapping R : V 7→ M that minimizes the costs paid to access these variables. The
possible storage locations M are registers, shared memory, local memory and global
memory. Two variables whose live ranges overlap must be given different positions if
they are placed on the same location.

Figure 2 shows the instance of the register allocation problem that we obtain from
the program in Figure 1. We use bars to represent the live ranges of the variables. The
live range of a variable is the collection of program points where that variable is alive. A
variable v is alive at a program point p if v is used at a program point p′ that is reachable
from p on the control flow graph, and v is not redefined along this path. The colors of
the bars represent the abstract state of the variables, as determined by the divergence
analysis.

3.2 A quick glance at traditional register allocation

Figure 3 shows a possible allocation, as produced by a traditional algorithm, such as
the one used in nvcc, NVIDIA’s CUDA compiler. In this example we assume that a
warp is formed by only two threads, and that each thread can use up to three general
purpose registers. For simplicity we consider that the registers are type agnostic and
might hold either integer or floating point values. Finally, we assume that the parameters



c m v

d
s

t0

N

i

t1

t2

t3

t4

: (0×Tid + c) : (c×Tid + ⊥) : (⊥×Tid + ⊥)

if i < N jp L12

d = 0

s = 0.0F

t0 = c * c

N = tid + t0

i = tid

t3 = s / d

t4 = tid*4

st.global t3 [v+t4]

L0

L1

L2

L3

L4

L5

L6 t1 = i * 4

ld.global [m+t1] t2

s = t2 + s

d = d + 1

i = i + c

jp L5

L7

L14

L13

L12

L8

L9

L10

L11

Fig. 2. An instance of the register allocation problem in graphics processing units.

of the kernel, variables c, m and v are already stored in the global memory. A quick
inspection of Figure 2 reveals that only three registers are not enough to provide fast
storage units to all the variables in this program. For instance, at label L8 we have
eight overlapping live ranges. Therefore, some variables must be mapped to memory,
in a process known as spilling. The variables that are assigned memory locations are
called spills. Minimizing the number of spilled values is a well-known NP-complete
problem [8, 22, 26]. Furthermore, minimizing the number of stores and loads in the
target program is also NP-complete [13]. Thus, we must use some heuristics to solve
register allocation.

There exist many algorithms to perform register allocation. In this paper we adopt
an approach called linear scan [23], which is used in many industrial strength com-
pilers. The linear scan algorithm sees register allocation as the problem of coloring an
interval graph, which has polynomial time solution [16]. However, this correspondence
is not perfect: live ranges might have holes, which the intervals in an interval graph
do not have. Thus, the linear scan algorithm provides an approximation of the optimal
solution to the register allocation problem. This algorithms starts by linearizing the con-
trol flow graph of the program, finding an arbitrary ordering of basic blocks, in such a
way that each live range is seen as an interval. The left side of Figure 2 shows a possi-
ble linearization of the program given in Figure 1(b). After linearizing the program, the
allocator scans the live ranges, from the beginning of the program towards the end, as-



Program

r0 r1 r2 r0 r1 r2 0 1 2 0 1 2 0 1 2

L0 d = 0 c m v

L1 st.local d [1] d d c m v

L2 s = 0.0F d d d d c m v

L3 st.local s [0] d s d s d d c m v

L4 ld.global [0] c d s d s s d s d c m v

L5 t0 = c * c d s c d s c s d s d c m v

L6 N = tid + t0 t0 s c t0 s c s d s d c m v

L7 st.local N [2] t0 s N t0 s N s d s d c m v

L8 i = tid t0 s N t0 s N s d N s d N c m v

L9 ld.local [2] N i s N i s N s d N s d N c m v

L10 if i < N jp L24 i s N i s N s d N s d N c m v

L11 t1 = i * 4 i s N i s N s d N s d N c m v

L12 ld.global [1] m i s t1 i s t1 s d N s d N c m v

L13 ld.global [m+t1] t2 i m t1 i m t1 s d N s d N c m v

L14 ld.local [0] s i m t2 i m t2 s d N s d N c m v

L15 s = t2 + s i s t2 i s t2 s d N s d N c m v

L16 st.local s [0] i s t2 i s t2 s d N s d N c m v

L17 ld.local [1] d i s t2 i s t2 s d N s d N c m v

L18 d = d + 1 i s d i s d s d N s d N c m v

L19 st.local d [1] i s d i s d s d N s d N c m v

L20 ld.global [0] c i s d i s d s d N s d N c m v

L21 i = i + c i s c i s c s d N s d N c m v

L22 jp L9 i s c i s c s d N s d N c m v

L23 ld.local [1] d i s c i s c s d N s d N c m v

L24 t3 = s / d i s d i s d s d N s d N c m v

L25 t4 = tid*4 t3 s d t3 s d s d N s d N c m v

L26 ld.global [2] v t3 t4 d t3 t4 d s d N s d N c m v
L27 st.global t3 [v+t4] t3 t4 v t3 t4 v s d N s d N c m v

globalregister file

PE0 PE1 PE0 PE1

local

Fig. 3. Traditional register allocation, with spilled values placed in local memory.

signing variables to registers in the process. If a spill must happen, then a conventional
approach is to send to memory the variable with the furthest use from the spilling point
onwards. This approach is known as Belady’s Heuristics, as it has been first described
by Belady in the context of virtual page management in operating systems [4].

Current register allocators for graphics processing units place spilled values in the
local memory. Figure 3 illustrates this approach. In this example, variables s, d and
N had to be spilled. Thus, each of these variables receive a slot in local memory. The
spilled data must be replicated once for each processing element, as each of them has a
private local memory area. Accessing data from the local memory is an expensive oper-
ation, because this region is off-chip. To mitigate this problem, modern GPUs provide a
cache to the local and to the global memories. However, because the number of threads
using the cache is large – in the order of thousands – and the cache itself is small, e.g.,
16KBs, cache misses are common. In the next section we show that it is possible to
improve this situation considerably, by taking the results of the divergence analysis into
consideration.



Program

PE0 PE1

r0 r1 r2 r0 r1 r2 0 0 0 1 0 1 2

L0 d = 0 c m v

L1 st.shared d [0] d d c m v

L2 s = 0.0F d d d c m v

L3 st.local s [0] d s d s d c m v

L4 ld.global [0] c d s d s s s d c m v

L5 t0 = c * c d s c d s c s s d c m v

L6 N = tid + t0 t0 s c t0 s c s s d c m v

L7 st.shared t0 [1] t0 s N t0 s N s s d c m v

L8 i = tid t0 s N t0 s N s s d t0 c m v

L9 ld.shared [1] t0 i s N i s N s s d t0 c m v

L10 N = tid + t0 i s t0 i s t0 s s d t0 c m v

L11 if i < N jp L24 i s N i s N s s d t0 c m v

L12 t1 = i * 4 i s N i s N s s d t0 c m v

L13 ld.global [1] m i s t1 i s t1 s s d t0 c m v

L14 ld.global [m+t1] t2 i m t1 i m t1 s s d t0 c m v

L15 ld.local [0] s i m t2 i m t2 s s d t0 c m v

L16 s = t2 + s i s t2 i s t2 s s d t0 c m v

L17 st.local s [0] i s t2 i s t2 s s d t0 c m v

L18 ld.shared [0] d i s t2 i s t2 s s d t0 c m v

L19 d = d + 1 i s d i s d s s d t0 c m v

L20 st.shared d [0] i s d i s d s s d t0 c m v

L21 ld.global [0] c i s d i s d s s d t0 c m v

L22 i = i + c i s c i s c s s d t0 c m v

L23 jp L9 i s c i s c s s d t0 c m v

L24 ld.shared [0] d i s c i s c s s d t0 c m v

L25 t3 = s / d i s d i s d s s d t0 c m v

L26 t4 = tid*4 t3 s d t3 s d s s d t0 c m v

L27 ld.global [2] v t3 t4 d t3 t4 d s s d t0 c m v
L28 st.global t3 [v+t4] t3 t4 v t3 t4 v s s d t0 c m v

global

PE0 PE1

register file local shared

Fig. 4. Register allocation with variable sharing.

3.3 Divergence Aware Spilling as a Set of Rewriting Rules

Figure 4 shows the code that we generate for the program in Figure 2. The most apparent
departure from the allocation given in Figure 3 is the fact that we have moved to shared
memory some information that was originally placed in local memory. Our divergence
aware register allocator is basically a system of rewriting rules built on top of a host
algorithm. We have identified four different ways to rewrite the code produced by the
traditional allocator, given the information made available by the divergence analysis.
These rules are described in Figure 5. In the rest of this section we will describe each
of these rules, and, in the process, explain how we arrived at the allocation given in
Figure 4.
Constant Propagation. The divergence analysis discussed in Section 2 marks, as a
byproduct, some variables as constants. Thus, it enables us to do constant propagation,
a well-known compiler optimization [28]. Indeed, as mentioned before, the lattice that
underlies this analysis is the same structure that grounds constant propagation. Variables



Original spill code:
st.local v [@]

ld.local [@] v

Constant Propagation:
{}

v = c

[v] = 0 × tid + c

Original spill code:
st.local v [@]

ld.local [@] v

Rematerialization:
{}

v = c × tid + c'

[v] = c × tid + c'

Original spill code:
st.local v [@]

Sharing:
t = v − c × tid

st.shared t [@']

ld.shared [@'] t
v = c × tid + t 

[v] = c × tid + ⊥

ld.local [@] v

Original spill code:
st.local v [@]

ld.local [@] v

Sharing:
st.shared v [@']

ld.shared [@'] v

[v] = 0 × tid + ⊥

(a) (b)

(c) (d)

Fig. 5. Rules that rewrite the code produced by a divergent aware register allocator in order to
take benefit from divergence information.

that are proved to be constant do not need to be mapped into memory. As we see in the
Figure 5(a), constant propagation can eliminate all the memory accesses related to the
spilled value, cutting the stores off, and replacing the loads by simple variable assign-
ments. In many cases it is possible to fold the constant value directly in the instruction
where that value is necessary; thus, even avoiding the copy that replaces loads. In our
experiments we did not find many opportunities to do constant propagation, simply be-
cause the code that we received from the NVIDIA compiler had already been optimized.
However, we found many situations that benefit from the next rewriting rules that we
describe.
Rematerialization. Variables that the divergence analysis identifies as affine constants
can be rematerialized. Rematerialization is a technique proposed by Briggs et al. [6]
to trade memory accesses by recomputation of values. If all the information neces-
sary to reconstruct a spilled value is available in registers at the point where that value
is needed, the register allocator can recompute this value, instead of bringing it back
from memory. Like constant propagation, rematerialization is an optimization that com-
pletely eliminates all the memory accesses related to the spilled value. Figure 5(b)
shows the rewriting rules that we use to rematerialize spilled values. Loads can be com-
pletely eliminated. Stores can be replaced by a recomputation of the spilled value, given
the thread identifier.
Sharing of uniform variables. Threads inside a warp can share uniform variables.
Figure 5(c) shows the rewriting rules that we use in this case. Accesses to the local
memory are replaced by analogous accesses to the shared memory. In Figure 4 variable



d has been shared in this way. Notice how the store in labels L1 and L19 in Figure 3
have been replaced by stores to shared memory in labels L1 and L20 of Figure 4. Similar
changes happened to the instructions that load d from local memory in Figure 3.
Sharing of affine variables. The last type of rewriting rule, describing the sharing of
affine variables, is shown in Figure 5(d). If the spilled variable v is an affine expression
of the thread identifier, then its abstract state is ~v� = cTid + t, where c is a constant
known statically, and t is a uniform value. In order to implement variable sharing in this
case, we must extract t, the unknown part of v, and store it in shared memory. Whenever
necessary to reload v, we must get back from shared memory its dynamic component t,
and then rebuild v’s value from the thread identifier and t. Notice that only one image
of the value t is stored for all the threads in the warp. Thus, the sharing of affine and
uniform variables produce the same number of accesses to the shared memory. The
difference is that a multiply-add operation is necessary to reconstruct the affine value.
Variable N has been spilled in this way in Figure 4. In line L7we have stored its dynamic
component. In lines L9 and L10 we rebuild the value of N, an action that replaces the
load from local memory seen at line L9 of Figure 3.

3.4 Implementation Details

Handling Multiple Warps: There is an important implementation detail that deserves
attention: a variable is uniform per warp; however, many warps integrate a GPU appli-
cation. In fact, modern GPUs are implemented as multiple SIMD units [15]. In order
to do variable sharing, we partition the shared memory among all the warps that might
run simultaneously. This partitioning avoids the need to synchronize accesses to the
shared memory between different warps. On the other hand, the register allocator re-
quires more space in the shared memory. That is, if the allocator finds out that a given
program demands N bytes to store uniform variables, and the target GPU runs up to M
warps simultaneously, then the divergent aware register allocator will need M×N bytes
in shared memory. We had to face an additional difficulty: we do not know, at com-
pilation time, how many warps will run simultaneously. To circumvent this obstacle,
our implementation assumes the existence of 32 warps in flight, the maximum number
that our hardware supports. If the shared memory does not provide enough space for
spilling, then our allocator falls back to the default execution mode, mapping spilled
variables to local memory. This kind of situation will happen if the original program is
already using too much of the shared memory space.
Spilling policy. A good spilling policy for a divergent aware register allocator must
consider the data type of the spilled variable and this variable’s access frequency. For
instance, the cost to rematerialize a variable depends on its size. Operations involving
64-bit integer values, on a NVIDIA’s Fermi GPU, can be as much as four times slower
than similar operations with 32-bits operands. Thus, the re-writing rule that replaces
loads in Figure 5(b) and (d) can cost up to eight times more when applied onto doubles.
In addition to the variable’s data time, its access frequency also plays an important
role in the overall cost of spilling it. The access frequency is more important when we
consider the spilling of affine variables, as described in Figure 5(d). Each load of an
affine variable has a fixed cost that includes reading the shared memory and performing
a multiply-add operation to reconstruct the spilled value. If the variable is kept in the



...
a0 = 1

...
a2 = tid

a1 = ϕ(a0, a2)
• = a1

[a0] = 0 × tid + 1
[a1] = 1 × tid + 0
[a2] = (0 ∧ 1) × tid + (0 ∧ 1)
        =  ⊥ × tid + ⊥

...
a = 1

...
a = tid

• = a
...

[a] = a0 ∧ a1 ∧ a2
      =  ⊥ × tid + ⊥

(a) (b) (c) (d)

Fig. 6. (a) Program before SSA elimination. (b) Divergent status of the variables before SSA
elimination. (c) Program after SSA elimination. (d) Divergent status after SSA elimination.

local memory, loading it might require an expensive trip to the off-chip memory space.
However, if the variable is frequently accessed, then it is likely to be kept in cache from
one load to the other. Thus, the cost of reading it from the local memory is amortized
over the many times the variable is read or updated. On the other hand, if it is stored
in the shared memory, not only the data access fee, but also the multiply-add cost must
still be paid whenever the variable is loaded or stored.
SSA Elimination. Many compilers use the Static Single Assignment (SSA) form [11]
as the default intermediate representation. Examples include gcc, LLVM, Jikes, and
Ocelot, our target compiler. Programs in this format provide the core property that any
variable has only one definition site. To ensure this property, the SSA format relies on a
notational abstraction called φ-function, which merges the live ranges of different defi-
nitions of the same variable, as we show in Figure 6(a). It is possible to perform register
allocation on SSA form programs [5]. However, it is more common to precede register
allocation with a step called SSA Elimination, which replace the φ-functions by instruc-
tions usually found in assembly languages. There are different ways to perform SSA
Elimination. A typical approach is to replace all the variables related by φ-functions by
the same name [27]. This is the solution that we outline in Figure 6(c). Independent on
the strategy used to eliminate φ-functions, the compiler must propagate the divergent
status of variables when merging variable names. This propagation follows the meet
operator that we defined for the lattice A in Equation 1. Continuing with our example,
Figure 6(b) shows the divergent status of the variables before SSA Elimination, and
Figure 6(d) shows it after. As the divergence analyses are done over SSA intermediate
representation no coallesced variable will finish with a undefined value.

4 Experiments

Compiler and Hardware: we have implemented our divergence analysis and diver-
gence aware register allocator in the Ocelot [12] open source compiler, SVN revision
1824 of April 2012. We have tested our implementation on an Intel Xeon X3440 with
8GB RAM equipped with a GPU Geforce GTX 470 with Nvidia’s Cuda toolkit 4.1 and
Device driver 295.41 (4.2).
Register allocators: we have implemented two divergence aware register allocators,
as re-writing rules on top of Ocelot’s original linear scan register allocator. Thus, in



this section we compare three different implementations. The first, which we use as a
baseline, is the linear scan implementation publicly available in Ocelot. The second,
which we call the divergent allocator uses Ocelot’s default divergence analysis [10].
This analysis only classifies variables as divergent or uniform; hence, it can only use
Rule (c) from Figure 5. The other divergence aware register allocator, which we call
affine, uses the divergence analysis with affine constraints that we describe in [25]. It
can use all the four rules in Figure 5. In our experiments we give each allocator only
eight registers. For the two divergent aware implementations, this number includes the
register necessary to hold the base of the spilling area in the shared memory.

Benchmarks: We have compiled 177 CUDA kernels from 46 applications taken from
the Rodinia [9] and the NVIDIA SDK benchmarks, which are publicly available. In
this paper we show results for the 23 applications that gave us more than one hun-
dred PTX instructions. We convert these applications from C for CUDA to PTX using
NVIDIA’s compiler, nvcc. We then use the Ocelot compiler to perform register allo-
cation on these PTX files, lowering the register pressure to eight registers. In order to
obtain runtime numbers, each tested application was executed 11 times in sequence.
For each application we discarded the results of the first, the fastest and the slowest
runs, and averaged the remaining eight results. The time is given in CPU ticks, and is
taken right before each kernel call and right after it exits and all threads are synchro-
nized. Some applications consists of many kernels, and some kernels are called more
than once per application. Thus, we present the sum of the times taken by each kernel
that constitutes an application. The total average numbers, like 21% of speedup, have
been obtained by averaging the sum of the total absolute numbers.

Runtime comparison: Figure 7 shows the speedup that the different divergence aware
register allocators provide over Ocelot’s original linear scan. Overall, the divergence
aware allocator with affine constraints speeds up the applications by 20.81%. The reg-
ister allocator that only classifies variables as uniform or divergent provides a speed
up of 6.21%. We cut the negative scale of the figure in −20%, but for two applications,
Rodinia’s nw and NVIDIA’s SobolQRNG the affine allocator provides substantial slow-
down: -380.55% and -146.55%. We believe that this slowdown is caused by the fact that
the affine allocator must reserve two registers to handle spills: one for rematerializing
values, and another for the base of the spill stack. The simple divergent aware alloca-
tor only spares one register for the spill stack, and Ocelot’s linear scan can use all the
eight registers. Hence, there are more spills in the affine allocator. Furthermore, these
applications deal with 64 bit values, and the cost of rematerializing them, as discussed
before, is substantially higher than if 32-bit values were used instead.

Static results. Figure 8 shows how often each re-writing rules of Figure 5 have been
used by the divergent aware register allocator with affine constraints. By analyzing Fig-
ure 8(a) we see that, on the average, 56% of the variables were classified as divergent.
28% of the variables were classified as uniform, and thus could be handle by the re-
writing rules in Figure 5(c). 9% of the variables were classified as affine, and could
be handled by Rule(d). 5% of the variables were shown to be constant affine; hence,
fit Rule(b) of Figure 5. Finally, 2% of the variables were constants, and could be han-
dled by Rule(a). The low number of constants is due to nvcc already optimizing the
programs that we give to Ocelot.
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Fig. 7. Runtime results. Each bar gives the percentage of gain of the new allocator over Ocelot’s
original linear scan. Dark bars: divergence aware allocation with affine constraints – all the four
rules in Figure 5. Light gray bars: allocation with simple divergence analysis – only Rule (c) of
Figure 5.

Comparing the charts in part (a) and (b) of Figure 8 we see that with eight registers,
about 13.89% of all the program variables had to be spilled, and thus mapped to mem-
ory. From Figure 8(b) we infer that most of the spill code, 47% uses the local memory,
reflecting the fact that the majority of the program variables are divergent. 37% of the
spilling code uses the shared memory according to Rule (c) from Figure 5. We could
replace less than one percent of the spill code by constants, what is due to the low con-
centration of constants in the code that we obtain from nvcc. The other rules, for affine
and constant affine variables account for 16% of the spill code. Figure 8(c) and (d) fur-
ther distriminate between rules used to re-write stores, and rules used to re-write loads.
Looking at these last two pies we observe a proportion of 1.69 uses of spilled variables
for each definition. Ocelot adopts a spill-everywhere approach to place loads. Accord-
ing to this policy, each use of a spilled variable is replaced by a load instruction. In the
case of divergence aware register allocation, some of these load and store instructions
are re-written by the rules in Figure 5.

5 Conclusion

This paper has described what we believe is the first register allocator specifically tai-
lored for the Single Instruction, Multiple Data execution model ever discussed in the
compiler related literature. We have implemented the proposed allocator as a set of re-
writing rules on top of the linear scan allocator used in an open source PTX compiler.
Our code is available for download at http://simdopt.wordpress.com. This web-
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page also contains raw data, like the absolute numbers that we have used to produce
the charts in Section 4. We have presented an extensive evaluation of the proposed al-
locator, but there are still work to be done in this area. In particular, we are interested
in trying different spill policies that take into consideration more information related to
the divergent state of program variables. We are also interested in identifying uniform
variables that do not need to be replicated among every warp in the target program.
Acknowledgement: This project was sponsored by FAPEMIG, grant 01/2010, CAPES
and CNPq.
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