The Language LinF for Fractal Specification

Fernando M. Q. Pereira Leonardo T. Rolla

Cristiano G. Rezende

Rodrigo L. Carceroni

Departamento de Ciéncia da Computagdo — Universidade Federal de Minas Gerais
Av. Antonio Carlos, 6627, Pampulha — Belo Horizonte, MG, CEP 31270-010, Brazil

{fernandm, leorolla, rezende, carceron}@dcc.ufimg.br

Abstract

This article presents the language LinF for L-System
specification. L-Systems are formal string rewriting systems
introduced in 1968 by the botanist Aristid Lindenmayer that
are used to model fractal images. LinF allows the definition
of three-dimensional fractals and stochastic fractals. To-
gether with the LinF definition this paper presents the im-
plementation of cFLC, an OpenGL-based system that gen-
erates fractal images from LinF specifications. Results ob-
tained through the LinF formalism show the ease of use and
generality of the developed tools with respect to the existing
literature.

1 Introduction

The Euclidean geometry, traditionally used to represent
smooth surfaces and regular shapes that can be described
with polynomial equations, fails to represent realistically
some forms like mountains and clouds because they have ir-
regular or fragmented features [10]. Natural objects can be
described more satisfactorily with fractal-geometry meth-
ods, where iteration of functions or feedback processing is
used to model shapes.

According to Benoit Mandelbrot [18], a fractal is by def-
inition a set for which the Hausdorff-Besicovitch dimension
exceeds the topological dimension. For a more detailed dis-
cussion about fractal dimension, see [7]. Fractal objects
have two basic characteristics: infinite detail at every point
and a certain self-similarity degree between the object parts
and its overall features.

A large class of fractal structures can be generated by a
formalism called L-System, which is based in string rewrit-
ing. This formalism, introduced by the biologist Aristid
Lindenmayer in 1968 [16], can be used to model not only
certain types of fractals but also an enormous variety of
evolving systems such as fungi colonies [34] and musical
compositions [30].

Although the basic ideas of rewriting systems date from
the beginning of the last century, they were not much used
until the 1950s, when Noam Chomsky [3] applied them to
describe the syntax of natural languages. A key difference
between Lindenmayer’s and Chomsky’s uses of rewriting
systems is the way in which the rules are applied. While in
Chomsky’s formalism the application is sequential, in Lin-
denmayer’s the rules are applied simultaneously.

This article presents a language suitable for L-System
specification called LinF (acronym for the Portuguese trans-
lation of Fractal Language). While LinF incorporates the
main characteristics of the notation first introduced by Lin-
denmayer, it has additional aspects that allow the definition
of stochastic fractals in a three-dimensional space. A graph-
ical system for displaying fractals defined by LinF has been
implemented and results obtained with it will be presented.

The major contribution of LinF relative to other fractal
specification languages found in the literature is that it bor-
rows concepts from the differential geometry of curves to
specify 3D rotations in an elegant and compact way, using
an intrinsic local coordinate system for each element of the
fractal, which makes the construction of self-similar 3D ob-
jects considerably more concise and intuitive than in exist-
ing tools. A secondary contribution of LinF, which can not
be regarded as a conceptual innovation as the one above —
but nonetheless makes the specification of complex fractal
scenes easier — is that it allows randomness to be added to
fractal objects in a way that is slightly more general than
those used in most existing tools. For a detailed discussion
on these contributions, we refer the reader to Section 5.

2 A short explanation about L-Systems

L-Systems have been used to describe a wide range of
growing systems such as plants [29, 17, 22] and other liv-
ing beings [12], human organs [13, 5], feathers [2], ter-
rain [20, 28, 22] and cities [23]. Graphical representa-
tions of L-Systems were first published in 1974 by Fri-
jters and Lindenmayer [8], and by Hogeweg and Hes-

per [11]. The potential of L-Systems for producing realistic
images of plants was demonstrated in 1978 by Smith [33].
In 1979 Szilard and Quinton [35] showed that L-Systems
can generate fractal curves. In 1983 Siromoney and Sub-
ramanian [32] used L-Systems to generate space-filling
curves. In 1982 Dekking [6] found the dimension of some
curves generated by L-Systems. In 1986 Prusinkiewicz [25]
produced more examples of fractals and plants using L-
Systems. Also, he obtained three-dimensional versions of
L-Systems.

A number of variations to L-Systems have been intro-
duced, including Stochastic L-Systems, where irregularity is
obtained by assigning probabilities to the production rules.
Another important improvement was the introduction of
Parametric L-Systems. In this case, any rule can be asso-
ciated with a small set of parameters that are used to change
the interpretation of the rule along successive iterations.

The basic idea is to represent fractal shapes as strings and
to define a set of rules that will determine how the strings
will evolve in order to generate more complex figures. Ev-
ery L-System contains two essential parts: an axiom and a
set of rules. The axiom is the initial string that defines a
valid fractal. Often the axiom is the smallest fractal string.
Each rule in the set of rules is defined by two strings known
as the left side and the right side. During an application of
the rules on the string description of the fractal, every left-
side symbol in the string is substituted by its corresponding
right counterpart in the rule. All rules are applied on the
string in parallel during an expansion iteration.

Every symbol in the string that describes a fractal has a
particular meaning. For instance, it can be defined that the
character £ will cause the drawing of a line along a speci-
fied direction, with pre-determined length and color. This
kind of string interpretation is called the turtle interpreta-
tion [1], after Szilard and Quinton. For instance, in Figure 1
a simple L-System is shown along with the sequence of pic-
tures it generates. In that L-System, the character f causes
the drawing of a line segment, and the characters ‘—’ and
‘4’ rotate drawing direction by 60 degrees clockwise and
counterclockwise, respectively.

3 The LinF specification

LinF is a simple language used to describe 3D L-Systems
to be interpreted according to the turtle method. In order to
model complex living bodies, LinF provides to the user a set
of primitives for defining stochastic L-Systems. A program
in LinF is formed by six blocks, none of which is manda-
tory. However, it is not possible to generate meaningful
fractals if some of them are missing. These six blocks are
called lines, blanks, angles, axiom, rules and colors. There
is no order in which the blocks should appear in a LinF pro-
gram. A short description of each block is given next:

axiom: f
rules: f = f+f--f+£f
f
f+f-—f+f

A5 U

FHf-—f+EHf+E——f4E-—fHE——f4E+E+E——F4E

Figure 1. A simple L-System and its three ini-
tial renderings.

lines Defines which symbols will represent lines in the pro-
duction rules. When evaluating the production rules,
the lines should be drawn.

blanks Defines which symbols will represent blanks or
transparent lines in the context of a particular LinF pro-
gram.

angles In this section we define the rotation angles that can
appear in the fractal description. A rotation angle is
constituted by two elements. The first component of
a rotation specifies the angle of torsion and the sec-
ond one specifies the curvature. The rotation scheme
is fully explained in Section 3.3.

axiom Defines the axiom of the L-System. An axiom is the
starting point from which the fractal will be generated.
In Figure 1 the string that represents the fractal, in its
most basic form, is given by the symbol £, which is
the L-System axiom.

rules This module of a LinF program describes every pro-
duction rule that forms the fractal. A production rule
is formed by two parts: the left side and the right side.
The left side is simply an identifier, while the right side
is an arbitrary sequence of expressions. As in Chom-
sky’s formalism, the grammar rules in LinF are con-
stituted by terminal and non-terminal symbols. Ev-
ery symbol that appears in the left side of a production
rule is considered a non-terminal symbol. Some of the
non-terminal symbols do not have any meaning for the
fractal representation and are used just to facilitate the
grammar specification.

colors In this section the fractal designer can specify a list
of colors that will be used to draw the fractal. The list
will be stored in order of specification within the LinF
file. The first lines of the fractal will have the first color
in the list. When the ‘{’ symbol is encountered in the
fractal string, the next color becomes the current one.
If the symbol ‘}’ is encountered, the previous color

becomes active again. If a number of ‘{’ exceeding
the number of colors stored in the color list is found,
then the last color recorded becomes the current color.

3.1 The LinF interpreter

Before understanding how fractals are represented with
the LinF formalism, it is worthwhile to comprehend the na-
ture of a basic LinF interpreter. The LinF interpreter is a
program that generates fractal figures based on the LinF
description of the fractal structure. In this section we will
describe the structure of cFLC (c-Based Fractal Language
Compiler), a simple LinF interpreter developed in C, whose
schematic view can be seem in Figure 2:

String
Evaluator

| - |Symbol v
Parser Table

LinF
Specification

Rendering _4

Machine

-
L

Figure 2. Schematic view of cFLC [24].

The LinF interpreter can be divided into three main con-
stituents: the parser, the evaluator and the rendering ma-
chine. The parser is responsible for recognizing the cor-
rectness of a LinF file and retrieving from it the meaning
of the user-defined symbols, for instance, the name of lines,
blanks and angles.

The next component of cFLC is the evaluator. This pro-
gram is responsible for applying the production rules over
the axiom of the fractal and then over the successive strings
obtained by the application of the rules. A production rule
is formed by two parts. The left-side symbol and the right-
side sequence of symbols. To apply a rule over a string
traditionally means to substitute every occurrence of its left
side that appears on the string for its right side.

In addition to the simple scheme for defining rules, LinF
permits the binding of some rules to a probabilistic chance
of occurrence. This means that during the string evaluation,
some symbols that match the left side of a production rule
may not be expanded. This pattern of evaluation allows the
creation of stochastic L-Systems that are useful to model
real entities such as rivers and plants.

The last constituent of cFLC is called the rendering ma-
chine. The rendering machine is responsible for displaying
the fractal that is represented by a string. In order to imple-
ment this part of cFLC, the OpenGL [21] library was used.
This machine has always a state that is represented by the
tuple (position, frame, length, color). During the rendering
process, the state is continuously being updated while the
segments that constitute the fractal are being drawn accord-
ing to the state elements. The meaning of each one of the

four state elements is described below:

position This element specifies a point in 3D space. The
next line to be drawn will be displayed as a segment
starting at this point.

frame This element is composed by a set of three orthonor-
mal vectors {¢,n,b}, whose meaning is explained in
Section 3.3. The next line to be drawn will be exhib-
ited in the direction of ¢.

length This element defines the length of the next segment
to be drawn.

color This element specifies the color of the next segment
to be drawn.

The LinF interpreter keeps processing the fractal string
in a circular fashion in which firstly the string is expanded
by the evaluator and then it is read by the rendering ma-
chine, which uses it to display a graphical representation of
the fractal in a window. The string that represents a fractal
contains symbols that force updates in the rendering ma-
chine state during the evaluation process. The semantics of
each such symbol is explained in the Section 3.2.

3.2 Representation of fractals in LinF

LinF, as an L-System-based formalism, allows fractals
to be described by strings that contain finite sequences of
symbols. These symbols can be terminals, nonterminals,
numbers and reserved words. LinF has nine reserved sym-
bols that are explained below:

[Saves the current machine state in a stack.

] Restores the machine state to the state stored in the top of
the stack and pops the stack.

@ Multiplies the current line length by the number pre-
viously seen. This symbol is always preceded by a
floating point number that specifies the amount used to
multiply the current length.

? This symbol does not have any utility during the drawing
process. It is useful only during the process of rule ap-
plication. It means that the next symbol has a chance of
not being expanded by the rule in which it appears on
the left side. It should always be preceded by a floating
point number in the interval (0, 1), which specifies the
probability of expansion.

+ Updates the state with a rotation given by an angle spec-
ified. This angle will be given by the identifier that
follows a sequence of + signs. Note that more than a
+ sign can be encountered together. It is possible to
declare a default rotation in the angle section. In this
case, if a sequence of + is not followed by any angle
identifier, the default rotation must be assumed.

— This symbol has the same meaning of +, except that it
causes a rotation by minus the specified angle.

{ This symbol forces a change in the color state. When a
‘{" is found, the current color is replaced by the next
color in the list of colors. If the current color is al-
ready the last element of the list, then no modification
is carried on.

} This symbol restores the color state to the previous color.

! This symbol causes an inversion in the interpretation of
the symbols 4+ and —.

3.3 Rotations in 3D

The concept of rotation for three-dimensional lines
is not trivial and devising a representation for it is not
straightforward. For instance, consider the quotient group
(R/(27), +), the set of angles with the sum operation. This
group is isomorphic to the group (Rot(R?), o), the set of
rotations in R? with the composition operation. In other
words, the set R mod 27 may be thought as equivalent to
the set of rotations in R?, and summing elements of the first
set is analogous to composing elements of the second. Thus,
in the two-dimensional case, we have one degree of free-
dom to specify any rotation and there is no need to specify
the “rotation direction”. All curves are assumed to rotate
around the z-axis.

In order to specify objects in three dimensions, however,
this “direction” is needed, and we want to specify transfor-
mations on it in a way that depends only on local properties
of the segment being drawn, never on the absolute refer-
ence frame. Thus we propose a scheme analog to the Frenet
formulas [36] from differential geometry, except that our
scheme is discrete.

A brief review of differential geometry follows. Given
a curve in R® we assign, for each point, a set of three or-
thogonal unit vectors. Any regular parametric curve can be
rewritten as a(s) : R — R3 such that |o@'(s)| = 1. Let
t(s) = a'(s), n(s) = o (s)/]a"(s)|, b(s) = t(s) x n(s).
The set {t,n, b} is the Frenet reference frame, and the vec-
tors are called the tangent, normal and binormal vectors,
respectively.

The rate of change of the frame can be expressed in terms
of the vectors themselves by the Frenet formulas:

t(s) =
n'(s) = —k(s)t(s) —7(s)b(s) (1
vs) = 7(s)n(s)

In the Equation (1), k(s) and 7(s) are, respectively, the
curve’s curvature and torsion. Vector ¢ points to the direc-
tion the curve is moving, n points to the direction the curve
is turning and b completes the orthonormal base with posi-
tive orientation.

The curvature k represents the rate at which the curve
is ‘turning’, and for a circle, k£ is equal to the reciprocal
of the radius. It makes the tangent vector turn towards the
normal vector, whereas the normal vector turns toward the
negative of the tangent vector. The torsion T represents the
rate of change of the curve’s “turning direction”, making
the binormal vector turn toward the normal vector, whereas
the normal vector turns towards the negative of the binormal
vector.

The great advantage of this approach is that the relation-
ship expressed in Equation (1) is completely independent
of the xyz reference frame, and there is no need to spec-
ify a “rotation direction” explicitly. This scheme motivates
the definition of rotations within LinF because it makes
it simple to specify recursive definitions of self-similar L-
Systems. In the LinF formalism, a rotation will be a pair of
numbers, which we can identify as torsion and curvature. A
‘torsion’ of § will cause

b7 | cost sinf b”)
nT —sinf cosé nT |-
Similarly, a ‘curvature’ of # will do the same with (¢,n)
instead of (b, n).

4 Using LinF to generate fractal images

The LinF language can be used to specify a great variety
of L-Systems, in two-dimensional and three-dimensional
spaces. As explained in Section 3, the L-Systems defined
with LinF can be deterministic or stochastic. In this section
some examples of images generated by cFLC — the LinF
interpreter — will be shown.

4.1 Classic fractals

Two-dimensional, completely deterministic L-Systems
are the most basic kind of grammar that can be specified
with LinF. In spite of being simple, this class of L-Systems
can be used to describe a wide variety of shapes such as
plants, tilings and space-filling curves. The classic fractals
known as Koch’s snowflake and Sierpinski’s carpet are dis-
played in Figures 3 and 4, along with their LinF grammars.

lines £
angles (0, pi/3)
axiom f++f++f

rules f = f-f++£f-f

Figure 3. Koch’s snowflake in LinF / cFLC.

lines £

blanks g

angles (0, pi/2)
axiom f

rules

f = f+f-f-f-g+f+i+E-£;
9=9499

Figure 4. Sierpinski’s carpet in LinF / cFLC.

In 1890 Peano defined a curve that is continuous and
goes through every point of a square (Figure 5). Peano’s
curve allows a point to be specified by a single number, its
distance from the end of the curve. The definition offrac-
tal dimension as the number of variables required to specify
a point became untenable. The crisis ended in 1922 when
Besicovitch gave the final form to what is now called the
Hausdorff-Besicovitch dimension [18].

lines f

angles (0, pi/2)

axiom e f

rules
f = f-f+f+f+f-f-f-£+£;
e = .333Q@ e

Figure 5. Peano’s space-filling curve in LinF
and four of its renderings in cFLC.

L-Systems were devised originally to represent the
growth of living beings such as plants and fungi
colonies [16]. Very accurate simulations using simple sets
of rules have been obtained since the presentation of the
formalism in 1968 [27, 31]. A short example of plant simu-
lation by means of L-System is given in Figure 6.

The brackets in the LinF specification are used in order to
create the branches in the plant. Ordinarily, branches tend to

lines f, g
angles (0, pi/25)
axiom f

rules

£ = g [+++++++++ .5Q@ f] -g [-——————- .4@ £] .e@ £

Figure 6. 2D plant simulation in LinF / cFLC.

be older near the base, that is, the extremities tend to have
smaller sizes than the parts of the plant close to its base.
This natural behavior was simulated using length reductors
while drawing the branches in Figure 6. As the string repre-
sentation of the fractal is expanded, more and more chains
of reductor factors are encountered, contributing to make a
very realistic organism.

4.2 Three-dimensional objects

In order to model even more realistic shapes LinF allows
the specification of three-dimensional figures. As explained
in Section 3, drawing in three-dimensional space can be
accomplished by defining rotations with non-zero torsion
components. In order to provide a better visualization of
the generated images, cFLC permits that any visualization
point be specified by the user while displaying the fractals.

In Figure 7 there are three different views of the same
rendered fractal. In each iteration of the string evaluator,
any stem of the plant evolves to a new branch containing
six secondary stems that arise from its main axis. In order
to generate non-collinear sequences of branches, the angles
t and ¢ are combined in a way that every new subdivision of
a stem is /3 radians distant from the nearest branches.

lines f, g

angles
a: (pi/3, 0)
b: (0, .3)

axiom
5@ £

rules

f = .5@ g h;

h = {i+a i+a i+a
i+a i+a i};

i = [+b f]

colors

0: (000,000,000) 1:
3: (120,120,120) 4:
6: (210,210,210) 7:

(040,040, 040) 2:
(160,160,160) 5:
(220,220,220) 8:

(080,080, 080)
(190,190,190)
(230,230,230)

Figure 7. Three views of a single rendering of
a LinF-specified 3D plant.

In the plant shown in Figure 8 there are ten main
branches. Six of them perform a 120-degree rotation rel-
ative to the trunk of the tree. The other four branches have
a more accentuated inclination in relation to the trunk: 135
degrees. Every branch in the tree, after the next iteration
of the string iterator, will evolve to a new smaller tree that
follows the same pattern described above. The color table is

omitted in this and in all the following figures due to space
restrictions.

lines f

angles

a: (pi/3, 0) b: (0, pi/3)
c: (pi/2, 0) d: (0, pi/4)

axiom 2@ f

rules

t=f[lggg9gggg] [hhhh]ij
= +a [{+b .5@ f}];

+c [{+d .5@ f}];

= [{.5Q@ £}]

D Q
Il

Figure 8. 3D fractal specification in LinF and
three renderings with cFLC.

4.3 Stochastic fractals

The L-Systems examined in Section 4.1 and Section 4.2
are formed by deterministic rules, hence the fractals gener-
ated by them will always have the same structure. However
that is not the best approach when modeling living bodies
such as plants or bacteria. Natural processes, in general, are
defined by very complex rules. Simulating this kind of pro-
cess by means of probabilities is, thus, essential for realism.

In order to achieve stochastic behavior in the fractal gen-
eration process, LinF permits the association of probabili-
ties with symbols. When a symbol that is the left-hand-side
of some rule is preceded by a sequence given by a num-
ber and the ? character, a probability of expansion equal
to this number is associated with that symbol. The specifi-
cation shown in Figure 9 is a simple example of stochastic
L-System. If that grammar is used to fill a virtual garden
with vegetables, all plants will have different appearances,
although they are defined in the same way. The different
instances of the images, in this example, are obtained by
varying the probability parameter associated with the pro-
ductionrule i = [.5? J].

In addition to associating probabilities with the applica-
tion of rules, LinF allows the definition of angles as inter-
vals, instead of fixed values. That is a powerful resource
for creating statistically self-similar fractals. This tech-
nique can be used for simulating the microscopic nature of
gases. Gas molecules in a container continually collide with

lines f, g
angles

a: (pi/3, 0)
b: (0, .3)

axiom 5@ f

rules

f = .5@ g h;

h = {i+a i+a i+a
i+a i+a i};

i=[.52 31;

j = +b £

Figure 9. Stochastic 3D plant simulation in
LinF. The different images are obtained by
varying the probability parameter associated
with the production rule i = [.5? j]

one another and the container’s walls, describing a pattern
known as Brownian motion. This motion pattern, for a sin-
gle molecule, can be simulated with the grammar shown in
Figure 10.

lines f
angles (0, [0 ..
axiom f

rules f = f+f

Figure 10. Brownian motion simulation.

It is possible to combine the stochastic tools provided
by LinF in order to describe a wide range of real entities.
In Figure 11 there is an example of modeling of feathers
with L-Systems. The probabilistic rule is used to vary the
size of the feather’s barbs and the definition of an angle as
an interval is used to model the imperfections in any of the
feather’s lateral “branches”.

Once models of fractal objects have been created, it is
possible to render a complete scene by placing several trans-
formed instances of these models together. Figure 12 illus-
trates two different instances of a simple fractal tree.

5 A comparison between LinF and other L-
System-based fractal generators

Since the publication of the Lindenmayer’s formal-
ism [16], several implementations of L-System interpreters
have been developed — for instance, CPFG [19], Fractint [9],
LParser [14] and Lin’s system [15]. The great majority
of those implementations — including all the systems listed
above — are based in the language for L-System specifica-
tion described by Prwsinkiewicz in his famous book “The

lines £, g

angles

a: (0, pi)

b: (0, pi/2)

c: (0, .003) =
(0, [0 .. .012]) ==

axiom f

rules

f = [.5@ h] +a [i];

h = +g+gtgtgtg+tg+g+g+g
+g+tgtg+gtgtgtg+g;

i =i-c [+b 1.3@ 7J]
[-b 1.3@ 3J1 g;

j = -k-g {-g {1}};
k = -k;

1 = -g {-g {m}};
m = -g {-g {n}};
n = -9 {-g {o}};
o= -9 {-g {p}};

p =-9 {-g .5? g};
qa=-q

Figure 11. Two realizations of a stochastic L-
System for modeling feathers.

lines f

angles

a: ([.9 .. 1.11, 0)

b: (0, [.75 .. 1.15])

c: ([1.5 .. 1.65], 0)

d: (0, [.65 .. .95])

axiom 2@ f

rules

f=flgg99ggdg]
[h h h h] i;

g = +a [{+b .5@ f}];

h = +c [{+d .5Q@ f}];

i [{.5@ f}]
Figure 12. Two realizations of stochastic L-
System for modeling trees.

Algorithmic Beauty of Plants” [26]. Although LinF is also
based on the notation set up by Prusinkiewicz, it departs
from the other systems in two fundamental aspects. Firstly,
in the way that three-dimensional rotations are specified.
Secondly, in the way in which randomness is added to gram-
mar rules. In addition to this, LinF allows the user to define
several symbols representing lines, blank spaces and angles,
a facility that to the best of our knowledge has not been in-
corporated in existing systems.

An orientation in the 3D space can be represented by
three vectors: h, [and u. These vectors have unit length,
are perpendicular to each other and thus satisfy the equa-
tion h X | = w. In the interpretation originally devised by

Przemyslaw Prusinkiewicz [27] rotations were expressed by
the equation [h',l’,u'] = [h,l,u] R, where R is a 3 x 3
rotation matrix [10]. Because there are three possible dif-
ferent references for rotations, the matrix R can have three
different forms, depending on the rotation direction. The
consequence of this approach is the use of at least six sym-
bols to define rotations, two of them for each possible di-
rection, meaning the positive and negative orientation. On
the other hand, the approach adopted in LinF to represent
changes in the drawing direction has been borrowed from
differential geometry and is more concise. Such system,
which has been described in Section 3.3, allows the defi-
nition of several distinct rotation angles and demands just
two predefined symbols (+ and —) in the specification of
rotations.

Another difference between LinF and those other imple-
mentations is the approach used to describe stochastic L-
Systems is that LinF permits the user to define angles as
intervals of probable values. Among the programs cited in
this section, just LParser [14] allows a similar technique al-
though its approach is not so general.

There are some examples of L-System interpreters that
are general enough to simulate the LinF’s semantics re-
garding symbol definitions, three-dimensional rotations and
stochastic approach; however, such systems yield really
complex definitions, if compared with LinF. For instance,
RTEvol [4], a system that allows L-System evaluation, per-
mits that C like functions defined by the user be used to
modify the way in which the grammar symbols are inter-
preted, but these specifications demands some knowledge
about the C programming language.

6 Final considerations

This paper presented LinF, a programming language
that can be used in order to define L-Systems. LinF al-
lows the specification of self-similar fractals and statis-
tically self-similar fractals in two-dimensional and three-
dimensional spaces. The paper also introduced cFLC, an
interpreter of LinF written in C, which uses OpenGL to
perform image generation. This tool can be downloaded
athttp://www.dcc.ufmg.br/~carceron/linf.

Although the L-System formalism has been deeply an-
alyzed in previous works and is already a consolidated
area in mathematics and computer science, there is not
a universally-accepted standard for three-dimensional L-
System specification. Because LinF utilizes concepts of dif-
ferential geometry for rotation specification it is a suitable
alternative for constructing tools that aim at simplifying the
process of the fractal specification, generation and visual-
ization in the three-dimensional space.

In addition, LinF gives its user great flexibility in the use
of probabilities for fractal generation. Angles can be de-

fined as intervals of admissible values and the expansion of
some symbols during the evolution of the string that repre-
sents a fractal can be conditioned to a pre-defined probabil-
ity. Taken together, these features allow the specification of
a wide range of realistic fractals more easily and efficiently
than in existing systems, as evidenced by the various exam-
ples displayed throughout this paper.

Acknowledgements

This research has been supported by CNPq, by
Fapemig and by PRPq-UFMG (Fundo Fundep RD).

References

[1] H. Abelson and A. A. Siessa. Turtle Geometry. MIT Press,
1981.

[2] Y. Chen, Y. Xu, B. Guo, and H.-Y. Shum. Modeling and

rendering of realistic feathers. In Proc. SSIGGRAPH, pages

630-636, 2002.

N. Chomsky. The logical structure of linguistic theory. In-

diana University Linguistics Club, 1955.

[4] N. D. Cuong. Ray traced evolution - user’s manual,
1997. http://www.stud.tu-ilmenau.de/~juhu/GX/RTEvol/ —

accessed July 2003.

[5] S. Czanner, R. Durikovic, and H. Inoue. Growth simula-
tion of human embryo brain. In Proc. Spring Conference on
Computer Graphics, 2001.

[6] F. M. Dekking. Recurrent sets: a fractal formalism. Tech-
nical Report 82-32, Technische Hogeschool, Delft, The
Netherlands, 1982.

[71 G. A. Edgar. Measure, Topology, and Fractal Geometry.

Springer-Verlag, 1990.

Frijters and Lindenmayer. A model for the growth and flow-

ering of Aster novaeangliae on the basis of table (1,0)L-

systems. L Systems, 15:24-52, 1974.

[9] N. Giffin. Fractint. http://spanky.triumf.ca/www/fractint/
fractint.html — accessed July 2003.

[10] J. Hearn and M. Baker. Computer Graphics: C Version.
Prentice Hall, second edition, 1997.

[11] Hogeweg and Hesper. A model study on biomorphological
description. Pattern Recognition, 6:165-179, 1974.

[12] G. S. Hornby and J. B. Pollack. Evolving L-systems
to generate virtual creatures. Computers and Graphics,
25(6):1041-1048, 2001.

[13] G. Ko6kai, Z. Téth, and R. Vanyi. Modelling blood vessels
of the eye with parametric L-systems using evolutionary al-
gorithms. In Proc. Joint European Conf. on Artificial In-
telligence in Medicine and Medical Decision Making, pages
433-443, 1999.

[14] L. Lapré. Lsystems and Lparser. http://home.wanadoo.nl/
laurens.lapre/ — accessed July 2003.

[15] T. Lin. Animation of l-system based 3-D plant growing in
java. http://www.cs.umbc.edu/~ebert/693/TLin/ — accessed
July 2003.

3

—

(8

—

[16]

(17]

(18]

[19]

[20]

[21]

[22]
(23]
[24]
[25]
[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

A. Lindenmayer. Mathematical models for cellular interac-
tions in development, I and II. Journal of Theoretical Biol-
ogy, 18:280-315, 1968.

B. Lintermann and O. Deussen. Interactive modelling of
plants. [EEE Computer Graphics and Applications, 19(1),
1999.

B. Mandelbrot. The Fractal Geometry of Nature. Freeman,
1977.

R. Mech. CPFG Version 3.4 User’s Manual. http://www.
cpsc.ucalgary.ca/Research/bmv/Istudio/ — accessed July
2003.

F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis
and rendering of eroded fractal terrains. Computer Graph-
ics, 23(3):41-50, 1989.

J. Neider, T. Davis, and M. Woo. OpenGL Programming
Guide: the official guide to learning OpenGL version 1.1.
Addison-Wesley, second edition, 1996.

H. Noser, S. Rudolph, and P. Stucki. Physics-enhanced L-
systems. In WSCG 2001 Conference Proceedings, 2001.

Y. L. H. Parish and P. Miiller. Procedural modeling of cities.
In Proc. SIGGRAPH, pages 301-308, 2001.

F. M. Q. Pereira. The LinF home page. http://www.dcc.
ufmg.br/~carceron/linf/ — accessed July 2003.

P. Prusinkiewicz. Graphical applications of L-Systems. In
Proc. Graphics Interface, pages 247-253, 1986.

P. Prusinkiewicz. The Algorithmic Beauty Of Plants.
Springer-Verlag, 1991.

P. Prusinkiewicz, M. Hammal, R. Mech, and J. Hanan. The
artificial life of plants. In SIGGRAPH, volume 1, pages 1—
38, 1995.

P. Prusinkiewicz and M. Hammel. A fractal model of moun-
tains with rivers. In Proc. Graphics Interface, pages 174—
180, 1993.

P. Prusinkiewicz, M. S. Hammel, and E. Mjolsness. Ani-
mation of plant development. Computer Graphics, 27:351—
360, 1993.

P. Prusinkiewicz and J. Hanan. Lindemayer systems, frac-
tals, and plants. Lecture Notes in Biomathematics, 1980.

P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Devel-
opment models of herbaceous plants for computer imagery
purposes. In SIGGRAPH, volume 22, pages 141-150, 1988.
R. Siromoney and K. Subramanian. Space-filling curves
and infinite graphs. In Proc. 2nd. Int. W. Graph Grammars
and their Application to Computer Science, pages 380-391.
Springer-Verlag, 1983.

A. R. Smith. Plants, fractals, and formal languages. Com-
puter Graphics, 18(3):1-10, 1984.

F. Soddel. Using Lindenmayer Systems to Model the Growth
of Filamentouw Micoorganisms. PhD thesis, La Trobe Uni-
versity, Bendigo, 1994.

A. L. Szilard and R. E. Quinton. An interpretation for DOL
systems by computer graphics. The Science Terrapin, 4:8—
13, 1979.

K. Teneblat. Introdugcdo a Geometria Diferencial. Editora
UnB, 1988.

