
Qualidade de Software

DCC / ICEx / UFMG

Eduardo Figueiredo

http://www.dcc.ufmg.br/~figueiredo

http://www.dcc.ufmg.br/~figueiredo

Qualidade de Software

◼ A qualidade de software tem se

aprimorado nos últimos 15 anos

 Empresas têm adotado novas técnicas

 Orientação a objetos se difundiu

 Ferramentas CASE têm sido usadas

◼ Na manufatura, qualidade significa

atender às especificações

 Em software, a definição

não é tão simples

Adequado à Especificação

◼ Não é fácil definir qualidade de

software como adequado à

especificação

◼ A especificação pode estar ambígua,

incompleta ou inconsistente

 Alguns requisitos podem não

aparecer na especificação

 Integração de requisitos de diversos

stakeholders

Atributos Implícitos de Qualidade

◼ Alguns atributos são difíceis

de serem especificados

 Mas tem grande efeito na

qualidade do sistema

◼ Exemplos

 Como garantir segurança dos dados?

 Como documentar sobre eficiência?

 Como especificar a facilidade de

manutenção?

Adequando à Especificação

◼ Qualidade do software não implica

somente se as funcionalidades foram

corretamente implementadas, mas

também, dependem de requisitos não

funcionais

Alguns Atributos de Qualidade

Segurança Complexidade Modularidade

Proteção Robustez Eficiência

Confiabilidade Adaptabilidade Portabilidade

Facilidade de

recuperação

Facilidade de

uso

Facilidade de

reuso

Facilidade de

compreensão

Facilidade de

testes

Facilidade de

aprendizado

Equipe de Qualidade

◼ Idealmente, a equipe de garantia da

qualidade deve ser diferente da

equipe de desenvolvimento

◼ O processo de qualidade envolve

 Definir padrões de processo

 Monitorar o processo para verificar

o uso adequado dos padrões

 Emitir relatórios para a gerência de

projeto e da organização

Gerência da Qualidade

Gerenciamento de Qualidade

◼ Garantir com que o nível de qualidade

desejado seja alcançado, se

preocupando nos diferentes níveis:

 Organizacional: com a definição de

framework de processos e padrões que

deverão ser adotados

 Projeto: aplicação dos processos e

definição do plano de qualidade

O Tamanho do Projeto

◼ Mesmo em projetos pequenos, o

gerenciamento da qualidade é importante

 Entretanto, ele pode seguir uma

abordagem mais informal

◼ Em sistemas grandes, a gerência da

qualidade requer três atividades

 Garantia de Qualidade

 Planejamento de Qualidade

 Controle de Qualidade

Atividades de Gerenciamento

◼ Garantia de Qualidade

 Estabelece um framework com

os processos e padrões

◼ Planejamento de Qualidade

 Seleção dos procedimentos e

padrões apropriados ao projeto

◼ Controle de Qualidade

 Verifica se os procedimentos e

padrões estão sendo seguidos

Garantia da Qualidade (QA)

◼ A garantia da qualidade

de software busca saber

 Como a qualidade pode ser atingida

 Se a qualidade foi atingida

◼ Estabelece os procedimentos

e padrões da organização

Planejamento da Qualidade

◼ É o processo de desenvolvimento de

um plano de qualidade para um projeto

◼ Estabelece os padrões

apropriados para um

produto e processo

◼ Documento não deve ser muito longo

Estrutura de Planejamento

1. Descrição do produto, mercado e das

expectativas de qualidade

2. Plano com as datas críticas e

responsabilidades

3. Descrição dos métodos e serviços usados no

desenvolvimento e gerenciamento do produto

4. Definição das metas de qualidade e

respectivas justificativas

5. Descrição dos riscos e ações para

minimizá-los

Controle de Qualidade

◼ Envolve o monitoramento do

processo de desenvolvimento

◼ Busca assegurar que os

procedimentos e padrões

estão sendo de fato

aplicados no projeto

Abordagens de Controle

◼ Avaliação automatizada

 O produto (ou documentação) é

processado automaticamente

 Métricas são usadas para verificar

a qualidade

◼ Revisão

◼ Inspeção

Revisão

◼ Grupo de pessoas examinam o

entregáveis a procura de problemas,

não conformidades com os padrões e

omissões

 Ex.: código fonte, plano de testes

◼ Processo público de detecção de

erros, sendo necessário criar uma

cultura de trabalho que não culpe os

indivíduos.

Inspeção

◼ Atividade de revisar o código fonte a

procura de defeitos e bugs

◼ Frequentemente se usam checklists

de erros comuns de programação, em

que cada checklist é baseado na

linguagem de programação utilizada

◼ Exemplos: inicialização de variáveis,

terminação de loops

Qualidade do Processo

Qualidade de Software

Qualidade de Software

◼ Na manufatura, o processo é

altamente automatizado

 Erros de calibração de máquinas

causam produtos defeituosos que

são facilmente verificados

◼ Em software, o processo tem grande

ingrediente intelectual

 Erros não são facilmente verificados

 Qualidade das pessoas é importante

Qualidade de Processo

◼ Acredita-se que a qualidade do

processo afeta diretamente a

qualidade do produto

◼ Esta crença veio da

indústria de manufatura

 Em software, a relação entre

qualidade de processo e qualidade

de produto é complexa

 Estudos mostram que a relação existe

Qualidade Baseada no Processo

Grandes e Pequenos Projetos

◼ Em grandes projetos de software

 A equipe de desenvolvimento é volátil

 A qualidade do processo é fator

predominante

◼ Em projetos de pequeno porte

 Quantidade pequena de

pessoas envolvidas

 A qualidade da equipe é mais importante

que a qualidade do processo

Qualidade de Software

Foco dos

métodos

ágeis

Foco dos

métodos

rigorosos

Padrões de Software

Padrões de Software

◼ Padrões de produto

 Aplicam-se ao produto de software

que está sendo desenvolvido

 Padrões de documentação,

padrões de codificação, etc.

◼ Padrões de processo

 Definem as atividades do processo

e os seus resultados

 Processos de validação, ferramentas, etc.

Exemplos: Padrões de Produto

◼ Formulário de revisão do projeto

◼ Estrutura do documento de requisitos

◼ Formato da assinatura de métodos

◼ Estilo de programação Java

◼ Formato do plano de projeto

◼ Formato do formulário de

solicitação de mudanças

Exemplos: Padrões de Processo

◼ Conduta de revisão de projeto

◼ Envio de documentos para gerência

◼ Processo de liberação de versões

◼ Processo de aprovação

do plano de projeto

◼ Processo de controle de mudanças

◼ Processo de registro de testes

Importância de Padrões

◼ Documentam o conhecimento

das melhores práticas

◼ Indicam o caminho para

se obter qualidade

 Principalmente aos menos experientes

◼ Facilitam a comunicação entre

os membros da equipe

Uso de Fato de Padrões

◼ Alguns cuidados para que os padrões

sejam de fato implementados

 Envolver a equipe de desenvolvimento

na escolha dos padrões

 Revisar os padrões regularmente para

refletir mudanças de tecnologia

 Não incluir apenas o que seguir, mas

também o porque de seguir um padrão

 Prover ferramentas para apoiar

a adoção dos padrões

Medição de Software

DCC / ICEx / UFMG

Métricas de Software

◼ Medições se dedicam a obter um

ou mais valores numéricos para

um atributo de qualidade

 Ao comparar os números, é possível tirar

conclusões sobre a qualidade do produto

◼ Uma métrica de software é qualquer

medição que se refere ao sistema

 Medições de tamanho (exemplo, LOC)

 Número de defeitos relatados, etc.

Tipos de Métricas

◼ Elas podem ser:

 Controle: suporta o processo de

gerenciamento (exemplo: tempo

necessário para reparar os defeitos

encontrados)

 Previsão: ajuda a prever características

do software (exemplo: número de

operações associadas a um objeto)

Por que medir?

◼ Revisão para avaliação da qualidade

é uma atividade demorada

 Geralmente causa atraso

na conclusão do projeto

 Ferramentas devem ser empregadas

para acelerar o processo de revisão.

◼ Métricas podem ser usadas para

apoiar a tomada de decisões

Uso de Medições

◼ Medições de software podem ser

usadas de duas maneiras

 Avaliar a qualidade do sistema e

fazer previsões gerais sobre ele

(exemplo, número de defeitos)

 Para identificar partes (ou módulos)

problemáticas(os)

Adoção pela Indústria

◼ Muitas empresas ainda não

usam medições sistemáticas

para avaliar a qualidade

◼ Algumas razões

 Os processos das empresas

não são maduros o suficiente

 A ausência de métricas padronizadas

 Limitado apoio de ferramentas de

medição

Problemas com Medições

◼ Geralmente é impossível medir um

atributo de qualidade diretamente

 Atributos de qualidade são fatores

externos ao software

 Métricas medem fatores internos

◼ Exemplos de atributos de qualidade

 Facilidade de manutenção

 Facilidade de uso

 Confiabilidade

Modelos de Qualidade

Modelos de Qualidade

◼ Relacionam atributos internos

com atributos de qualidade

 Atributos internos são mais

facilmente quantificáveis

◼ Deveria haver um relacionamento claro

e válido entre atributos de qualidade e

atributos internos (ideal)

Um Modelo de Qualidade

Validade dos Modelos

◼ Três condições devem ser verificadas

em modelos de qualidade

 O atributo interno deve

ser precisamente medido

 Deve haver relacionamentos entre o que

podemos medir e o que queremos saber

 Os relacionamentos são

compreendidos e válidos

Processo de Medição

O Processo de Medição

◼ O processo de medição deve fazer parte
do processo de controle da qualidade

 Utilizam dados históricos de
projetos anteriores

◼ As atividades do processo

 Escolher medições a serem realizadas

 Selecionar componentes a serem avaliados

 Medir características dos componentes

 Identificar medições anômalas

 Analisar componentes anômalos

Modelo do Processo

Escolher Medições

◼ Uma abordagem para escolher as

medições é o GQM

 Goal-Question-Metric

◼ As questões são formuladas para

atender um objetivo

◼ As métricas são escolhidas para

responderem as questões

O Modelo de Medição GQM

◼ Meta (G)

 Definem o que a organização quer melhorar

(exemplo: produtividade)

◼ Questões (Q)

 Refinamento dos objetivos em áreas de

incertezas (exemplo: linhas de código

produzidas podem ser aumentadas?)

◼ Métricas (M)

 Medições necessárias para responder as

questões (exemplo: LOC por desenvolvedor)

Selecionar Componentes

◼ Pode não ser necessário (ou

desejável) medir todo o sistema

◼ Estratégias de escolha

 Escolher um subconjunto representativo

de todos os componentes

 Escolher os componentes

particularmente críticos no sistema

Medir os Atributos de Qualidade

◼ Os componentes selecionados

são medidos

◼ As medidas são associadas aos

atributos de qualidade

 Geralmente envolve uma representação

dos componentes

◼ Ferramentas de medição podem estar

incorporadas a outras ferramentas (ou

ambientes) de desenvolvimento

Analisar Medições

◼ Uma vez feita as medições, é preciso

compará-las a medições anteriores

 Dados históricos são utilizados

◼ A análise deve procurar valores

incomuns

 Ou seja, valores muito altos ou muito

baixos para cada métrica

Analisar Componentes

◼ Se um componente tem valores

anômalos, este deve ser examinado

 A inspeção é responsável por decidir se

existe (ou não) problema no componente

◼ Um valor incomum para um componente

não necessariamente significa que o

componente tenha baixa qualidade

Análise de Medições

◼ Nem sempre é óbvio o que os dados

significam

 Entender uma grande quantidade de

números é muito difícil

◼ Estatísticos devem ser consultados,

se estiverem disponíveis

◼ A análise de dados deve levar em

conta as circunstâncias locais

Métricas de Produto

DCC / ICEx / UFMG

Métricas de Produto

◼ Quantificam atributos internos do

software

◼ Exemplos de atributos

 Tamanho

 Acoplamento entre componentes

 Coesão de um componente, etc.

Tipos de Métricas

◼ Métricas Dinâmicas

 São coletadas por medições realizadas

durante a execução do programa

(exemplo: tempo de execução)

◼ Métricas Estáticas

 São coletadas por medições realizadas

na documentação de projeto ou código

fonte do programa (exemplo: linhas de

código)

Dinâmicas x Estática

◼ Métricas dinâmicas ajudam a avaliar

atributos de qualidade como eficiência

e confiabilidade

 São medidas após o sistema ter sido

implementado

◼ Métricas estáticas ajudam a avaliar

atributos como complexidade e

facilidade de manutenção

 Podem ser medidas na fase de projeto

Métricas Estáticas

Tradicionais

Algumas Métricas Estáticas

◼ Fan-in / Fan-out

◼ Tamanho do código

◼ Complexidade Ciclomática

◼ Tamanho do Vocabulário

◼ Profundidade de Aninhamento

Fan-in e Fan-out

◼ Fan-in

 Conta o número de funções que chamam
uma determinada função

 Valor alto significa grande impacto em
mudanças (propagação)

◼ Fan-out

 Conta o número de funções chamadas
pela função

 Valor alto significa grande complexidade
da função

Tamanho e Complexidade

◼ Tamanho

 Tamanho tem se mostrado como as
métricas mais confiáveis e úteis

 Em geral, quanto maior o componente,
mais complexo e propenso a erros ele será

◼ Complexidade Ciclomática

 Mede a complexidade de controle do
programa (if, while, for, etc.)

 Está relacionada a facilidade de
compreensão

Vocabulário e Aninhamento

◼ Tamanho do Vocabulário

 Conta a quantidade de identificadores
(exemplo, nome de classes) do programa

 Mais identificadores podem significar que
eles são mais significativos

◼ Profundidade de Aninhamento

 Conta estruturas internas como if e while
aninhados

 Estruturas aninhadas são mais difíceis de
se compreender

Métricas para Programas

Orientados a Objetos

DCC / ICEx / UFMG

Métricas de Programas OO

◼ Métricas de Chidamber-Kemerer (CK)

 Métodos Ponderados por Classes (WMC)

 Profundidade da Herança (DIT)

 Número de Filhos (NOC)

 Acoplamento entre Objetos (CBO)

 Falta de Coesão em Métodos (LCOM)

◼ Número de Operações Sobreescritas

Profundidade de Herança (DIT)

◼ Representam o número de

níveis que uma classe herda

métodos e atributos

◼ Quanto maior a profundidade

 Mais complexo o projeto

 Mais difícil de se entender um

módulo

DIT = 0

DIT = 1

DIT = 2

Classe

Object

Número de Filhos (NOC)

◼ Conta o número de

subclasses diretas

 Mede a largura da

hierarquia de uma

classe

◼ Valor alto, pode

indicar maior reuso

NOC = 2

NOC = 1NOC = 0

NOC = 0

Acoplamento entre Objetos (CBO)

◼ Semelhante a Fan-out

 Conta classes chamadas

por uma classe

◼ Quanto mais acoplado

uma classe

 Mais difícil de entender e

de manter

CBO = 0CBO = 1

CBO = 2

Falta de Coesão (LCOM)

◼ Mede o quanto os métodos de uma

classe acessam atributos em comum

 Mais atributos em comum, maior coesão,

menor perda de coesão (LCOM)

◼ Diferença entre número de pares de

métodos sem atributos compartilhados

e número de pares de métodos com

atributos compartilhados

Falta de Coesão (LCOM)

Atributos: A e B

Pares de métodos = {(1,2), (1,3), (2,3)}

Métricas para Métodos

◼ Métodos Ponderados por Classes (WMC)

 Atribui pesos aos métodos de uma classe

 Uma forma é “pesar” por linhas de código

 Valores altos indicam complexidade

◼ Número de Operações Sobrescritas

 Conta as operações de uma classe que são

sobrescritas por subclasses

 Valores altos indicam problema na hierarquia

de herança

Bibliografia da Aula

◼ Ian Sommerville. Engenharia de

Software, 9ª Edição. Pearson

Education, 2011.

 Cap. 24 Gerenciamento de Qualidade

