Analysis and Interpretation: Descriptive Statistics

Eduardo Figueiredo

http://www.dcc.ufmg.br/~figueiredo
After collecting data in the operation phase, we want to draw conclusions.

- The analysis and operation phase aims to interpret the collected experimental data.

This phase has three main steps:

- **Descriptive statistics**
- Data set reduction
- Hypothesis testing
Analysis and Operation Overview

Experiment data

Analysis and Interpretation

Descriptive statistics → Data set reduction → Hypothesis testing

Conclusions
Descriptive statistics are used to describe and graphically present interesting aspects of the data set. They allow identifying abnormal or false data points (called outliers).

The scale of measurements restricts the type of statistics.
Statistics for each Scale

<table>
<thead>
<tr>
<th>Scale</th>
<th>Central Tendency</th>
<th>Dispersion</th>
<th>Dependency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>Mode</td>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Ordinal</td>
<td>Median, Percentile</td>
<td>Interval of Variation</td>
<td>Spearman, Kendall</td>
</tr>
<tr>
<td>Interval</td>
<td>Mean, Variance, Range</td>
<td>Standard Deviation</td>
<td>Pearson</td>
</tr>
<tr>
<td>Ratio</td>
<td>Geometric mean</td>
<td>Coefficient of variation</td>
<td></td>
</tr>
</tbody>
</table>
Measures of Central Tendency

- These measures indicate the “middle” of the data set

- Common measures
 - Mean
 - Median
 - Percentile
 - Mode
Mean and Median

Mean (\bar{x})
- It is meaningful for interval and ratio scales
- $\text{Mean}(1, 1, 2, 4) = 2.0$

Median (\tilde{x})
- The same number of samples are higher and lower than the median (middle value)
- Well defined when n is odd (ordinal scale)
- $\text{Median}(1, 1, 2, 4) = 1.5$ valid only for interval and ratio scales
Percentile and Mode

- **Percentile**
 - Median is a special case of percentile (50%)
 - Other common percentiles: 25% and 75%

- **Mode**
 - It represents the most common value
 - Valid for all scale types
 - Mode(1, 1, 2, 4) = 1
Measures of Dispersion

- They measure the variation from the central tendency

- Common measures
 - Variance
 - Standard Deviation
 - Range
Variance and Standard Deviation

- **Variance** (s^2)
 - It is the mean of the square distance from the sample mean
 - \[
 \text{Variance} = \frac{1}{n-1} \sum (X_i - \bar{X})^2
 \]

- **Standard Deviation** (s)
 - It is the square root of the variance
 - It has the same unit of the sample data
 - \[
 \text{Standard deviation} = \sqrt{\frac{1}{n-1} \sum (X_i - \bar{X})^2}
 \]
Range

- It is the distance between the maximum and minimum data values
- Meaningful for interval and ratio scales

\[\text{range} = x_{\text{max}} - x_{\text{min}} \]

- Range(1, 1, 2, 4) = 4 - 1 = 3
Measures of Dependency

- When the data set consists of related samples in pairs \((x_i, y_i)\), it is often interesting to analyze the dependency.

- Common measures
 - Linear regression
 - Covariance
 - Correlation (Pearson, Spearman, Kendall)
Graphical Visualization
Graphical visualization is useful to analyze measures of central tendency, dispersion, and dependency.

- **Common charts**
 - Scatter plot
 - Box plot
 - Histogram
 - Pie chart
Scatter plot is useful for assessing dependencies between two variables. It also shows how spread or concentrated.
Box plot is good for visualizing dispersion of sample data.

- Max
- Whisker
- (75%) Q3
- (50%) Median
- Mean
- (25%) Q1
- Min
- Box

Good Solutions by Work Experience

Experience (a) Experience (b) Experience (c) Experience (d)
Histogram

- Histogram is used to give you an overview of the distribution density
 - It often presents the frequency of each value
 - It is useful to test normal distribution
Pie Chart

- Pie chart shows the relative frequency of the data values (in percentage)
 - It is useful to represent predominant values in the nominal scale

- Chapter 10 – Analysis and Interpretation (Section 10.1 Descriptive Statistics)