True positives

True negatives

False positives

False negatives

JBook - Shadowing
Source folder: “src/main/java”
Main package: “br.com.infowaypi.jbook.”

Actual package: “autenticacao”

Java file: Autenticador.java

package br.com.infowaypi.jbook.autenticacao;
public class Autenticador {
private static final ThreadLocal<UsuarioInterface> threadUsuario = new ThreadLocal<UsuarioInterface>();

public Autenticador () {
}

public UsuarioInterface getUsuario() {
return threadUsuario.get();

}

public String[] getRoles (String login, String senha) throws Exception ({
if (Utils.isStringVazia(senha)) {
return null;
}

UsuarioInterface usuario = buscaUsuario (login);

if (usuario != null && usuario.autentica (senha)) {
threadUsuario.set (usuario) ;
return new String[] { usuario.getRole() };

}
return null;

}

public Usuario buscaUsuario (String login) {
SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals("login", login));
return sa.uniqueResult (Usuario.class);

Java file: UsuariolInterface.java
package br.com.infowaypi.jbook.autenticacao;

public interface UsuarioInterface extends Serializable, Comparable<UsuarioInterface> {

public static final String ATIVO = "A";
public static final String CANCELADO = "C";

public abstract Boolean validate() throws ValidateException;
public abstract Long getIdUsuariol();

public abstract void setIdUsuario (Long idUsuario) ;
public abstract String getNome () ;

public abstract void setNome (String nome) ;

public abstract String getEmail();

public abstract void setEmail (String email);
public abstract String getLogin();

public abstract void setLogin (String login);
public abstract String getSenhal();

public abstract void setSenha (String senha);

public abstract String getStatus();

public abstract void setStatus (String status);

public String getNovaSenhaConfirmacao () ;

public abstract void setNovaSenhaConfirmacao (String novaSenhaConfirmacao);
public String getNovaSenhaDigitada();

public abstract void setNovaSenhaDigitada (String novaSenhaDigitada);
public abstract String getRole();

public abstract void setRole(String role);

public abstract boolean isPossuiRole(String... roles);

public abstract boolean autentica (String senha);

public void tocarObjetos();

Actual package: “config”

Java file: Config.java

package br.com.infowaypi.jbook.config;
public class Config {
public static String aplicationPath = currentPath();
public static final String sourcePath = aplicationPath + File.separator + "src" + File.separator + "main" + File.separator;
public static final String resoucesPath = sourcePath + "resources" + File.separator;
public static final String webAppPath = sourcePath + "webapp" + File.separator;

public static String getFileInResources (String file) {
return resoucesPath + file;

}

public static String getFileInWebApp (String file) {
return webAppPath + file;
}

private static String currentPath () {
tryf
return new File("").getCanonicalPath();
}catch (IOException e) {
new IOException(e.getMessage());
}

return null;

Actual package: “core”

Java file: Emprestimo.java
package br.com.infowaypi.jbook.core; o
public class Emprestimo implements Serializable, Comparable<Emprestimo> {

private static final long serialVersionUID = -7427026885020906922L;

private Long idEmprestimo;

private Usuario bibliotecario;

private Usuario leitor;

private Date dataSolicitacao;

private Date dataPrevisaoDeDevolucao;
private Date dataDevolucao;

private String situacao;

public Long getIdEmprestimo () {

public void setIdEmprestimo (Long idEmprestimo) {
this.idEmprestimo = idEmprestimo;

}

public Usuario getBibliotecario() {
return bibliotecario;

}

public void setBibliotecario(Usuario bibliotecario) {
this.bibliotecario = bibliotecario;

}

public Usuario getLeitor () {
return leitor;

}

public void setlLeitor (Usuario leitor) {
this.leitor = leitor;

public Date getDataSolicitacao () {
return dataSolicitacao;

}

public void setDataSolicitacao (Date dataSolicitacao) {

public Date getDataPrevisaoDeDevolucao () {
return dataPrevisaoDeDevolucao;

}

public void setDataPrevisaoDeDevolucao (Date dataPrevisaoDeDevolucao) {

public Date getDataDevolucao () {
return dataDevolucao;

}

public void setDataDevolucao (Date dataDevolucao) {
this.dataDevolucao = dataDevolucao;

}

public Boolean validate (UsuarioInterface bibliotecario) throws ValidateException {

if (getDataSolicitacao () .compareTo (getDataPrevisaoDeDevolucao()) > 0)
throw new ValidateException("A data de previsdo para devolucdo deve ser futura");
if (EmprestimoManager.passoulimiteEmprestimos (this.getLeitor())) {

throw new ValidateException("O limite de 02 (duas) solicitac¢des de empréstimo foi atingido. N&o serd possivel realizar a solicitagdo de empréstimo.");

}

this.setBibliotecario((Usuario) bibliotecario);
this.situacao = SituacaoEmprestimoEnum.CONFIRMADO.getValor () ;
return true;

public int hashCode () {
return new HashCodeBuilder () .append(getIdEmprestimo ()) .toHashCode () ;
}

public boolean equals (Object obj) {

return false;

}

public int compareTo (Emprestimo outro) {
return this.getDataSolicitacao () .compareTo (outro.getDataSolicitacao());

}

public String getSituacao() {
return situacao;

}
public void setSituacao (String situacao) {
this.situacao = situacao;

}

public void cancelarSolicitacao () {

setSituacao (SituacaoEmprestimoEnum.CANCELADO.getValor());

Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this);

trans.commit () ;

}

public void confirmarSolicitacao () {

setSituacao (SituacaoEmprestimoEnum.CONFIRMADO.getValor());

Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this) ;

trans.commit () ;

}

public void encerrar () throws ValidateException{

setSituacao (SituacaoEmprestimoEnum.FINALIZADO.getValor());

setDataDevolucao (new Date());

Transaction trans = HibernateUtil.currentSession() .beginTransaction();

HibernateUtil.currentSession () .saveOrUpdate (this);

trans.commit () ;

if (getDataDevolucao () .compareTo (getDataPrevisaobDeDevolucao()) > 0){
throw new ValidateException ("Devolucéo em atrasso");

Java file: EtiquetaTombo.java

package br.com.infowaypi.jbook.core;
public class EtiquetaTombo {
private Long idEtiquetaTombo = 1L;
private Long ultimoTombo;

public Long getIdEtiquetaTombo () {
return idEtiquetaTombo;

}

public void setIdEtiquetaTombo (Long idEtiquetaTombo) {
this.idEtiquetaTombo = idEtiquetaTombo;
}

public Long getUltimoTombo () {
return ultimoTombo;

}

public void setUltimoTombo (Long ultimoTombo) {
this.ultimoTombo = ultimoTombo;

}

public int hashCode () {
return new HashCodeBuilder () .append(getIdEtiquetaTombo ()) .toHashCode () ;
}

public boolean equals (Object obj) {
if (! (obj instanceof EtiquetaTombo)) {
return false;
}
EtiquetaTombo etiqueta = (EtiquetaTombo) obj;
return new EqualsBuilder () .append(this.getIdEtiquetaTombo (), etiqueta.getIdEtiquetaTombo ()).isEquals();

Java file: Exemplar.java

package br.com.infoway book.core;

Java file: Publicacao.java
package br.com.infoway book.core;
public class Publicacao implements Serializable, Comparable<Publicacao> {
private static final long serialVersionUID = 7770198638083066524L;
 public Publicacao() {}
private Long idPublicacao;
private String titulo;
private String assunto;

private String autor;

private String editora;

private Long ISBN;

private String tipoDePublicacao;

public Long getIdPublicacao() {
return idPublicacao;

}
public void setIdPublicacao (Long idPublicacao) {
this.idPublicacao = idPublicacao;

}

public String getTitulo() {

public void setTitulo(String titulo) {

public String getAssunto() {
return assunto;

}

public void setAssunto (String assunto) {

public String getAutor () {
return autor;

}

public void setAutor (String autor) {

public String getEditora() {
return editora;

}

public void setEditora (String editora) {

public Long getISBN() {
return ISBN;
}

public void setISBN(Long iSBN) {

public String getTipoDePublicacao () {
return tipoDePublicacao;

}

public void setTipoDePublicacao (String tipoDePublicacao) {

public Boolean validate() throws ValidateException {
boolean retorno = false;

if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.LIVRO.getValor()) && this.getISBN() == null) {
throw new ValidateException ("O preenchimento do ISBN é obrigatério para livros.");
} else if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.REVISTA.getValor ()) && this.getISBN() != null) {

throw new ValidateException ("O preenchimento do ISBN ndo é necessario para revistas.");
}
retorno = verificaPreExistenciaPublicacao();
return retorno;

}

private Boolean verificaPreExistenciaPublicacao() throws ValidateException {
SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals ("titulo", this.getTitulo()));
sa.addParameter (new Equals ("assunto", this.getAssunto()));
sa.addParameter (new Equals ("autor", this.getAutor()));
sa.addParameter (new Equals ("editora", getEditora()));
sa.addParameter (new Equals ("tipoDePublicacao", this.tipoDePublicacao));
if (sa.uniqueResultAny (Publicacao.class) != null) {

throw new ValidateException ("Publicacdo j& cadastrada!");
}
if (Utils.isCampoDuplicado(this, "ISBN", this.getISBN())) {

throw new ValidateException("Ndo é permitido cadastrar duas publicacApes com o mesmo ISBN!");
}
return true;

}

public int hashCode () {
return new HashCodeBuilder () .append(this.idPublicacao) .append(this.ISBN) .toHashCode () ;
}

public boolean equals (Object obj) {
if (! (obj instanceof Publicacao)) {
return false;

}
Publicacao publicacao = (Publicacao) obj;
return new EqualsBuilder () .append(this.getIdPublicacao(), publicacao.getIdPublicacao()) .append(this.getISBN(), publicacao.getISBN()).isEquals();

}

public int compareTo (Publicacao outro) {
return this.getTitulo () .compareTo (outro.getTitulo());

Java file: Usuario.java

package br.com.infowaypi.jbook.core;
public class Usuario implements UsuariolInterface ({

private static final long serialVersionUID = 1L;

protected Long idUsuario;

private String login;

private String senha;

private String novaSenhaDigitada;

private String novaSenhaConfirmacao;

private String role;

private String nome;

private String email;

private String status;

private Set<Emprestimo> emprestimos;

public Usuario () {
this.status = ATIVO;

}

public Boolean validate () throws ValidateException {
if (Utils.isStringVazia(this.getLogin()))
throw new ValidateException("O Login deve ser informado.");
if (Utils.isStringVazia(this.getNome()))
throw new ValidateException ("O Nome do usuadrio deve ser informado.");
if (Utils.isStringVazia(this.getEmail())) {
throw new ValidateException("O Email deve ser informado.");
}
if (Utils.isStringVazia(this.getRole()))
throw new ValidateException("O role do usuadrio deve ser informado.");
if (Utils.isCampoDuplicado(this, "login", this.getLogin()))
throw new ValidateException("O login informado j& existe. Escolha outro nome para o login e tente novamente.");

if (Utils.isStringVazia (this.getSenha())) {
verificarRestricoes();
} else {
if (Utils.isStringVazia(this.getNovaSenhaDigitada()) && Utils.isStringVazia (this.getNovaSenhaConfirmacao())) {

return true;

}

verificarRestricoes();
}
this.setSenha (String.valueOf (this.getNovaSenhaDigitada () .hashCode()));
return true;

}

private void verificarRestricoes () throws ValidateException {
if (Utils.isStringVazia(this.getNovaSenhaDigitada()))
throw new ValidateException ("A senha deve ser informada.");
if (Utils.isStringVazia (this.getNovaSenhaConfirmacao()))
throw new ValidateException ("A confirmacdo da senha deve ser informada.");
if (!this.getNovaSenhaDigitada () .equals (this.getNovaSenhaConfirmacao()))
throw new ValidateException ("Senhas ndo conferem.");

}

public boolean isPossuiRole (String... roles) {
for (String role : roles) {
if (this.getRole() .equals(role))
return true;
}
return false;

}

public boolean autentica (String senhaDigitada) {
if (!StringUtils.isEmpty (senhaDigitada) && this.status.equals (ATIVO) && this.getSenha () .equals (String.valueOf (senhaDigitada.hashCode())))
return true;
return false;

}

public Long getIdUsuario() {
return idUsuario;

}

public void setIdUsuario (Long idUsuario) {
this.idUsuario = idUsuario;

}

public String getRole () {
return role;

}

public void setRole(String role) {
this.role = role;

}

public String getSenha () {
return senha;

}

public void setSenha (String senha) {
this.senha = senha;

}

public String getLogin () {
return login;

}

public void setLogin(String login) {
this.login = login;
}

public String getNome () {
return nome;

}

public void setNome (String nome) {
this.nome = nome;

}

public String getStatus() {
return status;

}

public void setStatus (String status) {
this.status = status;

}

public Set<Emprestimo> getEmprestimos () {
return emprestimos;

}

public void setEmprestimos (Set<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

}

public String getEmail () {
return email;

}

public void setEmail (String email) {
this.email = email;

}

public String getNovaSenhaConfirmacao () {
return novaSenhaConfirmacao;

}

public void setNovaSenhaConfirmacao (String novaSenhaConfirmacao) {
this.novaSenhaConfirmacao = novaSenhaConfirmacao;

}

public String getNovaSenhaDigitada () {
return novaSenhaDigitada;

}

public void setNovaSenhaDigitada (String novaSenhaDigitada) {
this.novaSenhaDigitada = novaSenhaDigitada;

}

public void tocarObjetos () {
this.getIdUsuario();
this.getNome () ;
this.getRole () ;

}

public boolean equals (Object object) {
if (! (object instanceof UsuarioInterface)) {
return false;

}

Usuario usuario = (Usuario) object;
UsuarioInterface user = (UsuarioInterface) object;
return new EqualsBuilder () .append (this.getIdUsuario (), user.getIdUsuario()) .append (this.login, usuario.getLogin()) .isEquals();

}

public int hashCode () {
return new HashCodeBuilder () .append(this.getIdUsuario()) .append (this.getLogin()) .toHashCode () ;

}

public String toString() {
return new ToStringBuilder (this, ToStringStyle.DEFAULT STYLE) .append ("Login", this.login) .append("nome", this.nome) .append ("role", this.role).toString();

}

public int compareTo (UsuarioInterface outro) {

Integer compareRole = this.getRole () .compareTo (outro.getRole());
Integer compareNome = this.getNome () .compareTo (outro.getNome ()) ;
if (!compareRole.equals(0))

return compareRole;
return compareNome;

}

Actual package: “datasource”

Java file: DataSourceEtiquetaTombo.java

package br.com.infowaypi.jbook.datasource;

public class DataSourceEtiquetaTombo {

public DataSourceEtiquetaTombo (Long[] tombos) {
this.tombos = tombos;

}
private Long[] tombos;

public Long[] getTombos () {
return tombos;

}

public String getLogoInfoway () {
return "/home/jbook/files/logoInfoway.png";
}

—~

Java file: EstadoConservacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

private String valor;

private String descricao;

public String getValor () {

public String getDescricao() {
return descricao;
}

package br.com.infowaypi.jbook.enumeration;

public enum PeriodoSolicitacaoEmprestimoEnum {

UMA (1, "Uma Semana"),

DUAS (2, "Duas Semanas"),
TRES (3, "Trés Semanas"),
QUATRO (4, "Quatro Semanas");

private int wvalor;
private String descricao;

public int getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private PeriodoSolicitacaoEmprestimoEnum(int valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

Java file: RolesEnum.java

package br.com.infowaypi.jbook.enumeration;
public enum RolesEnum {
LEITOR ("LEITOR", "Leitor"),

BIBLIOTECARIO ("BIBLIOTECARIO", "Bibliotecéario"),
ROOT ("ROOT", "Root");

private String valor;
private String descricao;

RolesEnum (String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

}

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

Java file: SituacaoEmprestimoEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum SituacaoEmprestimoEnum {

SOLICITADO ("SOLICITADO", "Solicitado"),
CONFIRMADO ("CONFIRMADO", "Confirmado"),
CANCELADO ("CANCELADO", "Cancelado"),
EXPIRADO ("EXPIRADO", "Expirado"),
FINALIZADO ("FINALIZADO", "Finalizado");

private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private SituacaoEmprestimoEnum(String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

package br.com.infowaypi.jbook.enumeration;

package br.com.infowaypi.jbook.enumeration;

private String valor;

private String descricao;
public String getValor () {
}

public String getDescricao() {
return descricao;

Java file: AlterarSenhaFlow.java

package br.com.infowaypi.jbook.flow;

public class AlterarSenhaFlow {

public UsuarioInterface alteraSenha (UsuarioInterface usuario, String senhaAntiga, String senhaNova,

HibernateUtil.currentSession() .evict (usuario);
Usuario user = (Usuario) ImplDAO.findById(usuario.getIdUsuario(), Usuario.class);
if (user == null){
throw new ValidateException ("Usuario nulo.");
}
boolean isSenhaNovaVazia = Utils.isStringVazia(senhaNova);
boolean isSenhaConfirmacaoVazia = Utils.isStringVazia(senhaConfirmacao);
boolean isSenhaAntigaVazia = Utils.isStringVazia(senhaAntiga);

boolean isCamposSenhasVazios = isSenhaAntigaVazia && isSenhaConfirmacaoVazia && isSenhaNovaVazia;

if (!isCamposSenhasVazios) {
1if(Utils.isStringVazia (senhaAntiga)) {
throw new ValidateException ("A senha atual deve ser informada.");
}
if (isSenhaNovaVazia) {
throw new ValidateException ("A nova senha deve ser informada.");
}
if (isSenhaConfirmacaoVazia) {
throw new ValidateException("A confirmagdo da nova senha deve ser informada.");

}

String senhaConfirmacao)

boolean isSenhasNaoConferem = !usuario.getSenha().equals (String.valueOf (senhaAntiga.hashCode()));

if (isSenhasNaoConferem) {
throw new ValidateException ("A senha atual ndo confere.");
}
user.setNovaSenhaDigitada (senhaNova) ;
user.setNovaSenhaConfirmacao (senhaConfirmacao) ;
}
user.validate();
HibernateUtil.currentSession() .save (user) ;
return user;

Java file: CancelarSolicitacaoEmprestimoLeitorFlow.java

package br.com.infowaypi.jbook.flow;
public class CancelarSolicitacaoEmprestimoLeitorFlow {

public List<Emprestimo> getBuscarEmprestimosSolicitados (UsuarioInterface leitor) ({
return EmprestimoManager.getBuscarEmprestimosSolicitados (leitor);

}

public void cancelarEmprestimo (Emprestimo emprestimo) {
EmprestimoManager.cancelarEmprestimo (emprestimo) ;

}

throws Exception {

Java file: EtiquetaTomboFlow.java

package br.com.infowaypi.jbook.flow;
public class EtigquetaTomboFlow {
public ResumoImpressaoEtiquetaTombo imprimirEtiquetasTombo (int gtdPaginas) throws Exception {
List<DataSourceEtiquetaTombo> dataSource= EtiquetaTomboManager.getRelatorio(gtdPaginas);
byte[] arquivo = EtiquetaTomboManager.getBytesRelatorio(dataSource);

ResumoImpressaoEtiquetaTombo resumoEtiquetaTombo = new ResumoImpressaoEtiquetaTombo (arquivo);
return resumoEtiquetaTombo;

package br.com.infowaypi.jbook.flow;

public class SolicitacaoEmprestimoFlow {

return EmprestimoManager.buscarPublicacao(titulo, assunto, autor, tipoDePublicacao);

—
-

Java file: EmprestimoManager.java

package br.com.infowaypi.jbook.manager;

public class EmprestimoManager {

boolean semParametrosDePesquisa = true;

Stack<ParameterInterface> parametros = new Stack<ParameterInterface>();
if (!Utils.isStringVazia(titulo)) {
parametros.add (new LikeFull ("publicacao.titulo", titulo));
semParametrosDePesquisa = false;
}
if (!Utils.isStringVazia (assunto)) {
parametros.add(new LikeFull ("publicacao.assunto", assunto));
semParametrosDePesquisa = false;
}
if (!Utils.isStringVazia (autor)) {
parametros.add (new LikeFull ("publicacao.autor", autor));
semParametrosDePesquisa = false;
}
if (tipoDePublicacao != null) {
parametros.add (new Equals ("publicacao.tipoDePublicacao", tipoDePublicacao.getValor()));
semParametrosDePesquisa = false;
}
if (semParametrosDePesquisa) {
throw new ValidateException ("A% necessario inserir pelo menos um parA¢metro de pesquisal!");

return resumo;

public static boolean passoulimiteEmprestimos (Usuario leitor) {

SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals("leitor", leitor));

sa.addParameter (new OR(
new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor ())
)

)i

if (sa.resultCount (Emprestimo.class) > 1) {

return true;
}

return false;

SearchAgent sa = new SearchAgent () ;

sa.addParameter (new Equals("leitor", leitor));

sa.addParameter (new OR(
new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor ())
)

)i

Criteria criteria0 = sa.createCriteriaFor (Emprestimo.class);

return true;
}

return false;

}
- public static void confirmarSolicitacao(UsuarioInterface leitor, Exemplar exemplar, PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo) {

Emprestimo emp = new Emprestimo();

emp.setleitor ((Usuario) leitor);

emp.setSituacao (SituacaoEmprestimoEnum.SOLICITADO.getValor());

Calendar c¢ = Calendar.getInstance();

c.add (Calendar.WEEK OF MONTH, periodoEmprestimo.getValor());
emp.setDataPrevisaoDeDevolucao (c.getTime ()) ;
HibernateUtil.currentSession () .save (emp) ;
SchedulerManager.agendarExpiracaoDeSolicitacaoDeEmprestimo (emp.getIdEmprestimo()) ;

}

public static List<Emprestimo> getBuscarEmprestimosSolicitados (UsuarioInterface leitor) {
SearchAgent sa = new SearchAgent();
sa.addParameter (new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()));
sa.addParameter (new Equals("leitor", leitor));
return sa.list (Emprestimo.class);

}

public static void cancelarEmprestimo (Emprestimo emprestimo) {
emprestimo.setSituacao (SituacaoEmprestimoEnum.CANCELADO.getValor());

SchedulerManager.cancelarExpiracaoDeSolicitacaoDeEmprestimo (emprestimo.getIdEmprestimo()) ;

}

Java file: EtiquetaTomboManager.java

package br.com.infowaypi.jbook.manager;
public class EtiquetaTomboManager {
private static final int NUMERO DE_ETIQUETAS_ POR_PAGINA = 14;

public static Long getUltimoTombo () {

SearchAgent sa = new SearchAgent();

return ((EtiquetaTombo) sa.findById(lL, EtiquetaTombo.class)) .getUltimoTombo () ;
}

private static void setUltimoTombo (Long ultimoTombo) {
SearchAgent sa = new SearchAgent();
EtiquetaTombo etiquetaTombo = (EtiquetaTombo) sa.findById (1L, EtiquetaTombo.class);
etiquetaTombo.setUltimoTombo (ultimoTombo) ;

}

public static byte[] getBytesRelatorio (List<DataSourceEtiquetaTombo> dataSource) throws Exception {
JHeatReport report = new JHeatReport ("..\\file\\etiquetas-tombo.xml", dataSource);
ByteArrayOutputStream output = new ByteArrayOutputStream();
report.createPDF (output) ;
return output.toByteArray();

}

public static List<DataSourceEtiquetaTombo> getRelatorio (int gtdPaginas) throws Exception {

List<DataSourceEtiquetaTombo> dataSource = new ArrayList<DataSourceEtiquetaTombo> () ;
Long ultimoTomboDispionivel = getUltimoTombo() + 1;
for(int x = 0; x < gtdPaginas; x++){

Long[] tombosDaPagina = new Long[NUMERO DE ETIQUETAS POR PAGINA];

for (int i1 =0; i1 < NUMERO DE ETIQUETAS POR PAGINA; i++) {

tombosDaPagina[i] = ++ultimoTomboDispionivel;

}

dataSource.add (new DataSourceEtiquetaTombo (tombosDaPagina)) ;
}
setUltimoTombo (ultimoTomboDispionivel) ;
return dataSource;

Java file: NotificadorManager.java

package br.com.infowaypi.jbook.manager;

public class NotificadorManager {

package br.com.infowaypi.jbook.manager;

public class SchedulerManager {
private static final String triggerName = "TRIGGER EXPIRA SOLICITACAO DE EMPRESTIMO N:";

private static final String jobName = "JOB EXPIRA SOLICITACAO DE EMPRESTIMO N:";

public static void agendarExpiracaoDeSolicitacaoDeEmprestimo (Long idSolicitacao) {

SimpleTrigger trigger = new SimpleTrigger (triggerName + idSolicitacao, Scheduler.DEFAULT GROUP, new Date (System.currentTimeMillis() + (24 * (60 * 60000))));
JobDetail tarefa = new JobDetail (jobName + idSolicitacao, Scheduler.DEFAULT GROUP, ExpiraSolicitacaoEmprestimoTask.class);
tarefa.getJobDataMap () .put ("idSolicitacao", idSolicitacao);

try {

QuartzConfigurator.getScheduler () .scheduledJob (tarefa, trigger);
} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public static void cancelarExpiracaoDeSolicitacaoDeEmprestimo (Long idSolicitacao) {
try {
QuartzConfigurator.getScheduler () .deleteJob (jobName + idSolicitacao, Scheduler.DEFAULT GROUP) ;
System.out.println ("Cancelando Job");
} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public static String getJobname () {
return jobName;

}

public static String getTriggername () {
return triggerName;

}

w "

Actual package: “msg

Java file: EmailThread.java

package br.com.infowaypi.jbook.msg;
public class EmailThread extends Thread {
private Set<Usuario> usuarios = new HashSet<Usuario>();
private String nome;
private String assunto;
private String corpo;

public EmailThread (Usuario usuario, String nome, String assunto, String corpo) {
this.usuarios.add (usuario);
this.nome = nome;
this.assunto = assunto;
this.corpo = corpo;

}

public EmailThread(Set<? extends Usuario> usuarios, String nome, String assunto, String corpo) {
this.usuarios.addAll (usuarios);
this.nome = nome;
this.assunto = assunto;
this.corpo = corpo;

}

public void run() {
String destino = "contato-no-reply@infoway-pi.com.br";
for (Usuario usuario : usuarios) {
MailSender.mandarEmail (usuario, this.nome, this.assunto, this.corpo, destino);

}

public void starta() {
this.start () ;

Java file: MailSender.java

package br.com.infowaypi.jbook.msg;

public class MailSender {

public static void mandarEmail (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem. setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true);
mensagem.enviarEmail () ;

}

public static void mandarEmailHTML (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem. setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true);
mensagem.enviarkEmail () ;

}

public static void mandarEmailHTML (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmailHTML (usuario, nome, assunto, corpo, destino);

}
}

public static void mandarEmail (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmail (usuario, nome, assunto, corpo, destino);

package br.com.infowaypi.jbook.report;

public class EmprestimoReport {

ReportEmprestimoResumo rre = new ReportEmprestimoResumo () ;
rre.setEmprestimos (emprestimos) ;
return rre;

Criteria ¢ = HibernateUtil.currentSession (Emprestimo.class) .createCriteria (Emprestimo.class);

if (leitores!=null)
c.add (Restrictions.eg("leitor", leitores));
if (situacaoEmprestimo !=null) {

c.add (Restrictions.eq("situacao", situacaoEmprestimo.getValor()));
}
if (dataEmprestimoInicio!=null && dataEmprestimoFinal!=null)

c.add (Restrictions.between ("dataSolicitacao", dataEmprestimoInicio, dataEmprestimoFinal));
if (dataDevolucaoInicial!=null && dataDevolucaoFinal!=null)

c.add (Restrictions.between ("dataDevolucao", dataDevolucaoInicial, dataDevolucaoFinal));
return c.list();

Java file: ReportEmprestimoResumo.java

package br.com.infowaypi.jbook.resumo;
public class ReportEmprestimoResumo {
private List<Emprestimo> emprestimos;

public List<Emprestimo> getEmprestimos () {
return emprestimos;

}

public void setEmprestimos (List<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

Java file: ResumoExemplares.java

package br.com.infowaypi.jbook.resumo;

Java file: ResumoImpressaoEtiquetaTombo.java

package br.com.infowaypi.jbook.resumo;
public class ResumoImpressaoEtiquetaTombo implements Serializable {
private static final long serialVersionUID = 6380683336794912126L;
public ResumoImpressaoEtiquetaTombo (byte[] conteudoArquivo) {
this.conteudoArquivo = conteudoArquivo;
}
private byte[] conteudoArquivo;
public byte[] getConteudoArquivo () {
return conteudoArquivo;

}

public String getFileName () {
return "Etiquetas de Tombo.pdf";

Actual package: “scheduler”

package br.com.infowaypi.jbook.scheduler;
public class ExpiraSolicitacaoEmprestimoTask implements Job {

public void execute (JobExecutionContext arg0) throws JobExecutionException {
Long idSolicitacaoDeEmprestimo = (Long) argO.getJobDetail () .getJobDataMap () .get ("idSolicitacao");
expirarSolicitacaoDeEmprestimo (idSolicitacaoDeEmprestimo) ;

}

public boolean expirarSolicitacaoDeEmprestimo (Long idSolicitacaoDeEmprestimo) {
Session sessao = HibernateUtil.currentSession();
Transaction tx = sessao.beginTransaction();
Emprestimo solicitacaoDeEmprestimo = (Emprestimo) sessao.load(Emprestimo.class, idSolicitacaoDeEmprestimo) ;
if (solicitacaoDeEmprestimo.getSituacao () .equals (SituacaoEmprestimoEnum.SOLICITADO.getValor())) {
solicitacaoDeEmprestimo.setSituacao (SituacaoEmprestimoEnum.EXPIRADO.getValor ()) ;

}

sessao.update (solicitacaoDeEmprestimo) ;
tx.commit () ;
return true;

Java file: QuartzConfigurator.java

package br.com.infowaypi.jbook.scheduler;
public class QuartzConfigurator implements PlugIn({
private static Scheduler scheduler = null;

public void destroy() {
try {
scheduler.shutdown () ;
} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public void init (ActionServlet servlet, ModuleConfig config) throws ServletException {
try f{
scheduler = StdSchedulerFactory.getDefaultScheduler();
scheduler.start();
} catch (SchedulerException e) {
e.printStackTrace();
}
}

public static Scheduler getScheduler() {
return scheduler;

}

public static void setScheduler (Scheduler scheduler) {
QuartzConfigurator.scheduler = scheduler;

}

Actual package: “util”

Java file: ConfiguraBaseDeDados.java

