True positives

True negatives

False positives

False negatives

JBook - Shadowing
Source folder: “src/main/java”
Main package: “br.com.infowaypi.jbook.”

Actual package: “autenticacao”

Java file: Autenticador.java

package br.com.infowaypi.jbook.autenticacao;
public class Autenticador {
private static final ThreadLocal<UsuarioInterface> threadUsuario = new ThreadLocal<UsuarioInterface>();

public Autenticador () {
}

public UsuarioInterface getUsuario() {
return threadUsuario.get();

}

public String[] getRoles (String login, String senha) throws Exception ({
if (Utils.isStringVazia(senha)) {
return null;
}

UsuarioInterface usuario = buscaUsuario (login);

if (usuario != null && usuario.autentica (senha)) {
threadUsuario.set (usuario) ;
return new String[] { usuario.getRole() };

}
return null;

}

public Usuario buscaUsuario (String login) {
SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals("login", login));
return sa.uniqueResult (Usuario.class);

Java file: UsuariolInterface.java
package br.com.infowaypi.jbook.autenticacao;

public interface UsuarioInterface extends Serializable, Comparable<UsuarioInterface> {

public static final String ATIVO = "A";
public static final String CANCELADO = "C";

public abstract Boolean validate() throws ValidateException;
public abstract Long getIdUsuariol();

public abstract void setIdUsuario (Long idUsuario) ;
public abstract String getNome () ;

public abstract void setNome (String nome) ;

public abstract String getEmail();

public abstract void setEmail (String email);
public abstract String getLogin();

public abstract void setLogin (String login);
public abstract String getSenhal();

public abstract void setSenha (String senha);

public abstract String getStatus();

public abstract void setStatus (String status);

public String getNovaSenhaConfirmacao () ;

public abstract void setNovaSenhaConfirmacao (String novaSenhaConfirmacao) ;
public String getNovaSenhaDigitada();

public abstract void setNovaSenhaDigitada (String novaSenhaDigitada) ;
public abstract String getRole();

public abstract void setRole (String role);

public abstract boolean isPossuiRole(String... roles);

public abstract boolean autentica(String senha);

public void tocarObjetos();

package br.com.infowaypi.jbook.config;
public class Config {
public static String aplicationPath = currentPath();
public static final String sourcePath = aplicationPath + File.separator + "src" + File.separator + "main" + File.separator;
public static final String resoucesPath = sourcePath + "resources" + File.separator;
public static final String webAppPath = sourcePath + "webapp" + File.separator;

public static String getFilelInResources (String file) ({
return resoucesPath + file;

}

public static String getFilelInWebApp (String file) {
return webAppPath + file;
}

private static String currentPath () {
tryf
return new File("").getCanonicalPath();
}catch (IOException e) {
new IOException (e.getMessage());
}

return null;

package br.com.infowaypi.jbook.core;

package br.com.infowaypi.jbook.core;

private Long ultimoTombo;

public Long getIdEtiquetaTombo () {
return idEtiquetaTombo;

}

public void setIdEtiquetaTombo (Long idEtiquetaTombo)

public Long getUltimoTombo () {
return ultimoTombo;

}

public void setUltimoTombo (Long ultimoTombo)

public int hashCode () {
return new HashCodeBuilder () .append(getIdEtiquetaTombo ()) .toHashCode () ;
}

public boolean equals (Object obj) {
if (! (obj instanceof EtiquetaTombo)) {
return false;
}
EtiquetaTombo etiqueta = (EtiquetaTombo) obj;
return new EqualsBuilder () .append(this.getIdEtiquetaTombo (), etiqueta.getIdEtiquetaTombo ()).isEquals/();

Java file: Exemplar.java

package br.com.infowaypi.jbook.core;

public class Exemplar implements Serializable, Comparable<Exemplar> {

private static final long serialVersionUID = 4448872540560235275L;

private Long idExemplar;
private Publicacao publicacao;
private Long tombo;

private Date dataCatalogacao;

private String estadoDeConservacao;
private String situacao;

public Long getIdExemplar () {

public void setIdExemplar (Long idExemplar) {

public Publicacao getPublicacao () {

public void setPublicacao (Publicacao publicacao) {

public Long getTombo () {

public void setTombo (Long tombo) {

public Date getDataCatalogacao () {
return dataCatalogacao;

}

public void setDataCatalogacao (Date dataCatalogacao) {

public String getEstadoDeConservacao () {
return estadoDeConservacao;

}

public void setEstadoDeConservacao (String estadoDeConservacao) {

public String getSituacao() {

public void setSituacao (String situacao)

{

public Usuario getUltimoLeitorAssociado() {

. return getEmprestimos().get(getEmprestimos () .size() - 1).getleitor();
}

public String getTituloTombo () {
return publicacao.getTitulo() + " - " + getTombo () ;
}

public Boolean validate() throws Exception {
SearchAgent sa = new SearchAgent () ;

sa.addParameter (new Equals ("tombo", getTombo()));
Exemplar exemplar = sa.uniqueResult (Exemplar.class);
if (exemplar != null && !this.equals (exemplar)) {

throw new ValidateException ("Tombo j& cadastrado!");

}

return true;

}

public boolean equals (Object obj) {

return false;

—-—
—

public int hashCode () {

public int compareTo (Exemplar outro) {
return this.getPublicacao () .getTitulo () .compareTo (outro.getPublicacao().getTitulo());

package br.com.infowaypi.jbook.core;
public class Publicacao implements Serializable, Comparable<Publicacao> {

private static final long serialVersionUID = 7770198638083066524L;

private Long idPublicacao;
private String titulo;
private String assunto;
private String autor;
private String editora;
private Long ISBN;

private String tipoDePublicacao;

private Set<Exemplar> exemplares;

public Long getIdPublicacao() {

public void setIdPublicacao (Long idPublicacao) {
this.idPublicacao = idPublicacao;

}

public String getTitulo() {

public void setTitulo(String titulo) {

public String getAssunto() {

public void setAssunto (String assunto) {

public String getAutor () {

public void setAutor (String autor)

{

public String getEditora() {
return editora;

}

public void setEditora (String editora) {

public Long getISBN() {
return ISBN;

}

public void setISBN(Long iSBN) {

public String getTipoDePublicacao() {
return tipoDePublicacao;
}
50
public void setTipoDePublicacao (String tipoDePublicacao) {

public Set<Exemplar> getExemplares() {

public void setExemplares (Set<Exemplar> exemplares) {
this.exemplares = exemplares;

}

public Boolean validate() throws ValidateException {
boolean retorno = false;

if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.LIVRO.getValor()) && this.getISBN() == null) {
throw new ValidateException ("O preenchimento do ISBN é obrigatério para livros.");
} else if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.REVISTA.getValor ()) && this.getISBN() != null) {

throw new ValidateException ("O preenchimento do ISBN ndo é necessario para revistas.");
}
retorno = verificaPreExistenciaPublicacaol();
return retorno;

}

private Boolean verificaPreExistenciaPublicacao() throws ValidateException {
SearchAgent sa = new SearchAgent();
sa.addParameter (new Equals ("titulo", this.getTitulo()));

sa.addParameter (new Equals ("assunto", this.getAssunto()));

(
sa.addParameter (new Equals ("autor", this.getAutor()));
sa.addParameter (new Equals ("editora", getEditora()));
sa.addParameter (new Equals ("tipoDePublicacao", this.tipoDePublicacao));
if (sa.uniqueResultAny (Publicacao.class) != null) {

throw new ValidateException ("Publicagdo ja& cadastrada!");
}
if (Utils.isCampoDuplicado(this, "ISBN", this.getISBN())) {
throw new ValidateException("Ndo é permitido cadastrar duas publicacApes com o mesmo ISBN!");

}

return true;

}

public int hashCode () {
return new HashCodeBuilder () .append(this.idPublicacao) .append(this.ISBN) .toHashCode () ;

}

public boolean equals (Object obj) {
if (! (obj instanceof Publicacao)) {
return false;

}
Publicacao publicacao = (Publicacao) obj;
return new EqualsBuilder () .append(this.getIdPublicacao (), publicacao.getIdPublicacao()) .append(this.getISBN(), publicacao.getISBN()).isEquals();

}

public int compareTo (Publicacao outro) {
return this.getTitulo () .compareTo (outro.getTitulo());

Java file: Usuario.java

package br.com.infowaypi.jbook.core;
public class Usuario implements UsuarioInterface {

private static final long serialVersionUID = 1L;

protected Long idUsuario;

private String login;

private String senha;

private String novaSenhaDigitada;

private String novaSenhaConfirmacao;

private String role;

private String nome;

private String email;

private String status;

private Set<Emprestimo> emprestimos;

public Usuario() {
this.status = ATIVO;
}

public Boolean validate() throws ValidateException {
if (Utils.isStringVazia(this.getLogin()))
throw new ValidateException("O Login deve ser informado.");
if (Utils.isStringVazia(this.getNome ()))
throw new ValidateException("O Nome do usudrio deve ser informado.");
if (Utils.isStringVazia(this.getEmail())) {
throw new ValidateException ("O Email deve ser informado.");
}
if (Utils.isStringVazia(this.getRole()))
throw new ValidateException("O role do usuadrio deve ser informado.");
if (Utils.isCampoDuplicado(this, "login", this.getLogin()))
throw new ValidateException("O login informado j& existe. Escolha outro nome para o login e tente novamente.");

if (Utils.isStringVazia(this.getSenha())) {
verificarRestricoes();
} else {
if (Utils.isStringVazia(this.getNovaSenhaDigitada()) && Utils.isStringVazia(this.getNovaSenhaConfirmacao())) {

return true;

verificarRestricoes();

}
this.setSenha (String.valueOf (this.getNovaSenhaDigitada () .hashCode()));

return true;

}

private void verificarRestricoes () throws ValidateException {
if (Utils.isStringVazia(this.getNovaSenhaDigitada()))

throw new ValidateException("A senha deve ser informada.");
if (Utils.isStringVazia(this.getNovaSenhaConfirmacao()))
throw new ValidateException ("A confirmacdo da senha deve ser informada.");
if (!this.getNovaSenhaDigitada () .equals (this.getNovaSenhaConfirmacao()))
throw new ValidateException ("Senhas ndo conferem.");
}
public boolean isPossuiRole (String... roles) {

for (String role : roles) {
if (this.getRole() .equals(role))
return true;
}
return false;
}
53
public boolean autentica(String senhaDigitada) {
if (!StringUtils.isEmpty(senhaDigitada) && this.status.equals(ATIVO) && this.getSenha() .equals (String.valueOf (senhaDigitada.hashCode())))
return true;
return false;
}
58
public Long getIdUsuario() {

©return idUsuario;
}
61

public void setIdUsuario (Long idUsuario) {

public String getRole() {
return role;
}
67
public void setRole (String role) {

70
public String getSenha () {
return senha;
}
73

public void setSenha (String senha) {

77

public String getLogin() {

80

public void setLogin(String login) {

83
public String getNome () {
return nome;

}
86
{

public void setNome (String nome)

89
public String getStatus() {
return status;
}
92
public void setStatus (String status) {

public String getEmail () {
return email;
}
104
public void setEmail (String email) {

public String getNovaSenhaConfirmacao () {
return novaSenhaConfirmacao;
}
108
public void setNovaSenhaConfirmacao (String novaSenhaConfirmacao) {

=
=
w

public String getNovaSenhaDigitada () {
return novaSenhaDigitada;
}
116
public void setNovaSenhaDigitada (String novaSenhaDigitada) {

fay
=
O

public void tocarObjetos () {
this.getIdUsuario();
this.getNome () ;
this.getRole();
}
124
public boolean equals (Object object) {

return false;

}
132
public int hashCode () {
return new HashCodeBuilder () .append(this.getIdUsuario()) .append(this.getLogin()) .toHashCode () ;
}

135
public String toString() {
return new ToStringBuilder (this, ToStringStyle.DEFAULT STYLE) .append("Login", this.login).append("nome", this.nome) .append("role", this.role).toString();
}
138

public int compareTo (UsuarioInterface outro) {
Integer compareRole = this.getRole () .compareTo (outro.getRole());
Integer compareNome = this.getNome () .compareTo (outro.getNome ()) ;
if (!compareRole.equals(0))
return compareRole;
return compareNome;

}

Java file: DataSourceEtiquetaTombo.java

package br.com.infowaypi.jbook.datasource;
public class DataSourceEtiquetaTombo {
public DataSourceEtiquetaTombo (Long[] tombos) {
this.tombos = tombos;
}

private Long[] tombos;

public Long[] getTombos () {
return tombos;

}

public String getLogoInfoway () {
return "/home/jbook/files/logoInfoway.png";

Java file: EstadoConservacaoEnum.Jjava

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {

public String getDescricao() {
return descricao;

}

package br.com.infowaypi.jbook.enumeration;

Java file: RolesEnum.java

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {

public String getDescricao ()

Java file: TipoPublicacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

private String valor;

private String descricao;

public String getValor () {
}
public String getDescricao () {

Java file: AlterarSenhaFlow.java

package br.com.infowaypi.jbook.flow;
public class AlterarSenhaFlow {

public UsuarioInterface alteraSenha (UsuarioInterface usuario, String senhaAntiga, String senhaNova, String senhaConfirmacao) throws Exception {
HibernateUtil.currentSession() .evict (usuario);
Usuario user = (Usuario) ImplDAO.findById(usuario.getIdUsuario(), Usuario.class);
if (user == null){
throw new ValidateException ("Usuario nulo.");
}
boolean isSenhaNovaVazia = Utils.isStringVazia(senhaNova);
boolean isSenhaConfirmacaoVazia = Utils.isStringVazia(senhaConfirmacao);
boolean isSenhaAntigaVazia = Utils.isStringVazia(senhaAntiga);
boolean isCamposSenhasVazios = isSenhaAntigaVazia && isSenhaConfirmacaoVazia && isSenhaNovaVazia;
if (!isCamposSenhasVazios) {
1if(Utils.isStringVazia (senhaAntiga)) {
throw new ValidateException ("A senha atual deve ser informada.");
}
if (isSenhaNovaVazia) {
throw new ValidateException ("A nova senha deve ser informada.");
}
if (isSenhaConfirmacaoVazia) {
throw new ValidateException("A confirmacdo da nova senha deve ser informada.");
}
boolean isSenhasNaoConferem = !usuario.getSenha () .equals (String.valueOf (senhaAntiga.hashCode()));
if (isSenhasNaoConferem) {
throw new ValidateException("A senha atual ndo confere.");
}
user.setNovaSenhaDigitada (senhaNova) ;
user.setNovaSenhaConfirmacao (senhaConfirmacao) ;
}
user.validate();
HibernateUtil.currentSession() .save (user) ;
return user;

package br.com.infowaypi.jbook.flow;

Java file: EtiquetaTomboFlow.java

package br.com.infowaypi.jbook.flow;

public class EtigquetaTomboFlow {

public ResumolImpressaoEtiquetaTombo imprimirEtiquetasTombo (int gtdPaginas) throws Exception {

List<DataSourceEtiquetaTombo> dataSource= EtiquetaTomboManager.getRelatorio(gtdPaginas);
byte[] arquivo = EtiquetaTomboManager.getBytesRelatorio(dataSource);
ResumolImpressaoEtiquetaTombo resumoEtiquetaTombo = new ResumolImpressaoEtiquetaTombo (arquivo) ;

return resumoEtiquetaTombo;

Java file: SolicitacaoEmprestimoFlow.java

package br.com.infowaypi.jbook.flow;

Java file: EmprestimoManager.java

package br.com.infowaypi.jbook.manager;

—
—-

private static Collection<Exemplar> buscarExemplaresDisponiveis (SearchAgent saExemplaresDisponiveis, Stack<ParameterInterface> parametros) {

@

private static Collection<Exemplar> buscarExemplaresIndisponiveis (SearchAgent saExemplaresIndisponiveis, Stack<ParameterInterface> parametros) ({

@

public static Exemplar selecionarExemplar (UsuarioInterface leitor, ResumoExemplares resumoExemplares, Exemplar exemplar) throws ValidateException {

H

if (passouLimiteEmprestimos((Usuario) leitor)) {

throw new ValidateException("O limite de 02 (duas) solicitacApes de empréstimo foi atingido. Ndo serd possivel realizar a solicitacdo de empréstimo. ");
}
if (solicitouMesmaPublicacao((Usuario) leitor, exemplar)) {

throw new ValidateException ("N&o é possivel solicitar empréstimo de uma mesma publicagdo j& solicitada e em aberto.");

—
—

public static boolean passoulimiteEmprestimos (Usuario leitor) {

—
—

—~—

public static boolean solicitouMesmaPublicacao (Usuario leitor, Exemplar exemplar)

—
—-—

public static void confirmarSolicitacao (UsuarioInterface leitor, Exemplar exemplar, PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo) {

public static List<Emprestimo> getBuscarEmprestimosSolicitados (UsuarioInterface leitor) {

@

public static void cancelarEmprestimo (Emprestimo emprestimo) {

@

Java file: EtiquetaTomboManager.java

package br.com.infowaypi.jbook.manager;
public class EtiquetaTomboManager ({
private static final int NUMERO DE ETIQUETAS POR PAGINA = 14;

public static Long getUltimoTombo () {
SearchAgent sa = new SearchAgent () ;
return ((EtiquetaTombo) sa.findById(lL, EtiquetaTombo.class)).getUltimoTombo () ;

}

private static void setUltimoTombo (Long ultimoTombo) {
SearchAgent sa = new SearchAgent();
EtiquetaTombo etiquetaTombo = (EtiquetaTombo) sa.findById(lL, EtiquetaTombo.class);
etiquetaTombo.setUltimoTombo (ultimoTombo) ;
}
11
public static byte[] getBytesRelatorio (List<DataSourceEtiquetaTombo> dataSource) throws Exception {
JHeatReport report = new JHeatReport ("..\\file\\etiquetas-tombo.xml", dataSource);
ByteArrayOutputStream output = new ByteArrayOutputStream();
report.createPDF (output) ;
return output.toByteArray();
}
17
public static List<DataSourceEtiquetaTombo> getRelatorio (int gtdPaginas) throws Exception {
List<DataSourceEtiquetaTombo> dataSource = new ArrayList<DataSourceEtiquetaTombo> () ;
Long ultimoTomboDispionivel = getUltimoTombo() + 1;
for(int x = 0; x < gtdPaginas; x++) {
Long[] tombosDaPagina = new Long[NUMERO DE ETIQUETAS POR PAGINA];
for (int i =0; i < NUMERO DE ETIQUETAS POR PAGINA; i++) {
tombosDaPagina[i] = ++ultimoTomboDispionivel;
}
dataSource.add (new DataSourceEtiquetaTombo (tombosDaPagina)) ;
}
setUltimoTombo (ultimoTomboDispionivel) ;
return dataSource;

package br.com.infowaypi.jbook.manager;
public class NotificadorManager {

public static boolean notificarNovasAquisicoes (Exemplar exemplar, Usuario usuario) {
if (exemplar.getPublicacao () .getExemplares () .size() == 1) {
enviarNotificacaoDeNovasAquisicoes (exemplar.getPublicacao (), usuario);
}
return true;

}

7
private static void enviarNotificacaoDeNovasAquisicoes (Publicacao publicacao, Usuario usuario) {
String assunto = "Nova aquisigdo para nossa bibliotecal!";
StringBuilder corpo = new StringBuilder () ;
corpo.append ("A biblioteca acaba de disponibilizar a partir deste momento mais um exemplar. \n");
corpo.append ("Seguem abaixo os dados da publicacdo adquirida. \n");
corpo.append ("\n Titulo: " + publicacao.getTitulo());
corpo.append ("\n Assunto: " + publicacao.getAssunto());
corpo.append ("\n Autor: " + publicacao.getAutor());
corpo.append ("\n Editora: " + publicacao.getEditora());
corpo.append ("\n Tipo de publicacdo: " + publicacao.getTipoDePublicacao () .toLowerCase());
corpo.append ("\n\n--\n") ;
corpo.append ("\n JBook - Sistema de controle de empréstimos de livros Infoway");
new EmailThread(usuario, "JBook", assunto, corpo.toString()).starta();
}
}
22
Java file: SchedulerManager.java

package br.com.infowaypi.jbook.manager;

public class SchedulerManager {

Java file: EmailThread.java

package br.com.infowaypi.jbook.msg;
public class EmailThread extends Thread {
private Set<Usuario> usuarios = new HashSet<Usuario>();
private String nome;
private String assunto;
private String corpo;

public EmailThread (Usuario usuario, String nome, String assunto, String corpo) {
this.usuarios.add (usuario);
this.nome = nome;
this.assunto = assunto;
this.corpo = corpo;
}
12
public EmailThread(Set<? extends Usuario> usuarios, String nome, String assunto, String corpo) {
this.usuarios.addAll (usuarios);
this.nome = nome;
this.assunto = assunto;
this.corpo = corpo;
}
18
public void run() {
String destino = "contato-no-reply@infoway-pi.com.br";
for (Usuario usuario : usuarios) {
MailSender.mandarEmail (usuario, this.nome, this.assunto, this.corpo, destino);
}
}
24
public void starta() {
this.start();

Java file: MailSender.java

package br.com.infowaypi.jbook.msg;
public class MailSender {

public static void mandarEmail (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true) ;
mensagem.enviarEmail () ;
}
18
public static void mandarEmailHTML (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem. setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true);
mensagem.enviarkEmail () ;
}
35
public static void mandarEmailHTML (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmailHTML (usuario, nome, assunto, corpo, destino);
}
}
40
public static void mandarEmail (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) ({
for (Usuario usuario : usuarios) {
mandarEmail (usuario, nome, assunto, corpo, destino);

}

Java file: EmprestimoReport.java

package br.com.infowaypi.jbook.report;

if (tipoPublicacao !=null) {

if (exemplares!=null)
if (leitores!=null)

if (situacaoEmprestimo !=null) {

if (dataEmprestimoInicio!=null && dataEmprestimoFinal!=null)

if (dataDevolucaolInicial!=null && dataDevolucaoFinal!=null)

package br.com.infowaypi.jbook.resumo;

package br.com.infowaypi.jbook.resumo;

public class ResumoExemplares {
private Collection<Exemplar> exemplaresDisponiveis;

private Collection<Exemplar> exemplaresIndisponiveis;

public boolean isExemplaresNaoLocalizados () {

public Collection<Exemplar> getExemplaresDisponiveis () {

public Collection<Exemplar> getExemplaresIndisponiveis () {

package br.com.infowaypi.jbook.resumo;

public class ResumoImpressaoEtiquetaTombo implements Serializable {
private static final long serialVersionUID = 6380683336794912126L;
public ResumoImpressaoEtiquetaTombo (byte[] conteudoArquivo) {

this.conteudoArquivo = conteudoArquivo;

}

private byte[] conteudoArquivo;

public byte[] getConteudoArquivo () {
return conteudoArquivo;

}

public String getFileName () {
return "Etiquetas_de_ Tombo.pdf";

if (solicitacaoDeEmprestimo.getSituacao () .equals (SituacaoEmprestimoEnum.SOLICITADO.getValor())) {

package br.com.infowaypi.jbook.scheduler;

public void destroy() {
try {

} catch (SchedulerException e) {
e.printStackTrace () ;

public void init (ActionServlet servlet, ModuleConfig config) throws ServletException ({
try {

} catch (SchedulerException e) {
e.printStackTrace () ;

public static Scheduler getScheduler () {

public static void setScheduler (Scheduler scheduler) {

N~
S

Java file: ConfiguraBaseDeDados.java

