True positives

True negatives

False positives

False negatives

JBook - Shadowing
Source folder: “src/main/java”
Main package: “br.com.infowaypi.jbook.”

Actual package: “autenticacao”

Java file: Autenticador.java

package br.com.infowaypi.jbook.autenticacao;
public class Autenticador {
private static final ThreadLocal<UsuarioInterface> threadUsuario = new ThreadLocal<UsuarioInterface>();

public Autenticador () {
}

public UsuarioInterface getUsuario() {
return threadUsuario.get();

}

public String[] getRoles (String login, String senha) throws Exception ({
if (Utils.isStringVazia(senha)) {
return null;
}

UsuarioInterface usuario = buscaUsuario (login);

if (usuario != null && usuario.autentica (senha)) {
threadUsuario.set (usuario) ;
return new String[] { usuario.getRole() };

}
return null;

}

public Usuario buscaUsuario (String login) {
SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals("login", login));
return sa.uniqueResult (Usuario.class);

Java file: UsuariolInterface.java
package br.com.infowaypi.jbook.autenticacao;

public interface UsuarioInterface extends Serializable, Comparable<UsuarioInterface> {

public static final String ATIVO = "A";
public static final String CANCELADO = "C";

public abstract Boolean validate() throws ValidateException;
public abstract Long getIdUsuariol();

public abstract void setIdUsuario (Long idUsuario) ;
public abstract String getNome () ;

public abstract void setNome (String nome) ;

public abstract String getEmail();

public abstract void setEmail (String email);
public abstract String getLogin();

public abstract void setLogin (String login);
public abstract String getSenhal();

public abstract void setSenha (String senha);

public abstract String getStatus();

public abstract void setStatus (String status);

public String getNovaSenhaConfirmacao () ;

public abstract void setNovaSenhaConfirmacao (String novaSenhaConfirmacao);
public String getNovaSenhaDigitada();

public abstract void setNovaSenhaDigitada (String novaSenhaDigitada);
public abstract String getRole () ;

public abstract void setRole(String role);

public abstract boolean isPossuiRole (String... roles);

public abstract boolean autentica (String senha);

public void tocarObjetos();

Actual package: “config”

Java file: Config.java

package br.com.infowaypi.jbook.config;
public class Config {
public static String aplicationPath = currentPath();
public static final String sourcePath = aplicationPath + File.separator + "src" + File.separator + "main" + File.separator;
public static final String resoucesPath = sourcePath + "resources" + File.separator;
public static final String webAppPath = sourcePath + "webapp" + File.separator;

public static String getFileInResources (String file) {
return resoucesPath + file;

}

public static String getFileInWebApp (String file) {
return webAppPath + file;
}

private static String currentPath () {
try{
return new File("").getCanonicalPath();
}catch (IOException e) {
new IOException(e.getMessage());
}

return null;

Actual package: “core”

Java file: Emprestimo.java

package br.com.infowaypi.jbook.core;

@Entity
public class Emprestimo implements Serializable, Comparable<Emprestimo> {

private static final long serialVersionUID = -7427026885020906922L;
@Id

@GeneratedValue (strategy = GenerationType.AUTO)

private Long idEmprestimo;

@ManyToOne

@JoinColumn (name = "idBibliotecario")

private Usuario bibliotecario;

@ManyToOne

@JoinColumn (name = "idLeitor")
private Usuario leitor;

@ManyToOne
@Cascade ({ CascadeType.SAVE UPDATE })
@JoinColumn (name = "idExemplar")

private Exemplar exemplar;

@Temporal (TemporalType.DATE)
private Date dataSolicitacao;

@Temporal (TemporalType.DATE)
private Date dataPrevisaoDeDevolucao;

@Temporal (TemporalType.DATE)
private Date dataDevolucao;

private String situacao;

public Long getIdEmprestimo () {
return idEmprestimo;

}

public void setIdEmprestimo (Long idEmprestimo) {
this.idEmprestimo = idEmprestimo;

}
public Usuario getBibliotecario() {
return bibliotecario;

}

public void setBibliotecario (Usuario bibliotecario) {

public Usuario getLeitor () {
return leitor;

}

public void setLeitor (Usuario leitor) ({

public Exemplar getExemplar () {
return exemplar;

}

public void setExemplar (Exemplar exemplar) {

public Date getDataSolicitacao() {
return dataSolicitacao;

}

public void setDataSolicitacao (Date dataSolicitacao) {

public Date getDataPrevisaoDeDevolucao () {
return dataPrevisaoDeDevolucao;

}

public void setDataPrevisaoDeDevolucao (Date dataPrevisaoDeDevolucao) {

public Date getDataDevolucao () {
return dataDevolucao;

}

public void setDataDevolucao (Date dataDevolucao) {

public Boolean validate (UsuarioInterface bibliotecario) throws ValidateException {

if (getDataSolicitacao () .compareTo (getDataPrevisaoDeDevolucao()) > 0)

throw new ValidateException (

"A data de previsédo para devolugdo deve ser futura");
if (EmprestimoManager.passoulLimiteEmprestimos (this.getLeitor())) {

throw new ValidateException (

"O limite de 02 (duas) solicitacgdes de empréstimo foi atingido. N&o serd possivel realizar a solicitagdo de empréstimo.");
}
if (EmprestimoManager.solicitouMesmaPublicacao (this.getLeitor(),

this.getExemplar())) {

throw new ValidateException (

"Ndo é possivel solicitar empréstimo de uma mesma publicacdo jé& solicitada e em aberto.");
}
getExemplar () .setSituacao (SituacaoExemplarEnum.EMPRESTADO.getValor());
this.setBibliotecario((Usuario) bibliotecario);
this.situacao = SituacaoEmprestimoEnum.CONFIRMADO.getValor () ;
return true;

}

@Override
public int hashCode () {
return new HashCodeBuilder () .append(getIdEmprestimo ()) .toHashCode () ;
}
@Override
public boolean equals (Object obj) {
if (! (obj instanceof Emprestimo)) {

return false;

}

Emprestimo emprestimo = (Emprestimo) obj;

return new EqualsBuilder () .append(this.getIdEmprestimo(), emprestimo.getIdEmprestimo()) .isEquals();
}
@Override
public int compareTo (Emprestimo outro) {

return this.getDataSolicitacao () .compareTo (outro.getDataSolicitacaol());

}

public String getSituacao() {
return situacao;

}

public void setSituacao (String situacao) {
this.situacao = situacao;

}

public void cancelarSolicitacao() {
getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor());
setSituacao (SituacaoEmprestimoEnum. CANCELADO.getValor());
Transaction trans = HibernateUtil.currentSession () .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this);
trans.commit () ;

}

public void confirmarSolicitacao() {
getExemplar () .setSituacao (SituacaoExemplarEnum. EMPRESTADO.getValor());
setSituacao (SituacaoEmprestimoEnum. CONFIRMADO.getValor());
Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this);
trans.commit () ;

}

public void encerrar () throws ValidateException{
getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor());
setSituacao (SituacaoEmprestimoEnum. FINALIZADO.getValor());
setDataDevolucao (new Date());
Transaction trans = HibernateUtil.currentSession () .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this);
trans.commit () ;
if (getDataDevolucao () .compareTo (getDataPrevisaoDeDevolucao ()) > 0) {

throw new ValidateException ("Devolugdo em atrasso");

Java file: EtiquetaTombo.java

package br.com.infowaypi.jbook.core;

public class EtiquetaTombo {

private Long idEtiquetaTombo = 1L;
private Long ultimoTombo;

public Long getIdEtiquetaTombo () {
return idEtiquetaTombo;

}

public void setIdEtiquetaTombo (Long idEtigquetaTombo) {
this.idEtiquetaTombo = idEtiquetaTombo;
}

public Long getUltimoTombo () {
return ultimoTombo;

}

public void setUltimoTombo (Long ultimoTombo) {
this.ultimoTombo = ultimoTombo;

}

public int hashCode() {
return new HashCodeBuilder () .append(getIdEtiquetaTombo ()) .toHashCode () ;
}

public boolean equals (Object obj) {
if (! (obj instanceof EtiquetaTombo)) {
return false;

}
EtiquetaTombo etiqueta = (EtiquetaTombo) obj;
return new EqualsBuilder () .append(this.getIdEtiquetaTombo (), etiqueta.getIdEtiquetaTombo ()) .isEquals();

Java file: Exemplar.java
package br.com.infowaypi.jbook.core;

public class Exemplar implements Serializable, Comparable<Exemplar> {

private static final long serialVersionUID = 4448872540560235275L;

private Long idExemplar;

private Publicacao publicacao;
private Long tombo;
private Date dataCatalogacao;
@0OneToMany (mappedBy = "exemplar")
@OrderBy ("idEmprestimo")
private List<Emprestimo> emprestimos;
private String estadoDeConservacao;
private String situacao;
public Long getIdExemplar () {

return idExemplar;

}

public void setIdExemplar (Long idExemplar) {

public Publicacao getPublicacao () {
return publicacao;

}

public void setPublicacao (Publicacao publicacao) {

public Long getTombo () {
return tombo;
}

public void setTombo (Long tombo) {

public Date getDataCatalogacao () {
return dataCatalogacao;

}

public void setDataCatalogacao (Date dataCatalogacao) {
this.dataCatalogacao = dataCatalogacao;

}

public List<Emprestimo> getEmprestimos () {
return emprestimos;

}

public void setEmprestimos (List<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

}

public String getEstadoDeConservacao () {
return estadoDeConservacao;

}

public void setEstadoDeConservacao (String estadoDeConservacao) {
this.estadoDeConservacao = estadoDeConservacao;

}

public String getSituacao() {
return situacao;

}

public void setSituacao (String situacao) {

public Usuario getUltimoLeitorAssociado() {
return getEmprestimos () .get (getEmprestimos().size() - 1).getLeitor();

}

public Emprestimo getUltimoEmprestimoAssociado () {
return getEmprestimos () .get (getEmprestimos().size() - 1);

}

public String getTituloTombo () {
return publicacao.getTitulo() + "™ - " + getTombo();

}

public Boolean validate() throws Exception ({
SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals ("tombo", getTombo()));
Exemplar exemplar = sa.uniqueResult (Exemplar.class);
if (exemplar != null && !this.equals(exemplar)) {

throw new ValidateException ("Tombo j& cadastrado!™);
}
return true;

}

public boolean equals (Object obj)
if (! (obj instanceof Exemplar))
return false;

}

Exemplar exemplar = (Exemplar) obj;

return new EqualsBuilder ()
.append (this.getIdExemplar (), exemplar.getIdExemplar ())
.append (this.getTombo (), exemplar.getTombo ())
.isEquals () ;

{
{

}

public int hashCode () {
return new HashCodeBuilder () .append(this.getTombo ()) .toHashCode () ;
}

public int compareTo (Exemplar outro) {
return this.getPublicacao () .getTitulo ()
.compareTo (outro.getPublicacao () .getTitulo());

package br.com.infowaypi.jbook.core;
public class Publicacao implements Serializable, Comparable<Publicacao> {

private static final long serialVersionUID = 7770198638083066524L;

@GeneratedValue (strategy = GenerationType.AUTO)
private Long idPublicacao;

private String titulo;

private String assunto;

private String autor;

private String editora;

private Long ISBN;

private String tipoDePublicacao;

private Set<Exemplar> exemplares;

public Long getIdPublicacao() {
return idPublicacao;

}

public void setIdPublicacao (Long idPublicacao) {
this.idPublicacao = idPublicacao;

}

public String getTitulo() {
return titulo;

}

public void setTitulo(String titulo) {

public String getAssunto() {
return assunto;

}

public void setAssunto (String assunto) {

public String getAutor () {
return autor;

}

public void setAutor (String autor) {

public String getEditora() {
return editora;

}

public void setEditora(String editora) {
this.editora = editora;

}

public Long getISBN() {
return ISBN;
}

public void setISBN(Long iSBN) {

public String getTipoDePublicacao() {

return tipoDePublicacao;

}

public void setTipoDePublicacao (String tipoDePublicacao) {
this.tipoDePublicacao = tipoDePublicacao;

}

public Set<Exemplar> getExemplares () {
return exemplares;

}

public void setExemplares (Set<Exemplar> exemplares) {
this.exemplares = exemplares;

}

public Boolean validate () throws ValidateException {
boolean retorno = false;
if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.LIVRO.getValor())
&& this.getISBN() == null) {
throw new ValidateException ("O preenchimento do ISBN é obrigatdério para livros.");

} else if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.REVISTA.getValor())
&& this.getISBN() != null) {
throw new ValidateException("O preenchimento do ISBN ndo é necessario para revistas.");
}
retorno = verificaPreExistenciaPublicacao();
return retorno;

}

private Boolean verificaPreExistenciaPublicacao() throws ValidateException {
SearchAgent sa new SearchAgent () ;
sa.addParameter (new Equals ("titulo", this.getTitulo()));

sa.addParameter (new Equals ("autor", this.getAutor()));
sa.addParameter (new Equals ("editora", getEditora()));
sa.addParameter (new Equals ("tipoDePublicacao", this.tipoDePublicacao));
if (sa.uniqueResultAny (Publicacao.class) != null) {

throw new ValidateException ("Publicacdo ja cadastrada!");

}

(

sa.addParameter (new Equals ("assunto", this.getAssunto()));
(
(

if (Utils.isCampoDuplicado(this, "ISBN", this.getISBN())) {
throw new ValidateException ("Ndo é permitido cadastrar duas publicacAues com o mesmo ISBN!");

}

return true;

}

public int hashCode () {
return new HashCodeBuilder ()
.append (this.idPublicacao)
.append (this.ISBN)
.toHashCode () ;

}

public boolean equals (Object obj) {
if (! (obj instanceof Publicacao)) {
return false;

}
Publicacao publicacao = (Publicacao) obj;
return new EqualsBuilder () .append(this.getIdPublicacao (), publicacao.getIdPublicacao()) .append(this.getISBN(), publicacao.getISBN()) .isEquals();

}

public int compareTo (Publicacao outro) {
return this.getTitulo () .compareTo (outro.getTitulo());

Java file: Usuario.java
package br.com.infowaypi.jboek.eore; o
public class Usuario implements UsuarioInterface {

private static final long serialVersionUID = 1L;

protected Long idUsuario;

private String login;

private String senha;

private String novaSenhaDigitada;
private String novaSenhaConfirmacao;
private String role;

private String nome;

private String email;

private String status;

private Set<Emprestimo> emprestimos;

public Boolean validate() throws ValidateException {
if (Utils.isStringVazia(this.getLogin()))
throw new ValidateException("O Login deve ser informado.");
if (Utils.isStringVazia(this.getNome()))
throw new ValidateException ("O Nome do usudrio deve ser informado.");
if (Utils.isStringVazia(this.getEmail())) {
throw new ValidateException("O Email deve ser informado.");

}

if (Utils.isStringVazia(this.getRole()))
throw new ValidateException("O role do usudrio deve ser informado.");
if (Utils.isCampoDuplicado(this, "login", this.getLogin()))
throw new ValidateException("O login informado j& existe. Escolha outro nome para o login e tente novamente.");

if (Utils.isStringVazia(this.getSenha())) {
verificarRestricoes();
} else {
if (Utils.isStringVazia(this.getNovaSenhaDigitada()) && Utils.isStringVazia(this.getNovaSenhaConfirmacao())) {

return true;
}
verificarRestricoes();
}
this.setSenha (String.valueOf (this.getNovaSenhaDigitada () .hashCode()));
return true;

}

private void verificarRestricoes () throws ValidateException {

if (Utils.isStringVazia(this.getNovaSenhaDigitada()))
throw new ValidateException("A senha deve ser informada.");

if (Utils.isStringVazia(this.getNovaSenhaConfirmacao()))
throw new ValidateException (

"A confirmacdo da senha deve ser informada.");

if (!this.getNovaSenhaDigitada () .equals (this.getNovaSenhaConfirmacao()))

throw new ValidateException ("Senhas ndo conferem.");

}

public boolean isPossuiRole(String... roles) {
for (String role : roles) {
if (this.getRole() .equals(role))
return true;
}
return false;

}

public boolean autentica (String senhaDigitada) {
if (!StringUtils.isEmpty(senhaDigitada) && this.status.equals (ATIVO) && this.getSenha () .equals (String.valueOf (senhaDigitada.hashCode())))
return true;
return false;

}

public Long getIdUsuario () {
return idUsuario;

}

public void setIdUsuario (Long idUsuario) {

public String getRole() {
return role;

}

public void setRole (String role) {

public String getSenha () {
return senha;

}

public void setSenha (String senha) {

public String getLogin() {
return login;

}

public void setLogin(String login) {

public String getNome () {
return nome;

}

public void setNome (String nome) {

public String getStatus() {
return status;

}

public void setStatus(String status) {

public Set<Emprestimo> getEmprestimos () {
return emprestimos;

}

public void setEmprestimos (Set<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

}
public String getEmail () {
return email;

}

public void setEmail (String email) {

public String getNovaSenhaConfirmacao () {
return novaSenhaConfirmacao;

}

public void setNovaSenhaConfirmacao (String novaSenhaConfirmacao) {

public String getNovaSenhaDigitada () {
return novaSenhaDigitada;

}

public void setNovaSenhaDigitada (String novaSenhaDigitada) {

public void tocarObjetos() {
this.getIdUsuario();
this.getNome () ;
this.getRole () ;

}

public boolean equals (Object object) {
if (! (object instanceof UsuarioInterface)) {
return false;
}
Usuario usuario = (Usuario) object;
UsuarioInterface user = (UsuarioInterface) object;

return new EqualsBuilder ()
.append (this.getIdUsuario (), user.getIdUsuario())
.append (this.login, usuario.getLogin()) .isEquals();
}

public int hashCode () {
return new HashCodeBuilder () .append(this.getIdUsuario())
.append (this.getLogin ()) .toHashCode () ;
}

public String toString() {
return new ToStringBuilder (this, ToStringStyle.DEFAULT STYLE)
.append ("Login", this.login) .append("nome", this.nome)
.append("role", this.role).toString();
}

public int compareTo (UsuarioInterface outro) {
Integer compareRole = this.getRole () .compareTo (outro.getRole());
Integer compareNome = this.getNome () .compareTo (outro.getNome ()) ;
if (!compareRole.equals(0))
return compareRole;
return compareNome;

Actual package: “datasource”

Java file: DataSourceEtiquetaTombo.java

package br.com.infowaypi.jbook.datasource;
public class DataSourceEtiquetaTombo {

public DataSourceEtiquetaTombo (Long[] tombos) {
this.tombos = tombos;

}
private Long[] tombos;

public Long[] getTombos () {
return tombos;

}

public String getLogoInfoway () {
return "/home/jbook/files/logoInfoway.png";
}

Actual package: “enumeration”

Java file: EstadoConservacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum EstadoConservacaoEnum {

NOVO ("NOVO", "Novo"),

EXCELENTE ("EXCELENTE", "Excelente"),

BOM ("BOM", "Bom"),

DEPRECIADO ("DEPRECIADO", "Depreciado"),
INUTILIZAVEL ("INUTILIZAVEL", "Inutilizavel");

private String wvalor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private EstadoConservacaoEnum(String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

Java file: PeriodoSolicitacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum PeriodoSolicitacaoEmprestimoEnum {

UMA (1, "Uma Semana"),

DUAS (2, "Duas Semanas"),
TRES (3, "Trés Semanas"),
QUATRO (4, "Quatro Semanas");

private int valor;
private String descricao;

public int getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private PeriodoSolicitacaoEmprestimoEnum(int valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

Java file: RolesEnum.java

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {

©return wvalori
}

public String getDescricao() {
return descricao;

Java file: SituacaoEmprestimoEnum.java

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {

public String getDescricao() {
return descricao;

}

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {

public String getDescricao () {
return descricao;

}

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {

public String getDescricao() {
return descricao;

}

package br.com.infowaypi.jbook.flow;
public class AlterarSenhaFlow {

public UsuarioInterface alteraSenha (UsuarioInterface usuario, String senhaAntiga, String senhaNova, String senhaConfirmacao) throws Exception {
HibernateUtil.currentSession() .evict (usuario);
Usuario user = (Usuario) ImplDAO. findById(usuario.getIdUsuario(), Usuario.class);
if (user == null){

throw new ValidateException ("Usudrio nulo.");

}

boolean isSenhaNovaVazia = Utils.isStringVazia(senhaNova);
boolean isSenhaConfirmacaoVazia = Utils.isStringVazia(senhaConfirmacao);
boolean isSenhaAntigaVazia = Utils.isStringVazia(senhaAntiga);
boolean isCamposSenhasVazios = isSenhaAntigaVazia && isSenhaConfirmacaoVazia && isSenhaNovaVazia;
if (!isCamposSenhasVazios) {
if(Utils.isStringVazia (senhaAntiga)) {
throw new ValidateException ("A senha atual deve ser informada.");
}
if (isSenhaNovaVazia) {
throw new ValidateException ("A nova senha deve ser informada.");

}
if (isSenhaConfirmacaoVazia) {
throw new ValidateException("A confirmacdo da nova senha deve ser informada.");

}

boolean isSenhasNaoConferem = !usuario.getSenha () .equals (String.valueOf (senhaAntiga.hashCode()));
if (isSenhasNaoConferem) {
throw new ValidateException ("A senha atual n&o confere.");

}

user.setNovaSenhaDigitada (senhaNova) ;
user.setNovaSenhaConfirmacao (senhaConfirmacao) ;

}
user.validate();
HibernateUtil.currentSession() .save (user);

return user;

package br.com.infowaypi.jbook.flow;
public class CancelarSolicitacaoEmprestimoLeitorFlow {

public List<Emprestimo> getBuscarEmprestimosSolicitados (UsuarioInterface leitor) {
return EmprestimoManager.getBuscarEmprestimosSolicitados(leitor);

}

public void cancelarEmprestimo (Emprestimo emprestimo) {
EmprestimoManager.cancelarEmprestimo (emprestimo) ;

Java file: EtiquetaTomboFlow.Jjava

package br.com.infowaypi.jbook.flow;
public class EtiquetaTomboFlow {

public ResumoImpressaoEtiquetaTombo imprimirEtiquetasTombo (int gtdPaginas) throws Exception {
List<DataSourceEtiquetaTombo> dataSource= EtiquetaTomboManager.getRelatorio(gtdPaginas);
byte[] arquivo = EtiquetaTomboManager.getBytesRelatorio(dataSource) ;
ResumoImpressaoEtiquetaTombo resumoEtiquetaTombo = new ResumoImpressaoEtiquetaTombo (arquivo);

return resumoEtiquetaTombo;

Java file: SolicitacaoEmprestimoFlow.java

package br.com.infowaypi.jbook.flow;

public class SolicitacaoEmprestimoFlow {

public ResumoExemplares buscarPublicacao (String titulo, String assunto, String autor, TipoPublicacaoEnum tipoDePublicacao)throws ValidateException {

return EmprestimoManager.buscarPublicacao(titulo, assunto, autor, tipoDePublicacao);
}

public Exemplar selecionarExemplar (UsuarioInterface leitor, ResumoExemplares resumoExemplares, Exemplar exemplar) throws ValidateException {

return EmprestimoManager.selecionarExemplar(leitor, resumoExemplares, exemplar);
}
public void confirmarSolicitacao (UsuarioInterface leitor, Exemplar exemplar, PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo) throws Exception {
EmprestimoManager.confirmarSolicitacao(leitor, exemplar, periodoEmprestimo) ;

}

Actual package: “manager”

Java file: EmprestimoManager.java

package br.com.infowaypi.jbook.manager;

public class EmprestimoManager {

public static ResumoExemplares buscarPublicacao (String titulo, String assunto, String autor, TipoPublicacaoEnum tipoDePublicacao) throws ValidateException {
boolean semParametrosDePesquisa = true;

SearchAgent saExemplaresDisponiveis = new SearchAgent();

SearchAgent saExemplaresIndisponiveis= new SearchAgent () ;
Stack<ParameterInterface> parametros = new Stack<ParameterInterface>();

}

private static Collection<Exemplar> buscarExemplaresDisponiveis (SearchAgent saExemplaresDisponiveis,

}

if

('Utils.isStringVazia(titulo)) {

parametros.add (new LikeFull ("publicacao.titulo", titulo));

}
if

}
if

}
if

}
if

}
Re

if

}

re

St
pa
pa
re

semParametrosDePesquisa = false;

('Utils.isStringVazia(assunto)) {
parametros.add (new LikeFull ("publicacao.assunto", assunto));
semParametrosDePesquisa = false;
(!Utils.isStringVazia(autor)) {
parametros.add (new LikeFull ("publicacao.autor", autor));
semParametrosDePesquisa = false;
(tipoDePublicacao != null) {
parametros.add (new Equals ("publicacao.tipoDePublicacao",tipoDePublicacao.getValor()));
semParametrosDePesquisa = false;
(semParametrosDePesquisa) {
throw new ValidateException ("A% necessario inserir pelo menos um parAc¢metro de pesquisal!");
sumoExemplares resumo = new ResumoExemplares (

buscarExemplaresDisponiveis (saExemplaresDisponiveis, parametros),
buscarExemplaresIndisponiveis (saExemplaresIndisponiveis, parametros)
)i
(resumo.isExemplaresNaoLocalizados ()) {

throw new ValidateException ("Nenhum item encontrado.");

turn resumo;

ack<ParameterInterface> parametrosExemplaresDisponiveis = new Stack<ParameterInterface>();
rametrosExemplaresDisponiveis.addAll (parametros) ;

Stack<ParameterInterface> parametros) {

rametrosExemplaresDisponiveis.add (new Equals ("situacao", SituacaoExemplarEnum.DISPONIVEL.getValor()));

turn saExemplaresDisponiveis.listByParam(parametrosExemplaresDisponiveis, Exemplar.class);

private static Collection<Exemplar> buscarExemplaresIndisponiveis (SearchAgent saExemplaresIndisponiveis, Stack<ParameterInterface> parametros) {

}

public static Exemplar selecionarExemplar (UsuarioInterface leitor,

}

St
pa
pa

)i

re

if
}
if
}
if

}

re

ack<ParameterInterface> parametrosExemplaresIndisponiveis = new Stack<ParameterInterface>();
rametrosExemplaresIndisponiveis.addAll (parametros) ;
rametrosExemplaresIndisponiveis.add (new OR(

new Equals ("situacao", SituacaoExemplarEnum.SOLICITADO.getValor()),

new Equals ("situacao", SituacaoExemplarEnum.EMPRESTADO.getValor ())

)

turn saExemplaresIndisponiveis.listByParam(parametrosExemplaresIndisponiveis,Exemplar.class);

ResumoExemplares resumoExemplares,

Exemplar exemplar)

throws ValidateException {

(exemplar == null) {
throw new ValidateException ("N&o hd exemplares disponiveis para solicitacdo de empréstimo.");
(passoulLimiteEmprestimos ((Usuario) leitor)) {
throw new ValidateException (
"O limite de 02 (duas) solicitacBApes de empréstimo foi atingido. Ndo serd possivel realizar a solicitacdo de empréstimo. ");
(solicitouMesmaPublicacao((Usuario) leitor, exemplar)) {

throw new ValidateException ("N&do é possivel solicitar empréstimo de uma mesma publicacdo j& solicitada e em aberto.");

turn exemplar;

public static boolean passoulimiteEmprestimos (Usuario leitor) {

Se
sa
sa

archAgent sa = new SearchAgent();

.addParameter (new Equals("leitor", leitor));

.addParameter (new OR(
new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor())
)

}

)i

if (sa.resultCount (Emprestimo.class) > 1) {
return true;

}

return false;

public static boolean solicitouMesmaPublicacao (Usuario leitor, Exemplar exemplar) {

}

SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals("leitor", leitor));

sa.addParameter (new OR(
new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor())
)

);

Criteria criteriaO = sa.createCriteriaFor (Emprestimo.class);

Criteria criterial criteriaO.createCriteria ("exemplar");
criterial.add(Restrictions.eqg("publicacao", exemplar.getPublicacao()));
if (criterial.list().size() != 0) {

return true;

}

return false;

public static void confirmarSolicitacao (UsuarioInterface leitor, Exemplar exemplar,

}

Emprestimo emp = new Emprestimo();

exemplar.setSituacao (SituacaoExemplarEnum.SOLICITADO.getValor()) ;
emp.setExemplar (exemplar) ;

emp.setlLeitor ((Usuario) leitor);

emp.setSituacao (SituacaoEmprestimoEnum.SOLICITADO.getValor());
Calendar c¢ = Calendar.getInstance();
c.add(Calendar.WEEK OF MONTH, periodoEmprestimo.getValor());
emp.setDataPrevisaoDeDevolucao (c.getTime()) ;
HibernateUtil.currentSession() .save (emp) ;

SchedulerManager.agendarExpiracaoDeSolicitacaoDeEmprestimo (emp.getIdEmprestimo()) ;

PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo)

public static List<Emprestimo> getBuscarEmprestimosSolicitados (UsuarioInterface leitor) ({

}

SearchAgent sa new SearchAgent () ;

sa.addParameter (new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()));
(

sa.addParameter (new Equals("leitor", leitor));

return sa.list (Emprestimo.class);

public static void cancelarEmprestimo (Emprestimo emprestimo) {

emprestimo.setSituacao (SituacaoEmprestimoEnum.CANCELADO.getValor()) ;
emprestimo.getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor()) ;

SchedulerManager.cancelarExpiracaoDeSolicitacaoDeEmprestimo (emprestimo.getIdEmprestimo()) ;

Java file: EtiquetaTomboManager.java

package br.com.infowaypi.jbook.manager;

public class EtiquetaTomboManager {

private static final int NUMERO DE ETIQUETAS POR PAGINA = 14;

public static Long getUltimoTombo () {

}

SearchAgent sa = new SearchAgent () ;
return ((EtiquetaTombo) sa.findById(lL, EtiquetaTombo.class)).getUltimoTombo () ;

private static void setUltimoTombo (Long ultimoTombo) {

}

SearchAgent sa = new SearchAgent () ;
EtiquetaTombo etiquetaTombo = (EtiquetaTombo) sa.findById(lL, EtiquetaTombo.class)
etiquetaTombo.setUltimoTombo (ultimoTombo) ;

’

public static byte[] getBytesRelatorio (List<DataSourceEtiquetaTombo> dataSource) throws Exception {

}

public static List<DataSourceEtiquetaTombo> getRelatorio (int gtdPaginas)

JHeatReport report new JHeatReport ("..\\file\\etiquetas-tombo.xml", dataSource);
ByteArrayOutputStream output = new ByteArrayOutputStream();

report.createPDF (output) ;

return output.toByteArray();

throws Exception {

{

List<DataSourceEtiquetaTombo> dataSource = new ArrayList<DataSourceEtiquetaTombo> () ;
Long ultimoTomboDispionivel = getUltimoTombo () + 1;
for(int x = 0; x < gtdPaginas; x++) {

Long[] tombosDaPagina = new Long[NUMERO DE ETIQUETAS POR PAGINA];

for (int i =0; i < NUMERO DE ETIQUETAS POR PAGINA; i++) {

tombosDaPagina[i] = ++ultimoTomboDispionivel;
}
dataSource.add (new DataSourceEtiquetaTombo (tombosDaPagina)) ;

}

setUltimoTombo (ultimoTomboDispionivel) ;
return dataSource;

Java file: NotificadorManager.java

package br.com.infowaypi.jbook.manager;
public class NotificadorManager {

public static boolean notificarNovasAgquisicoes (Exemplar exemplar, Usuario usuario) {
if (exemplar.getPublicacao () .getExemplares () .size() == 1) {
enviarNotificacaoDeNovasAquisicoes (exemplar.getPublicacao (), usuario);
}
return true;

}

private static void enviarNotificacaoDeNovasAquisicoes (Publicacao publicacao, Usuario usuario)
String assunto = "Nova aquisig¢do para nossa biblioteca!";
StringBuilder corpo = new StringBuilder();
corpo.append("A biblioteca acaba de disponibilizar a partir deste momento mais um exemplar.
corpo.append ("Seguem abaixo os dados da publicacdo adquirida. \n");

(

corpo.append ("\n Titulo: " + publicacao.getTitulo());

corpo.append ("\n Assunto: " + publicacao.getAssunto());

corpo.append ("\n Autor: " + publicacao.getAutor());

corpo.append ("\n Editora: " + publicacao.getEditora());

corpo.append ("\n Tipo de publicacdo: " + publicacao.getTipoDePublicacao().toLowerCase());
(

corpo.append ("\n\n--\n") ;
corpo.append ("\n JBook - Sistema de controle de empréstimos de livros Infoway");
new EmailThread(usuario, "JBook", assunto, corpo.toString()).starta();

Java file: SchedulerManager.java

package br.com.infowaypi.jbook.manager;

public class SchedulerManager {
private static final String triggerName = "TRIGGER EXPIRA SOLICITACAO DE EMPRESTIMO N:";
private static final String jobName = "JOB EXPIRA SOLICITACAO DE EMPRESTIMO N:";

public static void agendarExpiracaoDeSolicitacaoDeEmprestimo (Long idSolicitacao) {

SimpleTrigger trigger = new SimpleTrigger (triggerName + idSolicitacao, Scheduler.DEFAULT GROUP, new Date (System.currentTimeMillis()
JobDetail tarefa = new JobDetail (jobName + idSolicitacao, Scheduler.DEFAULT GROUP, ExpiraSolicitacaoEmprestimoTask.class);

tarefa.getJobDataMap () .put ("idSolicitacao", idSolicitacao);
try {
QuartzConfigurator.getScheduler() .scheduleJob (tarefa, trigger);
} catch (SchedulerException e) {
e.printStackTrace();
}
}

public static void cancelarExpiracaoDeSolicitacaoDeEmprestimo (Long idSolicitacao) {
try {

{

\n") ;

QuartzConfigurator.getScheduler() .deleteJob (jobName + idSolicitacao, Scheduler.DEFAULT GROUP) ;

System.out.println ("Cancelando Job");
} catch (SchedulerException e) {
e.printStackTrace();
}
}

public static String getJobname () {
return jobName;

}

public static String getTriggername () {
return triggerName;

+

(24 ~*

(60 * 60000))));

w ”

Actual package: “msg

package br.com.infowaypi.jbook.msg;
public class EmailThread extends Thread ({
private Set<Usuario> usuarios = new HashSet<Usuario>();
private String nome;
private String assunto;
private String corpo;
public EmailThread (Usuario usuario, String nome, String assunto, String corpo) {
this.usuarios.add (usuario);
this.nome = nome;

this.assunto = assunto;
this.corpo = corpo;

public EmailThread (Set<? extends Usuario> usuarios, String nome, String assunto, String corpo) {
this.usuarios.addAll (usuarios) ;
this.nome = nome;
this.assunto = assunto;

this.corpo = corpo;
}
public void run() {
String destino = "contato-no-reply@infoway-pi.com.br";

for (Usuario usuario : usuarios) {
MailSender.mandarEmail (usuario, this.nome, this.assunto, this.corpo, destino);

public void starta() {
this.start();

Java file: MailSender.java

package br.com.infowaypi.jbook.msg;
public class MailSender {

public static void mandarEmail (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true) ;
mensagem.enviarEmail () ;

public static void mandarEmailHTML (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;

mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;

mensagem. setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true) ;
mensagem.enviarEmail () ;

}

public static void mandarEmailHTML (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmailHTML (usuario, nome, assunto, corpo, destino);

}

public static void mandarEmail (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmail (usuario, nome, assunto, corpo, destino);

Java file: EmprestimoReport.java

package br.com.infowaypi.jbook.report;

if (tipoPublicacao !=null) {

if (exemplares!=null)

if (leitores!=null)

if (situacaoEmprestimo !=null) {

if (dataEmprestimoInicio!=null && dataEmprestimoFinal!=null)

if (databDevolucaoInicial!=null && dataDevolucaoFinal!=null)

package br.com.infowaypi.jbook.resumo;

public void setEmprestimos (List<Emprestimo> emprestimos) {

Java file: ResumoExemplares.java
package br.com.infowaypi.jbook.reswmor T
public class ResumoExemplares {
private Collection<Exemplar> exemplaresDisponiveis;
private Collection<Exemplar> exemplaresIndisponiveis;
public ResumoExemplares (Collection<Exemplar> exemplaresDisponiveis, Collection<Exemplar> exemplaresIndisponiveis) {
this.exemplaresDisponiveis = exemplaresDisponiveis;

this.exemplaresIndisponiveis = exemplaresIndisponiveis;

}

public boolean isExemplaresNaoLocalizados () {

return ((exemplaresDisponiveis == null || exemplaresDisponiveis.size() == 0)
&& (exemplaresIndisponiveis == null || exemplaresIndisponiveis.size() == 0));
}
public Collection<Exemplar> getExemplaresDisponiveis () {

return exemplaresDisponiveis;

}

public Collection<Exemplar> getExemplaresIndisponiveis() {
return exemplaresIndisponiveis;

Java file: ResumolmpressaoEtiquetaTombo.java

package br.com.infowaypi.jbook.resumo;
public class ResumolImpressaoEtiquetaTombo implements Serializable {
private static final long serialVersionUID = 6380683336794912126L;

public ResumoImpressaoEtiquetaTombo (byte[] conteudoArquivo) {
this.conteudoArquivo = conteudoArquivo;

}
private byte[] conteudoArquivo;

public byte[] getConteudoArquivo () {
return conteudoArquivo;

}

public String getFileName () {
return "Etiquetas_de Tombo.pdf";

}

Actual package: “scheduler”

package br.com.infowaypi.jbook.scheduler;
public class QuartzConfigurator implements PlugIn({
private static Scheduler scheduler = null;

public void destroy () {
try f{
scheduler.shutdown () ;
} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public void init (ActionServlet servlet, ModuleConfig config) throws ServletException ({
try
scheduler = StdSchedulerFactory.getDefaultScheduler();

scheduler.start () ;
} catch (SchedulerException e) {
e.printStackTrace () ;

}
}

public static Scheduler getScheduler () {
return scheduler;

}

public static void setScheduler (Scheduler scheduler) {

QuartzConfigurator.scheduler = scheduler;

Java file: QuartzConfigurator.java

package br.com.infowaypi.jbook.scheduler;
public class QuartzConfigurator implements PlugIn({

private static Scheduler scheduler = null;

public void destroy () {
try {
scheduler.shutdown () ;
} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public void init (ActionServlet servlet,

try f{
scheduler = StdSchedulerFactory.getDefaultScheduler();

scheduler.start();
} catch (SchedulerException e) {
e.printStackTrace();

}

ModuleConfig config) throws ServletException {

}

public static Scheduler getScheduler() {
return scheduler;

}

public static void setScheduler (Scheduler scheduler) {

QuartzConfigurator.scheduler = scheduler;

}

Actual package: “util”

Java file: ConfiguraBaseDeDados.java

