| True negatives | |

JBook - Shadowing
Source folder: “src/main/java”
Main package: “br.com.infowaypi.jbook.”

Java file: Autenticador.java

package br.com.infowaypi.jbook.autenticacao;

Java file: UsuarioInterface.java

package br.com.infowaypi.jbook.autenticacao;

package br

.com.infowaypi.jbook.config;

public class Config {

public static
public static
public static
public static

public static

return

}

resoucesPath + file;

String aplicationPath = currentPath();

final String sourcePath = aplicationPath + File.separator + "src" + File.separator + "main" + File.separator;
final String resoucesPath = sourcePath + "resources" + File.separator;

final String webAppPath = sourcePath + "webapp" + File.separator;

String getFileInResources (String file) {

public static String getFileInWebApp (String file) {

return

}

private
tryf
retu
}catch
new
}

return

webAppPath + file;

static String currentPath() {

rn new File("").getCanonicalPath();

(IOException e) {
IOException (e.getMessage());

null;

Java file:

Emprestimo.java

package br

.com.infowaypi.jbook.core;

public class Emprestimo implements Serializable, Comparable<Emprestimo> {

private

private

private
private

private

static final long serialVersionUID

Long idEmprestimo;

Exemplar exemplar;
Date dataSolicitacao;

Date dataPrevisaoDeDevolucao;

-7427026885020906922L;

private Date dataDevolucao;

private String situacao;

public Long getIdEmprestimo () {
return idEmprestimo;

}

public void setIdEmprestimo (Long idEmprestimo) {
this.idEmprestimo = idEmprestimo;

public Exemplar getExemplar () {
return exemplar;

}

public void setExemplar (Exemplar exemplar) {
this.exemplar = exemplar;

}

public Date getDataSolicitacao() {
return dataSolicitacao;

}

public void setDataSolicitacao (Date dataSolicitacao) {
this.dataSolicitacao = dataSolicitacao;

}

public Date getDataPrevisaoDeDevolucao () {
return dataPrevisaoDeDevolucao;

}

public void setDataPrevisaoDeDevolucao (Date dataPrevisaoDeDevolucao) {
this.dataPrevisaoDeDevolucao = dataPrevisaoDeDevolucao;

}

public Date getDataDevolucao () {
return dataDevolucao;

}

public void setDataDevolucao (Date dataDevolucao) {
this.dataDevolucao = dataDevolucao;

if (getDataSolicitacao () .compareTo (getDataPrevisaoDeDevolucao()) > 0)
throw new ValidateException ("A data de previsdo para devolucdo deve ser futura");

throw new ValidateException ("O limite de 02 (duas) solicitacdes de empréstimo foi atingido. N&o serd possivel realizar a solicitacdo de empréstimo.");

this.getExemplar())) {
throw new ValidateException ("Ndo é possivel solicitar empréstimo de uma mesma publicacdo j& solicitada e em aberto.");

}
getExemplar () .setSituacao (SituacaoExemplarEnum.EMPRESTADO.getValor()) ;

this.situacao = SituacaoEmprestimoEnum.CONFIRMADO.getValor () ;
return true;

public int hashCode () {
return new HashCodeBuilder () .append(getIdEmprestimo ()) .toHashCode () ;
}

public boolean equals (Object obj) {
if (! (obj instanceof Emprestimo)) {
return false;
}
Emprestimo emprestimo = (Emprestimo) obj;
return new EqualsBuilder () .append(this.getIdEmprestimo (), emprestimo.getIdEmprestimo()) .isEquals/();

}

public int compareTo (Emprestimo outro) {
return this.getDataSolicitacao () .compareTo (outro.getDataSolicitacao());

}

public String getSituacao() {
return situacao;

}

public void setSituacao (String situacao) {
this.situacao = situacao;

}

public void cancelarSolicitacao () {
getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor());
setSituacao (SituacaoEmprestimoEnum.CANCELADO.getValor ()) ;
Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this);
trans.commit () ;

}

public void confirmarSolicitacao () {
getExemplar () .setSituacao (SituacaoExemplarEnum.EMPRESTADO.getValor()) ;
setSituacao (SituacaoEmprestimoEnum.CONFIRMADO.getValor());
Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this);
trans.commit () ;

}

public void encerrar() throws ValidateException({
getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor());
setSituacao (SituacaoEmprestimoEnum.FINALIZADO.getValor()) ;
setDataDevolucao (new Date());

Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this);

trans.commit () ;

if (getDataDevolucao () .compareTo (getDataPrevisaobDeDevolucao()) > 0){

throw new ValidateException ("Devolugdo em atrasso");

Java file: EtiquetaTombo.java

package br.com.infowaypi.jbook.core;
public class EtiquetaTombo {
private Long idEtiquetaTombo = 1L;
private Long ultimoTombo;

public Long getIdEtiquetaTombo () {
return idEtiquetaTombo;

}

public void setIdEtiquetaTombo (Long idEtiquetaTombo) {
this.idEtiquetaTombo = idEtiquetaTombo;
}

public Long getUltimoTombo () {
return ultimoTombo;

}

public void setUltimoTombo (Long ultimoTombo) {
this.ultimoTombo = ultimoTombo;

}

public int hashCode () {
return new HashCodeBuilder () .append(getIdEtiquetaTombo ()) .toHashCode () ;
}

public boolean equals (Object obj) {
if (! (obj instanceof EtiquetaTombo)) {
return false;

}
EtiquetaTombo etiqueta = (EtiquetaTombo) obj;
return new EqualsBuilder () .append(this.getIdEtiquetaTombo (), etiqueta.getIdEtiquetaTombo ()) .isEquals();

Java file: Exemplar.java

package br.com.infowaypi.jbook.core;
public class Exemplar implements Serializable, Comparable<Exemplar> {

private static final long serialVersionUID = 4448872540560235275L;

private Long idExemplar;

private Publicacao publicacao;
private Long tombo;

private Date dataCatalogacao;

private List<Emprestimo> emprestimos;
private String estadoDeConservacao;
private String situacao;

public Long getIdExemplar () {
return idExemplar;

}

public void setIdExemplar (Long idExemplar) {
this.idExemplar = idExemplar;
}

public Publicacao getPublicacao () {
return publicacao;

}

public void setPublicacao (Publicacao publicacao) {
this.publicacao = publicacao;

}

public Long getTombo () {
return tombo;

}

public void setTombo (Long tombo) {
this.tombo = tombo;
}

public Date getDataCatalogacao () {
return dataCatalogacao;

}

public void setDataCatalogacao (Date dataCatalogacao) {
this.dataCatalogacao = dataCatalogacao;

}

public List<Emprestimo> getEmprestimos () {
return emprestimos;

}

public void setEmprestimos (List<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

}

public String getEstadoDeConservacao () {
return estadoDeConservacao;

}

public void setEstadoDeConservacao (String estadoDeConservacao) {
this.estadoDeConservacao = estadoDeConservacao;

}

public String getSituacao() {
return situacao;

}

public void setSituacao (String situacao) {
this.situacao = situacao;

}

public Emprestimo getUltimoEmprestimoAssociado () {
return getEmprestimos () .get (getEmprestimos().size() - 1);

}

public String getTituloTombo () {
return publicacao.getTitulo() + " - " + getTombo();

}

public Boolean validate() throws Exception {
SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals ("tombo", getTombo()));
Exemplar exemplar = sa.uniqueResult (Exemplar.class);
if (exemplar != null && !this.equals (exemplar)) {

throw new ValidateException ("Tombo j& cadastrado!™);

}

return true;

}
public boolean equals (Object obj) {
if (! (obj instanceof Exemplar)) {

return false;
}
Exemplar exemplar = (Exemplar) obj;
return new EqualsBuilder () .append (this.getIdExemplar (), exemplar.getIdExemplar()) .append (this.getTombo (), exemplar.getTombo ()) .isEquals();
}

public int hashCode () {
return new HashCodeBuilder () .append(this.getTombo ()) .toHashCode();
}

public int compareTo (Exemplar outro) {
return this.getPublicacao () .getTitulo () .compareTo (outro.getPublicacao () .getTitulo());

Java file: Publicacao.java
package br.com.infowaypi.jbook.core;
public class Publicacao implements Serializable, Comparable<Publicacao> {
private static final long serialVersionUID = 7770198638083066524L;
 public Publicacao() {}
private Long idPublicacao;
private String titulo;
private String assunto;
private String autor;
private String editora;
private Long ISBN;

private String tipoDePublicacao;

private Set<Exemplar> exemplares;

public Long getIdPublicacao () {
return idPublicacao;

}

public void setIdPublicacao (Long idPublicacao) {
this.idPublicacao = idPublicacao;

}

public String getTitulo() {
return titulo;

}

public void setTitulo(String titulo) {
this.titulo = titulo;
}

public String getAssunto() {
return assunto;

}

public void setAssunto(String assunto) {
this.assunto = assunto;

}

public String getAutor () {
return autor;

}

public void setAutor (String autor) {
this.autor = autor;

}

public String getEditora() {
return editora;

}

public void setEditora(String editora) {
this.editora = editora;

}

public Long getISBN() {
return ISBN;
}

public void setISBN (Long iSBN) {
ISBN = iSBN;
}

public String getTipoDePublicacao () {
return tipoDePublicacao;

}

public void setTipoDePublicacao (String tipoDePublicacao) {
this.tipoDePublicacao = tipoDePublicacao;

}

public Set<Exemplar> getExemplares() {
return exemplares;

}

public void setExemplares (Set<Exemplar> exemplares) {
this.exemplares = exemplares;

}

public Boolean validate() throws ValidateException {

boolean retorno = false;

if (this.getTipoDePublicacao ()
&& this.getISBN() == null) {
throw new ValidateException ("O preenchimento do ISBN é obrigatério para livros.");

} else if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.REVISTA.getValor())
&& this.getISBN() != null) {
throw new ValidateException("O preenchimento do ISBN ndo é necessario para revistas.");

.equals (TipoPublicacaoEnum.LIVRO.getValor())

}
retorno = verificaPreExistenciaPublicacaol();
return retorno;

private Boolean verificaPreExistenciaPublicacao() throws ValidateException {
SearchAgent sa = new SearchAgent();
sa.addParameter (new Equals ("titulo", this.getTitulo()));
sa.addParameter (new Equals ("assunto", this.getAssunto()));
(
(

sa.addParameter (new Equals ("autor", this.getAutor()));
sa.addParameter (new Equals ("editora", getEditora()));
sa.addParameter (new Equals ("tipoDePublicacao", this.tipoDePublicacao));
if (sa.uniqueResultAny (Publicacao.class) != null) {

throw new ValidateException ("Publicag¢do ja cadastrada!");
}
if (Utils.isCampoDuplicado (this, "ISBN", this.getISBN())) {

throw new ValidateException ("Ndo é permitido cadastrar duas publicacAues com o mesmo ISBN!");
}
return true;

}

public int hashCode () {
return new HashCodeBuilder ()
.append (this.idPublicacao)
.append (this.ISBN)
.toHashCode () ;

}

public boolean equals (Object obj) {
if (! (obj instanceof Publicacao)) {
return false;

}

Publicacao publicacao = (Publicacao) obj;

return new EqualsBuilder () .append(this.getIdPublicacao(), publicacao.getIdPublicacao())
.append (this.getISBN (), publicacao.getISBN())
.isEquals () ;

}

public int compareTo (Publicacao outro) {
return this.getTitulo () .compareTo (outro.getTitulo());

Java file: Usuario.java

package br.com.infowaypi.jbook.core;

if (Utils.isStringVazia(this.getNovaSenhaDigitada()) && Utils.isStringVazia (this.getNovaSenhaConfirmacao())) {

if (!StringUtils.isEmpty (senhaDigitada) && this.status.equals (ATIVO) && this.getSenha () .equals(String.valueOf (senhaDigitada.hashCode())))

package br.com.infowaypi.jbook.datasource;

public class DataSourceEtiquetaTombo {

public DataSourceEtiquetaTombo (Long[] tombos) {

this.tombos = tombos;

}
private Long[] tombos;

public Long[] getTombos () {
return tombos;

}

public String getLogoInfoway () {
return "/home/jbook/files/logoInfoway.png";
}

Actual package: “enumeration”

Java file: EstadoConservacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum EstadoConservacaoEnum {

NOVO ("NOVO", "Novo"),

EXCELENTE ("EXCELENTE", "Excelente"),

BOM ("BOM", "Bom"),

DEPRECIADO ("DEPRECIADO", "Depreciado"),
INUTILIZAVEL ("INUTILIZAVEL", "Inutilizavel™);

private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private EstadoConservacaoEnum(String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

Java file: PeriodoSolicitacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum PeriodoSolicitacaoEmprestimoEnum {

UMA (1, "Uma Semana"),

DUAS (2, "Duas Semanas"),
TRES (3, "Trés Semanas"),
QUATRO (4, "Quatro Semanas");

private int valor;
private String descricao;

public int getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private PeriodoSolicitacaoEmprestimoEnum(int valor, String descricao) ({
this.valor = valor;
this.descricao = descricao;

Java file: RolesEnum.java

package br.com.infowaypi.jbook.enumeration;

Java file: SituacaoEmprestimoEnum.java

package br.com.infowaypi.jbook.enumeration;
public enum SituacaoEmprestimoEnum {

SOLICITADO ("SOLICITADO", "Solicitado"),
CONFIRMADO ("CONFIRMADO", "Confirmado"),
CANCELADO ("CANCELADO", "Cancelado"),
EXPIRADO ("EXPIRADO", "Expirado"),
FINALIZADO ("FINALIZADO", "Finalizado");

private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private SituacaoEmprestimoEnum(String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

Java file: SituacaoExemplarEnum.java

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {

public String getDescricao () {
return descricao;

}

Java file: TipoPublicacaoEnum.java

package br.com.infowaypi.jbook.enumeration;
public enum TipoPublicacaoEnum implements Serializable {

LIVRO ("LIVRO", "Livro"),
REVISTA ("REVISTA", "Revista");

private TipoPublicacaoEnum(String valor, String descricao) ({
this.valor = valor;
this.descricao = descricao;

}
private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

—

Java file: AlterarSenhaFlow.java

package br.com.infowaypi.jbook.flow;

boolean isCamposSenhasVazios = isSenhaAntigaVazia && isSenhaConfirmacaoVazia && isSenhaNovaVazia;

package br.com.infowaypi.jbook.flow;

public class CancelarSolicitacaoEmprestimoLeitorFlow {

public void cancelarEmprestimo (Emprestimo emprestimo) {
EmprestimoManager.cancelarEmprestimo (emprestimo) ;

Java file: EtiquetaTomboFlow.java

package br.com.infowaypi.jbook.flow;
public class EtiquetaTomboFlow {

public ResumolImpressaoEtiquetaTombo imprimirEtiquetasTombo (int gtdPaginas)

throws Exception ({

List<DataSourceEtiquetaTombo> dataSource= EtiquetaTomboManager.getRelatorio (gtdPaginas);

byte[] arquivo = EtiquetaTomboManager.getBytesRelatorio (dataSource);

ResumoImpressaoEtiquetaTombo resumoEtiquetaTombo = new ResumolImpressaoEtiquetaTombo (arquivo) ;

return resumoEtiquetaTombo;

Java file: SolicitacaoEmprestimoFlow.java

package br.com.infowaypi.jbook.flow;

public class SolicitacaoEmprestimoFlow {

public ResumoExemplares buscarPublicacao (String titulo, String assunto, String autor, TipoPublicacaoEnum tipoDePublicacao)throws ValidateException {
return EmprestimoManager.buscarPublicacao(titulo, assunto, autor, tipoDePublicacao);

}

public Exemplar selecionarExemplar (UsuarioInterface leitor, ResumoExemplares resumoExemplares, Exemplar exemplar) throws ValidateException ({
return EmprestimoManager.selecionarExemplar (leitor, resumoExemplares, exemplar);

}

public void confirmarSolicitacao (UsuarioInterface leitor, Exemplar exemplar,
EmprestimoManager.confirmarSolicitacao (leitor, exemplar, periodoEmprestimo);

}

Actual package: “manager”

Java file: EmprestimoManager.java

package br.com.infowaypi.jbook.manager;

public class EmprestimoManager {

public static ResumoExemplares buscarPublicacao (String titulo, String assunto,

boolean semParametrosDePesquisa = true;

SearchAgent saExemplaresDisponiveis = new SearchAgent () ;
SearchAgent saExemplaresIndisponiveis= new SearchAgent();
Stack<ParameterInterface> parametros = new Stack<ParameterInterface>();

if (!Utils.isStringVazia(titulo)) {
parametros.add (new LikeFull ("publicacao.titulo", titulo));
semParametrosDePesquisa = false;

}

if (!Utils.isStringVazia (assunto)) {
parametros.add (new LikeFull ("publicacao.assunto", assunto));
semParametrosDePesquisa = false;

}

if (!Utils.isStringVazia (autor)) {
parametros.add (new LikeFull ("publicacao.autor", autor)):;
semParametrosDePesquisa = false;

}

if (tipoDePublicacao != null) {

PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo) throws Exception {

String autor, TipoPublicacaoEnum tipoDePublicacao) throws ValidateException {

parametros.add(new Equals ("publicacao.tipoDePublicacao", tipoDePublicacao.getValor()));

semParametrosDePesquisa = false;

}

if (semParametrosDePesquisa) {

throw new ValidateException ("A% necessario inserir pelo menos um parA¢metro de pesquisal!");

}
ResumoExemplares resumo = new ResumoExemplares (
buscarExemplaresDisponiveis (saExemplaresDisponiveis, parametros),

buscarExemplaresIndisponiveis (saExemplaresIndisponiveis, parametros)

)i
if (resumo.isExemplaresNaoLocalizados()) {
throw new ValidateException ("Nenhum item encontrado.");

return resumo;

}

private static Collection<Exemplar> buscarExemplaresDisponiveis (SearchAgent saExemplaresDisponiveis, Stack<ParameterInterface> parametros) {

Stack<ParameterInterface> parametrosExemplaresDisponiveis = new Stack<ParameterInterface>();
parametrosExemplaresDisponiveis.addAll (parametros) ;
parametrosExemplaresDisponiveis.add (new Equals ("situacao", SituacaoExemplarEnum.DISPONIVEL.getValor()));

return saExemplaresDisponiveis.listByParam(parametrosExemplaresDisponiveis, Exemplar.class);

}

private static Collection<Exemplar> buscarExemplaresIndisponiveis (SearchAgent saExemplaresIndisponiveis,Stack<ParameterInterface> parametros) ({
Stack<ParameterInterface> parametrosExemplaresIndisponiveis = new Stack<ParameterInterface>();
parametrosExemplaresIndisponiveis.addAll (parametros) ;
parametrosExemplaresIndisponiveis.add (new OR (
new Equals ("situacao", SituacaoExemplarEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoExemplarEnum.EMPRESTADO.getValor ())
)
)i

return saExemplaresIndisponiveis.listByParam(parametrosExemplaresIndisponiveis,Exemplar.class);

if (exemplar == null) {
throw new ValidateException ("Ndo hd exemplares disponiveis para solicitagdo de empréstimo.");

throw new ValidateException (
"O limite de 02 (duas) solicitacBAupes de empréstimo foi atingido. N&o serd possivel realizar a solicitacdo de empréstimo. ");

throw new ValidateException ("N&do é possivel solicitar empréstimo de uma mesma publicagdo j& solicitada e em aberto.");

}

return exemplar;

SearchAgent sa = new SearchAgent();

sa.addParameter (new OR (
new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor())
)

)i

if (sa.resultCount (Emprestimo.class) > 1) {

return true;
}

return false;

SearchAgent sa = new SearchAgent () ;

sa.addParameter (new OR(
new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor ())
)

)7

Criteria criteria0 = sa.createCriteriaFor (Emprestimo.class);

Criteria criterial = criteriaO.createCriteria("exemplar");
criterial.add(Restrictions.eqg("publicacao", exemplar.getPublicacao()));
if (criterial.list().size() != 0) {

return true;

}

return false;

Emprestimo emp = new Emprestimo();
exemplar.setSituacao (SituacaoExemplarEnum.SOLICITADO.getValor());
emp.setExemplar (exemplar) ;

emp.setSituacao (SituacaoEmprestimoEnum.SOLICITADO.getValor ()) ;

Calendar c¢ = Calendar.getInstance();

c.add (Calendar.WEEK OF MONTH, periodoEmprestimo.getValor());
emp.setDataPrevisaoDeDevolucao (c.getTime()) ;
HibernateUtil.currentSession () .save (emp) ;
SchedulerManager.agendarExpiracaoDeSolicitacaoDeEmprestimo (emp.getIdEmprestimo ()) ;

SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()));
sa.addParameter (new Equals ("leitor", leitor));

return sa.list (Emprestimo.class);

}

public static void cancelarEmprestimo (Emprestimo emprestimo) {
emprestimo.setSituacao (SituacaoEmprestimoEnum.CANCELADO.getValor()) ;
emprestimo.getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor ()) ;
SchedulerManager.cancelarExpiracaoDeSolicitacaoDeEmprestimo (emprestimo.getIdEmprestimo());

Java file: EtiquetaTomboManager.java

package br.com.infowaypi.jbook.manager;
public class EtiquetaTomboManager {
private static final int NUMERO DE ETIQUETAS POR PAGINA = 14;

public static Long getUltimoTombo () {
SearchAgent sa = new SearchAgent () ;
return ((EtiquetaTombo) sa.findById(lL, EtiquetaTombo.class)) .getUltimoTombo () ;

}

private static void setUltimoTombo (Long ultimoTombo) {
SearchAgent sa = new SearchAgent();
EtiquetaTombo etiquetaTombo = (EtiquetaTombo) sa.findById (1L, EtiquetaTombo.class);
etiquetaTombo.setUltimoTombo (ultimoTombo) ;

}

public static byte[] getBytesRelatorio (List<DataSourceEtiquetaTombo> dataSource) throws Exception {
JHeatReport report = new JHeatReport ("..\\file\\etiquetas-tombo.xml", dataSource);
ByteArrayOutputStream output = new ByteArrayOutputStream();
report.createPDF (output) ;
return output.toByteArray();

}

public static List<DataSourceEtiquetaTombo> getRelatorio (int gtdPaginas) throws Exception ({

List<DataSourceEtiquetaTombo> dataSource = new ArrayList<DataSourceEtiquetaTombo> () ;
Long ultimoTomboDispionivel = getUltimoTombo () + 1;
for(int x = 0; x < gtdPaginas; x++){

Long[] tombosDaPagina = new Long[NUMERO DE ETIQUETAS POR PAGINA];

for (int i =0; i < NUMERO_DE_ETIQUETAS POR_PAGINA; i++) {

tombosDaPagina[i] = ++ultimoTomboDispionivel;

}

dataSource.add (new DataSourceEtiquetaTombo (tombosDaPagina)) ;
}
setUltimoTombo (ultimoTomboDispionivel) ;
return dataSource;

Java file: NotificadorManager.java

package br.com.infowaypi.jbook.manager;
public class NotificadorManager {

public static boolean notificarNovasAgquisicoes (Exemplar exemplar, Usuario usuario) {
if (exemplar.getPublicacao () .getExemplares () .size() == 1) {
enviarNotificacaoDeNovasAquisicoes (exemplar.getPublicacao (), usuario);
}
return true;

}

private static void enviarNotificacaoDeNovasAquisicoes (Publicacao publicacao, Usuario usuario) {
String assunto = "Nova aquisicgdo para nossa biblioteca!";
StringBuilder corpo = new StringBuilder();
corpo.append ("A biblioteca acaba de disponibilizar a partir deste momento mais um exemplar. \n");
corpo.append ("Seguem abaixo os dados da publicacdo adquirida. \n");

(

corpo.append ("\n Titulo: " + publicacao.getTitulo());

corpo.append ("\n Assunto: " + publicacao.getAssunto());

corpo.append ("\n Autor: " + publicacao.getAutor());

corpo.append ("\n Editora: " + publicacao.getEditora());

corpo.append ("\n Tipo de publicacdo: " + publicacao.getTipoDePublicacao () .toLowerCase());
(

corpo.append ("\n\n--\n") ;
corpo.append ("\n JBook - Sistema de controle de empréstimos de livros Infoway");
new EmailThread (usuario, "JBook", assunto, corpo.toString()) .starta();

Java file: SchedulerManager.java

package br.com.infowaypi.jbook.manager;

public class SchedulerManager {

private static final String triggerName = "TRIGGER EXPIRA SOLICITACAO_ DE EMPRESTIMO N:";
private static final String jobName = "JOB EXPIRA SOLICITACAO DE_EMPRESTIMO N:";

public static void agendarExpiracaoDeSolicitacaoDeEmprestimo (Long idSolicitacao) {
SimpleTrigger trigger = new SimpleTrigger (triggerName + idSolicitacao, Scheduler.DEFAULT GROUP, new Date (System.currentTimeMillis() + (24 * (60 * 60000))));
JobDetail tarefa = new JobDetail (jobName + idSolicitacao, Scheduler.DEFAULT GROUP, ExpiraSolicitacaoEmprestimoTask.class);
tarefa.getJobDataMap () .put ("idSolicitacao", idSolicitacao);
try {
QuartzConfigurator.getScheduler () .scheduleJob (tarefa, trigger);
} catch (SchedulerException e) {
e.printStackTrace();
}
}

public static void cancelarExpiracaoDeSolicitacaoDeEmprestimo (Long idSolicitacao) {
try {
QuartzConfigurator.getScheduler () .deleteJob (jobName + idSolicitacao, Scheduler.DEFAULT GROUP) ;
System.out.println ("Cancelando Job");
} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public static String getJobname () {
return jobName;

}

public static String getTriggername () {
return triggerName;

package br.com.infowaypi.jbook.msg;

public class EmailThread extends Thread {

private String nome;
private String assunto;

private String corpo;

this.nome = nome;
this.assunto = assunto;
this.corpo = corpo;

H

this.nome = nome;
this.assunto = assunto;
this.corpo = corpo;

}

public void run() {
String destino = "contato-no-reply@infoway-pi.com.br";

-
-

public void starta() {
this.start();

package br.com.infowaypi.jbook.msg;

public class MailSender ({

Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());

mensagem.setEnviarEmail (true) ;
mensagem.enviarEmail () ;

Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());

mensagem.setEnviarEmail (true) ;
mensagem.enviarEmail () ;

}

package br.com.infowaypi.jbook.report;

public class EmprestimoReport {

ReportEmprestimoResumo rre = new ReportEmprestimoResumo () ;
rre.setEmprestimos (emprestimos) ;
return rre;

}

private List<Emprestimo> buscaPorEmprestimos (

TipoPublicacaoEnum tipoPublicacao,

Exemplar exemplares,

Usuario leitores,

SituacaoEmprestimoEnum situacaoEmprestimo,

Date dataEmprestimoInicio,

Date dataEmprestimoFinal,

Date dataDevolucaoInicial,

Date dataDevolucaoFinal) {
Criteria ¢ = HibernateUtil.currentSession (Emprestimo.class) .createCriteria (Emprestimo.class);
if (tipoPublicacao !=null) {

c.createAlias ("exemplar","e");

c.createAlias ("e.publicacao", "p");

c.add (Restrictions.eg("p.tipoDePublicacao", tipoPublicacao.getValor()));
}
if (exemplares!=null)

c.add (Restrictions.eq("exemplar", exemplares));
if (leitores!=null)

c.add (Restrictions.eg("leitor", leitores));
if (situacaoEmprestimo !=null) {
c.add (Restrictions.eqg("situacao", situacaoEmprestimo.getValor())):;

}
if (dataEmprestimoInicio!=null && dataEmprestimoFinal!=null)

c.add (Restrictions.between ("dataSolicitacao", dataEmprestimoInicio, dataEmprestimoFinal));
if (databDevolucaoInicial!=null && dataDevolucaoFinal!=null)

c.add (Restrictions.between ("dataDevolucao", dataDevolucaolInicial, dataDevolucaoFinal));
return c.list();

Actual package: “resumo”

Java file: ReportEmprestimoResumo.java

package br.com.infowaypi.jbook.resumo;
public class ReportEmprestimoResumo {
private List<Emprestimo> emprestimos;

public List<Emprestimo> getEmprestimos () {
return emprestimos;

}

public void setEmprestimos (List<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

Java file: ResumoExemplares.java

package br.com.infowaypi.jbook.resumo;
public class ResumoExemplares {
private Collection<Exemplar> exemplaresDisponiveis;
private Collection<Exemplar> exemplaresIndisponiveis;
public ResumoExemplares (Collection<Exemplar> exemplaresDisponiveis, Collection<Exemplar> exemplaresIndisponiveis) ({
this.exemplaresDisponiveis = exemplaresDisponiveis;

this.exemplaresIndisponiveis = exemplaresIndisponiveis;

}

public boolean isExemplaresNaoLocalizados () {
return ((exemplaresDisponiveis == null || exemplaresDisponiveis.size() == 0)
&& (exemplaresIndisponiveis == null || exemplaresIndisponiveis.size() == 0));
}
public Collection<Exemplar> getExemplaresDisponiveis () {

return exemplaresDisponiveis;

}

public Collection<Exemplar> getExemplaresIndisponiveis () {
return exemplaresIndisponiveis;

Java file: ResumolImpressaoEtiquetaTombo.java

package br.com.infowaypi.jbook.resumo;
public class ResumoImpressaoEtiquetaTombo implements Serializable ({
private static final long serialVersionUID = 6380683336794912126L;
public ResumoImpressaoEtiquetaTombo (byte[] conteudoArquivo) {
this.conteudoArquivo = conteudoArquivo;
}
private byte[] conteudoArquivo;
public byte[] getConteudoArquivo () {
return conteudoArquivo;
}
public String getFileName () {

return "Etiquetas de Tombo.pdf";

}

Actual package: “scheduler”

package br.com.infowaypi.jbook.scheduler;
public class ExpiraSolicitacaoEmprestimoTask implements Job {
public void execute (JobExecutionContext argl) throws JobExecutionException {

Long idSolicitacaoDeEmprestimo = (Long) argO.getJobDetail () .getJobDataMap () .get ("idSolicitacao");
expirarSolicitacaoDeEmprestimo (idSolicitacaoDeEmprestimo) ;

}

public boolean expirarSolicitacaoDeEmprestimo (Long idSolicitacaoDeEmprestimo) {
Session sessao = HibernateUtil.currentSession();
Transaction tx = sessao.beginTransaction();

Emprestimo solicitacaoDeEmprestimo = (Emprestimo) sessao.load(Emprestimo.class, idSolicitacaoDeEmprestimo) ;

if (solicitacaoDeEmprestimo.getSituacao () .equals (SituacaoEmprestimoEnum.SOLICITADO.getValor())) {
solicitacaoDeEmprestimo.setSituacao (SituacaoEmprestimoEnum.EXPIRADO.getValor()) ;
solicitacaoDeEmprestimo.getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor());

}

sessao.update (solicitacaoDeEmprestimo) ;
tx.commit () ;

return true;

Java file: QuartzConfigurator.java

package br.com.infowaypi.jbook.scheduler;
public class QuartzConfigurator implements PlugIn({
private static Scheduler scheduler = null;

public void destroy() {
try {
scheduler.shutdown () ;
} catch (SchedulerException e) {
e.printStackTrace();

}

public void init (ActionServlet servlet, ModuleConfig config) throws ServletException {
try {
scheduler = StdSchedulerFactory.getDefaultScheduler();
scheduler.start();
} catch (SchedulerException e) {
e.printStackTrace () ;

}

public static Scheduler getScheduler () {
return scheduler;

}

public static void setScheduler (Scheduler scheduler) {
QuartzConfigurator.scheduler = scheduler;

}

Actual package: “util”

