JBook - Shadowing - Oracle
Source folder: “src/main/java”
Main package: “br.com.infowaypi.jbook.”

Actual package: “autenticacao”

Java file: Autenticador.java

package br.com.infowaypi.jbook.autenticacao;
public class Autenticador {
private static final ThreadLocal<UsuarioInterface> threadUsuario = new ThreadLocal<UsuarioInterface>();

public Autenticador () {
}

public UsuarioInterface getUsuario() {
return threadUsuario.get();

}

public String[] getRoles (String login, String senha) throws Exception ({
if (Utils.isStringVazia(senha)) {
return null;
}

UsuarioInterface usuario = buscaUsuario (login);

if (usuario != null && usuario.autentica (senha)) {
threadUsuario.set (usuario) ;
return new String[] { usuario.getRole() };

}
return null;

}

public Usuario buscaUsuario (String login) {
SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals("login", login));
return sa.uniqueResult (Usuario.class);

Java file: UsuariolInterface.java
package br.com.infowaypi.jbook.autenticacao;

public interface UsuariolInterface extends Serializable, Comparable<UsuarioInterface> {

public static final String ATIVO = "A";
public static final String CANCELADO = "C";

public abstract Boolean validate() throws ValidateException;
public abstract Long getIdUsuariol();

public abstract void setIdUsuario (Long idUsuario) ;
public abstract String getNome () ;

public abstract void setNome (String nome) ;

public abstract String getEmail();

public abstract void setEmail (String email);
public abstract String getLogin();

public abstract void setLogin (String login);
public abstract String getSenhal();

public abstract void setSenha (String senha);
public abstract String getStatus();

public abstract void setStatus(String status);
public String getNovaSenhaConfirmacao();

public abstract void setNovaSenhaConfirmacao (String novaSenhaConfirmacao) ;

public String getNovaSenhaDigitada();

public abstract void setNovaSenhaDigitada (String novaSenhaDigitada);
public abstract String getRole();

public abstract void setRole(String role);

public abstract boolean isPossuiRole (String... roles);

public abstract boolean autentica (String senha);

public void tocarObjetos();

Actual package: “config”

package br.com.infowaypi.jbook.config;
public class Config {
public static String aplicationPath = currentPath();
public static final String sourcePath = aplicationPath + File.separator + "src" + File.separator + "main" + File.separator;
public static final String resoucesPath = sourcePath + "resources" + File.separator;
public static final String webAppPath = sourcePath + "webapp" + File.separator;

public static String getFileInResources (String file) {
return resoucesPath + file;

}

public static String getFileInWebApp (String file) {
return webAppPath + file;
}

private static String currentPath () {
tryf
return new File("").getCanonicalPath();
}catch (IOException e) {
new IOException(e.getMessage());
}

return null;

Actual package: “core”

Java file: Emprestimo.java

package br.com.infowaypi.jbook.core;

Java file: EtiquetaTombo.java
package br.com.infowaypi.jbook.core;
public class EtiquetaTombo {

private Long idEtiquetaTombo = 1L;

private Long ultimoTombo;

public Long getIdEtiquetaTombo () {

return idEtiquetaTombo;

}

public void setIdEtiquetaTombo (Long idEtiquetaTombo)
this.idEtiquetaTombo = idEtiquetaTombo;
}

public Long getUltimoTombo () {
return ultimoTombo;

}
public void setUltimoTombo (Long ultimoTombo) {
this.ultimoTombo = ultimoTombo;

}

public int hashCode() {

return new HashCodeBuilder () .append(getIdEtiquetaTombo ()) .toHashCode () ;
}

public boolean equals (Object obj) {
if (! (obj instanceof EtiquetaTombo)) {
return false;

}
EtiquetaTombo etiqueta = (EtiquetaTombo) obj;
return new EqualsBuilder () .append(this.getIdEtiquetaTombo (), etiqueta.getIdEtiquetaTombo ()).isEquals();

Java file: Exemplar.java
package br.com.infowaypi.jbook.core;
public class Exemplar implements Serializable, Comparable<Exemplar> ({

private static final long serialVersionUID = 4448872540560235275L;

public Exemplar () {
this.dataCatalogacao = new Date();

}

private Long idExemplar;
private Publicacao publicacao;
private Long tombo;

private Date dataCatalogacao;

private String estadoDeConservacao;
private String situacao;

public Long getIdExemplar () {
return idExemplar;

}

public void setIdExemplar (Long idExemplar) {
this.idExemplar = idExemplar;

}

public Publicacao getPublicacao() {
return publicacao;

}

public void setPublicacao (Publicacao publicacao) {
this.publicacao = publicacao;

}

public Long getTombo () {
return tombo;

}

public void setTombo (Long tombo) {
this.tombo = tombo;

}

public Date getDataCatalogacao () {
return dataCatalogacao;

}

public void setDataCatalogacao (Date dataCatalogacao) {
this.dataCatalogacao = dataCatalogacao;

}

public String getEstadoDeConservacao () {
return estadoDeConservacao;

}

public void setEstadoDeConservacao (String estadoDeConservacao) {
this.estadoDeConservacao = estadoDeConservacao;

}

public String getSituacao() {
return situacao;

}

public void setSituacao (String situacao) {
this.situacao = situacao;

}

public Usuario getUltimoLeitorAssociado () {

}

public String getTituloTombo () {
return publicacao.getTitulo() + " - " + getTombo();

}

public Boolean validate() throws Exception ({
SearchAgent sa = new SearchAgent () ;

sa.addParameter (new Equals ("tombo", getTombo()))
Exemplar exemplar = sa.uniqueResult (Exemplar.class);
if (exemplar != null && !this.equals(exemplar)) {

throw new ValidateException ("Tombo j& cadastrado!");

}

return true;

}

public boolean equals (Object obj) {
if (! (obj instanceof Exemplar)) {
return false;
}
Exemplar exemplar = (Exemplar) obj;
return new EqualsBuilder ()
.append (this.getIdExemplar (), exemplar.getIdExemplar())
.append (this.getTombo (), exemplar.getTombo ())
.isEquals () ;
}
public int hashCode () {
return new HashCodeBuilder () .append(this.getTombo ()) .toHashCode() ;
}
public int compareTo (Exemplar outro) {

return this.getPublicacao () .getTitulo ()
.compareTo (outro.getPublicacao () .getTitulo());

package br.com.infowaypi.jbook.core;

public class Publicacao implements Serializable, Comparable<Publicacao> {
private static final long serialVersionUID = 7770198638083066524L;
public Publicacao() {}
private Long idPublicacao;
private String titulo;
private String assunto;
private String autor;

private String editora;

private Long ISBN;
private String tipoDePublicacao;
private Set<Exemplar> exemplares;

public Long getIdPublicacao () {
return idPublicacao;

}

public void setIdPublicacao (Long idPublicacao) {
this.idPublicacao = idPublicacao;

}

public String getTitulo() {
return titulo;

}

public void setTitulo (String titulo) {
this.titulo = titulo;
}

public String getAssunto() {
return assunto;

}

public void setAssunto (String assunto) {
this.assunto = assunto;

}

public String getAutor () {
return autor;

}

public void setAutor (String autor) {
this.autor = autor;

}

public String getEditora() {
return editora;

}

public void setEditora(String editora) {
this.editora = editora;

}

public Long getISBN() {
return ISBN;
}

public void setISBN (Long iSBN) {
ISBN = iSBN;
}

public String getTipoDePublicacao () {
return tipoDePublicacao;

}

public void setTipoDePublicacao (String tipoDePublicacao) {
this.tipoDePublicacao = tipoDePublicacao;

}

public Set<Exemplar> getExemplares () {
return exemplares;

}

public void setExemplares (Set<Exemplar> exemplares) {
this.exemplares = exemplares;

}

public Boolean validate() throws ValidateException {

boolean retorno = false;

if (this.getTipoDePublicacao ()
&& this.getISBN() == null) {
throw new ValidateException("O preenchimento do ISBN é obrigatério para livros.");

} else if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.REVISTA.getValor())
&& this.getISBN() != null) {
throw new ValidateException("O preenchimento do ISBN ndo é necessario para revistas.");

.equals (TipoPublicacaoEnum.LIVRO.getValor ())

}

retorno = verificaPreExistenciaPublicacaol();

return retorno;

}

private Boolean verificaPreExistenciaPublicacao() throws ValidateException {
SearchAgent sa = new SearchAgent();
sa.addParameter (new Equals ("titulo", this.getTitulo()));
sa.addParameter (new Equals ("assunto", this.getAssunto()));
sa.addParameter (new Equals ("autor", this.getAutor()));
sa.addParameter (new Equals ("editora", getEditora()));
sa.addParameter (new Equals ("tipoDePublicacao", this.tipoDePublicacao));
if (sa.uniqueResultAny (Publicacao.class) != null) {
throw new ValidateException ("Publicacdo j& cadastrada!");
}
if (Utils.isCampoDuplicado(this, "ISBN", this.getISBN())) {
throw new ValidateException ("Ndo é permitido cadastrar duas publicacAues com o mesmo ISBN!");
}
return true;

}

public int hashCode () {
return new HashCodeBuilder ()
.append (this.idPublicacao)
.append (this.ISBN)
.toHashCode () ;

}

public boolean equals (Object obj) {
if (! (obj instanceof Publicacao)) {
return false;
}
Publicacao publicacao = (Publicacao) obj;
return new EqualsBuilder () .append(this.getIdPublicacao(), publicacao.getIdPublicacao())
.append (this.getISBN (), publicacao.getISBN())
.isEquals();
}

public int compareTo (Publicacao outro) {
return this.getTitulo () .compareTo (outro.getTitulo());

Java file: Usuario.java
package br.com.imfowaypi.jbook.core;
public class Usuario implements UsuariolInterface {
private static final long serialVersionUID = 1L;
protected Long idUsuario;
private String login;
private String senha;
private String novaSenhaDigitada;
private String novaSenhaConfirmacao;
private String role;
private String nome;
private String email;
private String status;

public Usuario() {
this.status = ATIVO;
}

public Boolean validate() throws ValidateException {
if (Utils.isStringVazia(this.getLogin()))
throw new ValidateException("O Login deve ser informado.");
if (Utils.isStringVazia(this.getNome()))
throw new ValidateException ("O Nome do usudrio deve ser informado.");
if (Utils.isStringVazia(this.getEmail())) {
throw new ValidateException("O Email deve ser informado.");

}
if (Utils.isStringVazia(this.getRole()))

throw new ValidateException("O role do usuario deve ser informado.");
if (Utils.isCampoDuplicado(this, "login", this.getLogin()))

throw new ValidateException("O login informado j& existe. Escolha outro nome para o login e tente novamente.");

if (Utils.isStringVazia(this.getSenha())) {
verificarRestricoes();
} else {
if (Utils.isStringVazia(this.getNovaSenhaDigitada()) && Utils.isStringVazia(this.getNovaSenhaConfirmacao())) {

return true;
}
verificarRestricoes();
}
this.setSenha (String.valueOf (this.getNovaSenhaDigitada () .hashCode()))
return true;

}

private void verificarRestricoes () throws ValidateException {

if (Utils.isStringVazia(this.getNovaSenhaDigitada()))
throw new ValidateException("A senha deve ser informada.");

if (Utils.isStringVazia(this.getNovaSenhaConfirmacao()))
throw new ValidateException (

"A confirmacdo da senha deve ser informada.");

if (!this.getNovaSenhaDigitada () .equals (this.getNovaSenhaConfirmacao()))

throw new ValidateException ("Senhas ndo conferem.");

}

public boolean isPossuiRole (String... roles) {
for (String role : roles) {
if (this.getRole() .equals(role))
return true;
}
return false;

}

public boolean autentica (String senhaDigitada) {

if (!StringUtils.isEmpty(senhaDigitada) && this.status.equals (ATIVO) && this.getSenha ()

return true;
return false;

}

public Long getIdUsuario() {
return idUsuario;

}

public void setIdUsuario (Long idUsuario) {
this.idUsuario = idUsuario;

}

public String getRole () {
return role;

}

public void setRole(String role) {
this.role = role;

}

public String getSenha() {
return senha;

}

public void setSenha (String senha) {
this.senha = senha;

}

public String getLogin() {
return login;

}

public void setLogin(String login) {
this.login = login;
}

public String getNome () {
return nome;

}

public void setNome (String nome) {
this.nome = nome;

}

.equals (String.valueOf (senhaDigitada.hashCode())))

public String getStatus () {
return status;

}

public void setStatus (String status) {
this.status = status;

}

public String getEmail () {
return email;

}

public void setEmail (String email) {
this.email = email;

}

public String getNovaSenhaConfirmacao () {
return novaSenhaConfirmacao;

}

public void setNovaSenhaConfirmacao (String novaSenhaConfirmacao) {
this.novaSenhaConfirmacao = novaSenhaConfirmacao;

}

public String getNovaSenhaDigitada() {
return novaSenhaDigitada;

}

public void setNovaSenhaDigitada (String novaSenhaDigitada) {
this.novaSenhaDigitada = novaSenhaDigitada;

}

public void tocarObjetos () {
this.getIdUsuario();
this.getNome () ;
this.getRole();

}

public boolean equals (Object object) {
if (! (object instanceof UsuariolInterface)) {
return false;

}

Usuario usuario = (Usuario) object;

UsuarioInterface user = (UsuariolInterface) object;

return new EqualsBuilder ()
.append (this.getIdUsuario (), user.getIdUsuario())
.append (this.login, usuario.getLogin()) .isEquals();

}

public int hashCode () {
return new HashCodeBuilder () .append(this.getIdUsuario())
.append (this.getLogin()) .toHashCode () ;
}

public String toString() {
return new ToStringBuilder (this, ToStringStyle.DEFAULT STYLE)
.append ("Login", this.login) .append("nome", this.nome)
.append("role", this.role).toString();
}

public int compareTo (UsuarioInterface outro) {
Integer compareRole = this.getRole () .compareTo (outro.getRole());
Integer compareNome = this.getNome () .compareTo (outro.getNome ()) ;
if (!compareRole.equals(0))
return compareRole;
return compareNome;

Actual package: “datasource”

package br.com.infowaypi.jbook.datasource;
public class DataSourceEtiquetaTombo {

public DataSourceEtiquetaTombo (Long[] tombos) {
this.tombos = tombos;

}
private Long[] tombos;

public Long[] getTombos () {
return tombos;

}

public String getLogoInfoway () {
return "/home/jbook/files/logoInfoway.png";
}

Actual package: “enumeration”

Java file: EstadoConservacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum EstadoConservacaoEnum {

NOVO ("NOVO", "Novo"),

EXCELENTE ("EXCELENTE", "Excelente"),

BOM ("BOM", "Bom"),

DEPRECIADO ("DEPRECIADO", "Depreciado"),
INUTILIZAVEL ("INUTILIZAVEL", "Inutilizavel");

private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private EstadoConservacaoEnum(String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

package br.com.infowaypi.jbook.enumeration;

Java file: RolesEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum RolesEnum {

LEITOR ("LEITOR", "Leitor"),
BIBLIOTECARIO ("BIBLIOTECARIO", "Bibliotecéario"),
ROOT ("ROOT", "Root");

private String valor;
private String descricao;

RolesEnum (String valor, String descricao)
this.valor = valor;
this.descricao = descricao;

}

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

package br.com.infowaypi.jbook.enumeration;

package br.com.infowaypi.jbook.enumeration;

{

package br.com.infowaypi.jbook.enumeration;

public enum TipoPublicacaoEnum implements Serializable {

LIVRO ("LIVRO", "Livro"),
REVISTA ("REVISTA", "Revista");

private TipoPublicacaoEnum(String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

}
private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

Actual package: “flow”

Java file: AlterarSenhaFlow.java

package br.com.infowaypi.jbook.flow;

public class AlterarSenhaFlow {

public UsuarioInterface alteraSenha (UsuarioInterface usuario, String senhaAntiga, String senhaNova,

HibernateUtil.currentSession() .evict (usuario);
Usuario user = (Usuario) ImplDAO.findById(usuario.getIdUsuario(), Usuario.class);
if (user == null){
throw new ValidateException ("Usudrio nulo.");
}
boolean isSenhaNovaVazia = Utils.isStringVazia(senhaNova);
boolean isSenhaConfirmacaoVazia = Utils.isStringVazia(senhaConfirmacao);
boolean isSenhaAntigaVazia = Utils.isStringVazia(senhaAntiga);

boolean isCamposSenhasVazios = isSenhaAntigaVazia && isSenhaConfirmacaoVazia && isSenhaNovaVazia;

if (!isCamposSenhasVazios) {
1if(Utils.isStringVazia (senhaAntiga)) {
throw new ValidateException ("A senha atual deve ser informada.");
}
if (isSenhaNovaVazia) {
throw new ValidateException ("A nova senha deve ser informada.");
}
if (isSenhaConfirmacaoVazia) {
throw new ValidateException ("A confirmacdo da nova senha deve ser informada.");

}

String senhaConfirmacao)

boolean isSenhasNaoConferem = !usuario.getSenha () .equals (String.valueOf (senhaAntiga.hashCode()));

if (isSenhasNaoConferem) {
throw new ValidateException ("A senha atual ndo confere.");
}
user.setNovaSenhaDigitada (senhaNova) ;
user.setNovaSenhaConfirmacao (senhaConfirmacao) ;
}
user.validate () ;
HibernateUtil.currentSession() .save (user) ;
return user;

throws Exception {

package br.com.infowaypi.jbook.flow;

Java file: EtiquetaTomboFlow.Jjava

package br.com.infowaypi.jbook.flow;
public class EtigquetaTomboFlow {

public ResumoImpressaoEtiquetaTombo imprimirEtiquetasTombo (int gtdPaginas) throws Exception {
List<DataSourceEtiquetaTombo> dataSource= EtiquetaTomboManager.getRelatorio(gtdPaginas);
byte[] arquivo = EtiquetaTomboManager.getBytesRelatorio(dataSource);
ResumoImpressaoEtiquetaTombo resumoEtiquetaTombo = new ResumolImpressaoEtiquetaTombo (arquivo) ;
return resumoEtiquetaTombo;

Java file: SolicitacaoEmprestimoFlow.java

package br.com.infowaypi.jbook.flow;

Actual package: “manager”

Java file: EmprestimoManager.java

package br.com.infowaypi.jbook.manager;

Java file: EtiquetaTomboManager.java

package br.com.infowaypi.jbook.manager;
public class EtiquetaTomboManager {
private static final int NUMERO DE ETIQUETAS POR PAGINA = 14;

public static Long getUltimoTombo () {

SearchAgent sa = new SearchAgent () ;

return ((EtiquetaTombo) sa.findById(lL, EtiquetaTombo.class)) .getUltimoTombo () ;
}

private static void setUltimoTombo (Long ultimoTombo) {
SearchAgent sa = new SearchAgent();
EtiquetaTombo etiquetaTombo = (EtiquetaTombo) sa.findById (1L, EtiquetaTombo.class);
etiquetaTombo.setUltimoTombo (ultimoTombo) ;

}

public static byte[] getBytesRelatorio (List<DataSourceEtiquetaTombo> dataSource) throws Exception {

JHeatReport report = new JHeatReport ("..\\file\\etiquetas-tombo.xml", dataSource);
ByteArrayOutputStream output = new ByteArrayOutputStream() ;
report.createPDF (output) ;
return output.toByteArray();
}

public static List<DataSourceEtiquetaTombo> getRelatorio (int gtdPaginas) throws Exception {

List<DataSourceEtiquetaTombo> dataSource = new ArrayList<DataSourceEtiquetaTombo> () ;
Long ultimoTomboDispionivel = getUltimoTombo() + 1;
for(int x = 0; x < gtdPaginas; x++){

Long[] tombosDaPagina = new Long[NUMERO DE ETIQUETAS POR PAGINA];

for (int i1 =0; i1 < NUMERO DE ETIQUETAS POR PAGINA; i++) {

tombosDaPagina[i] = ++ultimoTomboDispionivel;

}

dataSource.add (new DataSourceEtiquetaTombo (tombosDaPagina)) ;
}
setUltimoTombo (ultimoTomboDispionivel) ;
return dataSource;

Java file: NotificadorManager.java

package br.com.infowaypi.jbook.manager;
public class NotificadorManager {

public static boolean notificarNovasAquisicoes (Exemplar exemplar, Usuario usuario) {
if (exemplar.getPublicacao () .getExemplares () .size() == 1) {
enviarNotificacaoDeNovasAquisicoes (exemplar.getPublicacao (), usuario);
}
return true;

}

private static void enviarNotificacaoDeNovasAquisicoes (Publicacao publicacao, Usuario usuario)

{

String assunto = "Nova aquisic¢do para nossa biblioteca!";

StringBuilder corpo = new StringBuilder();

corpo.append ("A biblioteca acaba de disponibilizar a partir deste momento mais um exemplar. \n");
corpo.append ("Seguem abaixo os dados da publicacdo adquirida. \n");

(

corpo.append ("\n Titulo: " + publicacao.getTitulo());

corpo.append ("\n Assunto: " + publicacao.getAssunto());

corpo.append ("\n Autor: " + publicacao.getAutor());

corpo.append ("\n Editora: " + publicacao.getEditora());

corpo.append ("\n Tipo de publicacdo: " + publicacao.getTipoDePublicacao () .toLowerCase());
(

corpo.append ("\n\n--\n") ;
corpo.append ("\n JBook - Sistema de controle de empréstimos de livros Infoway");
new EmailThread(usuario, "JBook", assunto, corpo.toString()).starta();

Java file: SchedulerManager.java

package br.com.infowaypi.jbook.manager;

Actual package: “msg”

Java file: EmailThread.java
package br.com.infowaypi.jbook.msg;
public class EmailThread extends Thread {
private Set<Usuario> usuarios = new HashSet<Usuario>();
private String nome;
private String assunto;
private String corpo;
public EmailThread (Usuario usuario, String nome, String assunto, String corpo) {
this.usuarios.add (usuario) ;
this.nome = nome;
this.assunto = assunto;
this.corpo = corpo;

}

public EmailThread (Set<? extends Usuario> usuarios, String nome, String assunto, String corpo) {

this.usuarios.addAll (usuarios) ;
this.nome = nome;

this.assunto = assunto;
this.corpo = corpo;

public void run() {
String destino = "contato-no-reply@infoway-pi.com.br";
for (Usuario usuario : usuarios) {
MailSender.mandarEmail (usuario, this.nome, this.assunto, this.corpo, destino);

public void starta() {
this.start();

Java file: MailSender.java

package br.com.infowaypi.jbook.msg;
public class MailSender {

public static void mandarEmail (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true);
mensagem.enviarEmail () ;

public static void mandarEmailHTML (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true) ;
mensagem.enviarEmail () ;

public static void mandarEmailHTML (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmailHTML (usuario, nome, assunto, corpo, destino);

public static void mandarEmail (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmail (usuario, nome, assunto, corpo, destino);

Actual package: “report”

Java file: EmprestimoReport.java

package br.com.infowaypi.jbook.report;

Actual package: “resumo”

package br.com.infowayp book.resumo;

Java file: ResumoExemplares.java

package br.com.infowaypi.jbook.resumo;

public class ResumoExemplares {
private Collection<Exemplar> exemplaresDisponiveis;
private Collection<Exemplar> exemplaresIndisponiveis;
public ResumoExemplares (Collection<Exemplar> exemplaresDisponiveis, Collection<Exemplar> exemplaresIndisponiveis) {
this.exemplaresDisponiveis = exemplaresDisponiveis;
this.exemplaresIndisponiveis = exemplaresIndisponiveis;

}

public boolean isExemplaresNaoLocalizados () {
|
|

return ((exemplaresDisponiveis == null || exemplaresDisponiveis.size() == 0)
&& (exemplaresIndisponiveis == null || exemplaresIndisponiveis.size() == 0));
}
public Collection<Exemplar> getExemplaresDisponiveis () {

return exemplaresDisponiveis;

}

public Collection<Exemplar> getExemplaresIndisponiveis() {
return exemplaresIndisponiveis;

Java file: ResumolmpressaoEtiquetaTombo.java

package br.com.infowaypi.jbook.resumo;
public class ResumolImpressaoEtiquetaTombo implements Serializable {
private static final long serialVersionUID = 6380683336794912126L;

public ResumoImpressaoEtiquetaTombo (byte[] conteudoArquivo) {
this.conteudoArquivo = conteudoArquivo;

}
private byte[] conteudoArquivo;

public byte[] getConteudoArquivo () {
return conteudoArquivo;

}

public String getFileName () {
return "Etiquetas_de Tombo.pdf";
}

Actual package: “scheduler”

package br.com.infowaypi.jbook.scheduler;

Java file: QuartzConfigurator.java

package br.com.infowaypi.jbook.scheduler;

public class QuartzConfigurator implements PlugIn({

private static Scheduler scheduler = null;

public void destroy () {
try {
scheduler.shutdown () ;
} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public void init (ActionServlet servlet, ModuleConfig config) throws ServletException {

try {
scheduler = StdSchedulerFactory.getDefaultScheduler();

scheduler.start();
} catch (SchedulerException e) {
e.printStackTrace () ;

}
}

public static Scheduler getScheduler () {
return scheduler;

}

public static void setScheduler (Scheduler scheduler) {
QuartzConfigurator.scheduler = scheduler;

}

Actual package: “util”

Java file: ConfiguraBaseDeDados.java

package br.com.infowaypi.jbook.scheduler;

public class QuartzConfigurator implements PlugIn{

private static Scheduler scheduler = null;

public void destroy () {
try {
scheduler.shutdown () ;
} catch (SchedulerException e) {
e.printStackTrace();
}
}

public void init (ActionServlet servlet, ModuleConfig config) throws ServletException {

try f{
scheduler = StdSchedulerFactory.getDefaultScheduler();

scheduler.start();
} catch (SchedulerException e) {
e.printStackTrace();

}
}

public static Scheduler getScheduler() {
return scheduler;

}

public static void setScheduler (Scheduler scheduler) {
QuartzConfigurator.scheduler = scheduler;

}

FIM

