
JBook - Shadowing

Source folder: “src/main/java”

Main package: “br.com.infowaypi.jbook.”

===

===

Actual package: “autenticacao”

===

--

Java file: Autenticador.java

--

package br.com.infowaypi.jbook.autenticacao;

public class Autenticador {

 private static final ThreadLocal<UsuarioInterface> threadUsuario = new ThreadLocal<UsuarioInterface>();

 public Autenticador() {

 }

 public UsuarioInterface getUsuario() {

 return threadUsuario.get();

 }

 public String[] getRoles(String login, String senha) throws Exception {

 if (Utils.isStringVazia(senha)) {

 return null;

 }

 UsuarioInterface usuario = buscaUsuario(login);

 if (usuario != null && usuario.autentica(senha)) {

 threadUsuario.set(usuario);

 return new String[] { usuario.getRole() };

 }

 return null;

 }

 public Usuario buscaUsuario(String login) {

 SearchAgent sa = new SearchAgent();

 sa.addParameter(new Equals("login", login));

 return sa.uniqueResult(Usuario.class);

 }

}

--

Java file: UsuarioInterface.java

--

package br.com.infowaypi.jbook.autenticacao;

import java.io.Serializable;

import br.com.infowaypi.msr.exceptions.ValidateException;

public interface UsuarioInterface extends Serializable, Comparable<UsuarioInterface> {

 public static final String ATIVO = "A";

 public static final String CANCELADO = "C";

 public abstract Boolean validate() throws ValidateException;

 public abstract Long getIdUsuario();

 public abstract void setIdUsuario(Long idUsuario);

 public abstract String getNome();

 public abstract void setNome(String nome);

 public abstract String getEmail();

 public abstract void setEmail(String email);

 public abstract String getLogin();

 public abstract void setLogin(String login);

 public abstract String getSenha();

 public abstract void setSenha(String senha);

 public abstract String getStatus();

 public abstract void setStatus(String status);

 public String getNovaSenhaConfirmacao();

 public abstract void setNovaSenhaConfirmacao(String novaSenhaConfirmacao);

 public String getNovaSenhaDigitada();

 public abstract void setNovaSenhaDigitada(String novaSenhaDigitada);

 public abstract String getRole();

 public abstract void setRole(String role);

 public abstract boolean isPossuiRole(String... roles);

 public abstract boolean autentica(String senha);

 public void tocarObjetos();

}

===

===

Actual package: “config”

===

--Java file: Config.java

--

package br.com.infowaypi.jbook.config;

import java.io.File;

import java.io.IOException;

public class Config {

 public static String aplicationPath = currentPath();

 public static final String sourcePath = aplicationPath + File.separator + "src" + File.separator + "main" + File.separator;

 public static final String resoucesPath = sourcePath + "resources" + File.separator;

 public static final String webAppPath = sourcePath + "webapp" + File.separator;

 public static String getFileInResources(String file) {

 return resoucesPath + file;

 }

 public static String getFileInWebApp(String file) {

 return webAppPath + file;

 }

 private static String currentPath(){

 try{

 return new File("").getCanonicalPath();

 }catch (IOException e) {

 new IOException(e.getMessage());

 }

 return null;

 }

}

===

===

Actual package: “core”

===

--Java file: Emprestimo.java

--

package br.com.infowaypi.jbook.core;

@Entity

public class Emprestimo implements Serializable, Comparable<Emprestimo> {

 private static final long serialVersionUID = -7427026885020906922L;

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long idEmprestimo;

 @ManyToOne

 @JoinColumn(name = "idBibliotecario")

 private Usuario bibliotecario;

 @ManyToOne

 @JoinColumn(name = "idLeitor")

 private Usuario leitor;

 @ManyToOne

 @Cascade({ CascadeType.SAVE_UPDATE })

 @JoinColumn(name = "idExemplar")

 private Exemplar exemplar;

 @Temporal(TemporalType.DATE)

 private Date dataSolicitacao;

 @Temporal(TemporalType.DATE)

 private Date dataPrevisaoDeDevolucao;

 @Temporal(TemporalType.DATE)

 private Date dataDevolucao;

 private String situacao;

 public Emprestimo() {

 this.dataSolicitacao = new Date();

 }

 public Long getIdEmprestimo() {

 return idEmprestimo;

 }

 public void setIdEmprestimo(Long idEmprestimo) {

 this.idEmprestimo = idEmprestimo;

 }

 public Usuario getBibliotecario() {

 return bibliotecario;

 }

 public void setBibliotecario(Usuario bibliotecario) {

 this.bibliotecario = bibliotecario;

 }

 public Usuario getLeitor() {

 return leitor;

 }

 public void setLeitor(Usuario leitor) {

 this.leitor = leitor;

 }

 public Exemplar getExemplar() {

 return exemplar;

 }

 public void setExemplar(Exemplar exemplar) {

 this.exemplar = exemplar;

 }

 public Date getDataSolicitacao() {

 return dataSolicitacao;

 }

 public void setDataSolicitacao(Date dataSolicitacao) {

 this.dataSolicitacao = dataSolicitacao;

 }

 public Date getDataPrevisaoDeDevolucao() {

 return dataPrevisaoDeDevolucao;

 }

 public void setDataPrevisaoDeDevolucao(Date dataPrevisaoDeDevolucao) {

 this.dataPrevisaoDeDevolucao = dataPrevisaoDeDevolucao;

 }

 public Date getDataDevolucao() {

 return dataDevolucao;

 }

 public void setDataDevolucao(Date dataDevolucao) {

 this.dataDevolucao = dataDevolucao;

 }

 public Boolean validate(UsuarioInterface bibliotecario) throws ValidateException {

 if (getDataSolicitacao().compareTo(getDataPrevisaoDeDevolucao()) > 0)

 throw new ValidateException(

 "A data de previsão para devolução deve ser futura");

 if (EmprestimoManager.passouLimiteEmprestimos(this.getLeitor())) {

 throw new ValidateException(

 "O limite de 02 (duas) solicitações de empréstimo foi atingido. Não será possível realizar a solicitação de empréstimo.");

 }

 if (EmprestimoManager.solicitouMesmaPublicacao(this.getLeitor(),

 this.getExemplar())) {

 throw new ValidateException(

 "Não é possível solicitar empréstimo de uma mesma publicação já solicitada e em aberto.");

 }

 getExemplar().setSituacao(SituacaoExemplarEnum.EMPRESTADO.getValor());

 this.setBibliotecario((Usuario) bibliotecario);

 this.situacao = SituacaoEmprestimoEnum.CONFIRMADO.getValor();

 return true;

 }

 @Override

 public int hashCode() {

 return new HashCodeBuilder().append(getIdEmprestimo()).toHashCode();

 }

 @Override

 public boolean equals(Object obj) {

 if (!(obj instanceof Emprestimo)) {

 return false;

 }

 Emprestimo emprestimo = (Emprestimo) obj;

 return new EqualsBuilder().append(this.getIdEmprestimo(), emprestimo.getIdEmprestimo()).isEquals();

 }

 @Override

 public int compareTo(Emprestimo outro) {

 return this.getDataSolicitacao().compareTo(outro.getDataSolicitacao());

 }

 public String getSituacao() {

 return situacao;

 }

 public void setSituacao(String situacao) {

 this.situacao = situacao;

 }

 public void cancelarSolicitacao(){

 getExemplar().setSituacao(SituacaoExemplarEnum.DISPONIVEL.getValor());

 setSituacao(SituacaoEmprestimoEnum.CANCELADO.getValor());

 Transaction trans = HibernateUtil.currentSession().beginTransaction();

 HibernateUtil.currentSession().saveOrUpdate(this);

 trans.commit();

 }

 public void confirmarSolicitacao(){

 getExemplar().setSituacao(SituacaoExemplarEnum.EMPRESTADO.getValor());

 setSituacao(SituacaoEmprestimoEnum.CONFIRMADO.getValor());

 Transaction trans = HibernateUtil.currentSession().beginTransaction();

 HibernateUtil.currentSession().saveOrUpdate(this);

 trans.commit();

 }

 public void encerrar() throws ValidateException{

 getExemplar().setSituacao(SituacaoExemplarEnum.DISPONIVEL.getValor());

 setSituacao(SituacaoEmprestimoEnum.FINALIZADO.getValor());

 setDataDevolucao(new Date());

 Transaction trans = HibernateUtil.currentSession().beginTransaction();

 HibernateUtil.currentSession().saveOrUpdate(this);

 trans.commit();

 if(getDataDevolucao().compareTo(getDataPrevisaoDeDevolucao()) > 0){

 throw new ValidateException("Devolução em atrasso");

 }

 }

}

--

Java file: EtiquetaTombo.java

--

package br.com.infowaypi.jbook.core;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import org.apache.commons.lang.builder.EqualsBuilder;

import org.apache.commons.lang.builder.HashCodeBuilder;

@Entity

public class EtiquetaTombo {

 @Id

 @Column (name="id")

 private Long idEtiquetaTombo = 1L;

 private Long ultimoTombo;

 public Long getIdEtiquetaTombo() {

 return idEtiquetaTombo;

 }

 public void setIdEtiquetaTombo(Long idEtiquetaTombo) {

 this.idEtiquetaTombo = idEtiquetaTombo;

 }

 public Long getUltimoTombo() {

 return ultimoTombo;

 }

 public void setUltimoTombo(Long ultimoTombo) {

 this.ultimoTombo = ultimoTombo;

 }

 @Override

 public int hashCode() {

 return new HashCodeBuilder().append(getIdEtiquetaTombo()).toHashCode();

 }

 @Override

 public boolean equals(Object obj) {

 if (!(obj instanceof EtiquetaTombo)) {

 return false;

 }

 EtiquetaTombo etiqueta = (EtiquetaTombo) obj;

 return new EqualsBuilder().append(this.getIdEtiquetaTombo(), etiqueta.getIdEtiquetaTombo()).isEquals();

 }

}

--

Java file: Exemplar.java

--

package br.com.infowaypi.jbook.core;

@Entity

public class Exemplar implements Serializable, Comparable<Exemplar> {

 private static final long serialVersionUID = 4448872540560235275L;

 public Exemplar() {

 this.dataCatalogacao = new Date();

 this.situacao = SituacaoExemplarEnum.DISPONIVEL.getValor();

 this.emprestimos = new ArrayList<Emprestimo>();

 }

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long idExemplar;

 @ManyToOne(fetch = FetchType.EAGER)

 @JoinColumn(name = "idPublicacao", nullable = false)

 private Publicacao publicacao;

 @Column(unique = true)

 private Long tombo;

 @Temporal(TemporalType.DATE)

 private Date dataCatalogacao;

 @OneToMany(mappedBy = "exemplar")

 @OrderBy("idEmprestimo")

 private List<Emprestimo> emprestimos;

 private String estadoDeConservacao;

 private String situacao;

 public Long getIdExemplar() {

 return idExemplar;

 }

 public void setIdExemplar(Long idExemplar) {

 this.idExemplar = idExemplar;

 }

 public Publicacao getPublicacao() {

 return publicacao;

 }

 public void setPublicacao(Publicacao publicacao) {

 this.publicacao = publicacao;

 }

 public Long getTombo() {

 return tombo;

 }

 public void setTombo(Long tombo) {

 this.tombo = tombo;

 }

 public Date getDataCatalogacao() {

 return dataCatalogacao;

 }

 public void setDataCatalogacao(Date dataCatalogacao) {

 this.dataCatalogacao = dataCatalogacao;

 }

 public List<Emprestimo> getEmprestimos() {

 return emprestimos;

 }

 public void setEmprestimos(List<Emprestimo> emprestimos) {

 this.emprestimos = emprestimos;

 }

 public String getEstadoDeConservacao() {

 return estadoDeConservacao;

 }

 public void setEstadoDeConservacao(String estadoDeConservacao) {

 this.estadoDeConservacao = estadoDeConservacao;

 }

 public String getSituacao() {

 return situacao;

 }

 public void setSituacao(String situacao) {

 this.situacao = situacao;

 }

 public Usuario getUltimoLeitorAssociado() {

 return getEmprestimos().get(getEmprestimos().size() - 1).getLeitor();

 }

 public Emprestimo getUltimoEmprestimoAssociado() {

 return getEmprestimos().get(getEmprestimos().size() - 1);

 }

 public String getTituloTombo(){

 return publicacao.getTitulo() + " - " + getTombo();

 }

 public Boolean validate() throws Exception {

 SearchAgent sa = new SearchAgent();

 sa.addParameter(new Equals("tombo", getTombo()));

 Exemplar exemplar = sa.uniqueResult(Exemplar.class);

 if (exemplar != null && !this.equals(exemplar)) {

 throw new ValidateException("Tombo já cadastrado!");

 }

 return true;

 }

 public boolean equals(Object obj) {

 if (!(obj instanceof Exemplar)) {

 return false;

 }

 Exemplar exemplar = (Exemplar) obj;

 return new EqualsBuilder() .append(this.getIdExemplar(), exemplar.getIdExemplar()) .append(this.getTombo(), exemplar.getTombo()) .isEquals();

 }

 public int hashCode() {

 return new HashCodeBuilder().append(this.getTombo()).toHashCode();

 }

 @Override

 public int compareTo(Exemplar outro) {

 return this.getPublicacao().getTitulo()

 .compareTo(outro.getPublicacao().getTitulo());

 }

}

--

Java file: Publicacao.java

--

package br.com.infowaypi.jbook.core;

@Entity

public class Publicacao implements Serializable, Comparable<Publicacao> {

 private static final long serialVersionUID = 7770198638083066524L;

 public Publicacao() {}

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long idPublicacao;

 private String titulo;

 private String assunto;

 private String autor;

 private String editora;

 private Long ISBN;

 private String tipoDePublicacao;

 @OneToMany(mappedBy = "publicacao", fetch = FetchType.LAZY)

 private Set<Exemplar> exemplares;

 public Long getIdPublicacao() {

 return idPublicacao;

 }

 public void setIdPublicacao(Long idPublicacao) {

 this.idPublicacao = idPublicacao;

 }

 public String getTitulo() {

 return titulo;

 }

 public void setTitulo(String titulo) {

 this.titulo = titulo;

 }

 public String getAssunto() {

 return assunto;

 }

 public void setAssunto(String assunto) {

 this.assunto = assunto;

 }

 public String getAutor() {

 return autor;

 }

 public void setAutor(String autor) {

 this.autor = autor;

 }

 public String getEditora() {

 return editora;

 }

 public void setEditora(String editora) {

 this.editora = editora;

 }

 public Long getISBN() {

 return ISBN;

 }

 public void setISBN(Long iSBN) {

 ISBN = iSBN;

 }

 public String getTipoDePublicacao() {

 return tipoDePublicacao;

 }

 public void setTipoDePublicacao(String tipoDePublicacao) {

 this.tipoDePublicacao = tipoDePublicacao;

 }

 public Set<Exemplar> getExemplares() {

 return exemplares;

 }

 public void setExemplares(Set<Exemplar> exemplares) {

 this.exemplares = exemplares;

 }

 public Boolean validate() throws ValidateException {

 boolean retorno = false;

 if (this.getTipoDePublicacao().equals(TipoPublicacaoEnum.LIVRO.getValor())

 && this.getISBN() == null) {

 throw new ValidateException("O preenchimento do ISBN é obrigatório para livros.");

 } else if (this.getTipoDePublicacao().equals(TipoPublicacaoEnum.REVISTA.getValor())

 && this.getISBN() != null) {

 throw new ValidateException("O preenchimento do ISBN não é necessário para revistas.");

 }

 retorno = verificaPreExistenciaPublicacao();

 return retorno;

 }

 private Boolean verificaPreExistenciaPublicacao() throws ValidateException {

 SearchAgent sa = new SearchAgent();

 sa.addParameter(new Equals("titulo", this.getTitulo()));

 sa.addParameter(new Equals("assunto", this.getAssunto()));

 sa.addParameter(new Equals("autor", this.getAutor()));

 sa.addParameter(new Equals("editora", getEditora()));

 sa.addParameter(new Equals("tipoDePublicacao", this.tipoDePublicacao));

 if (sa.uniqueResultAny(Publicacao.class) != null) {

 throw new ValidateException("Publicação já cadastrada!");

 }

 if (Utils.isCampoDuplicado(this, "ISBN", this.getISBN())) {

 throw new ValidateException("Não é permitido cadastrar duas publicaçÃµes com o mesmo ISBN!");

 }

 return true;

 }

 @Override

 public int hashCode() {

 return new HashCodeBuilder()

 .append(this.idPublicacao)

 .append(this.ISBN)

 .toHashCode();

 }

 @Override

 public boolean equals(Object obj) {

 if (!(obj instanceof Publicacao)) {

 return false;

 }

 Publicacao publicacao = (Publicacao) obj;

 return new EqualsBuilder().append(this.getIdPublicacao(), publicacao.getIdPublicacao())

 .append(this.getISBN(), publicacao.getISBN())

 .isEquals();

 }

 @Override

 public int compareTo(Publicacao outro) {

 return this.getTitulo().compareTo(outro.getTitulo());

 }

}

--

Java file: Usuario.java

--

package br.com.infowaypi.jbook.core;

import java.util.Set;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.OneToMany;

import javax.persistence.Transient;

import org.apache.commons.lang.StringUtils;

import org.apache.commons.lang.builder.EqualsBuilder;

import org.apache.commons.lang.builder.HashCodeBuilder;

import org.apache.commons.lang.builder.ToStringBuilder;

import org.apache.commons.lang.builder.ToStringStyle;

import br.com.infowaypi.jbook.autenticacao.UsuarioInterface;

import br.com.infowaypi.msr.exceptions.ValidateException;

import br.com.infowaypi.msr.utils.Utils;

@Entity

public class Usuario implements UsuarioInterface {

 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 protected Long idUsuario;

 @Column(unique = true)

 private String login;

 private String senha;

 @Transient

 private String novaSenhaDigitada;

 @Transient

 private String novaSenhaConfirmacao;

 private String role;

 private String nome;

 private String email;

 private String status;

 @OneToMany(mappedBy = "leitor")

 private Set<Emprestimo> emprestimos;

 public Usuario() {

 this.status = ATIVO;

 }

 public Boolean validate() throws ValidateException {

 if (Utils.isStringVazia(this.getLogin()))

 throw new ValidateException("O Login deve ser informado.");

 if (Utils.isStringVazia(this.getNome()))

 throw new ValidateException("O Nome do usuário deve ser informado.");

 if (Utils.isStringVazia(this.getEmail())){

 throw new ValidateException("O Email deve ser informado.");

 }

 if (Utils.isStringVazia(this.getRole()))

 throw new ValidateException("O role do usuário deve ser informado.");

 if (Utils.isCampoDuplicado(this, "login", this.getLogin()))

 throw new ValidateException("O login informado já existe. Escolha outro nome para o login e tente novamente.");

 if (Utils.isStringVazia(this.getSenha())) {

 verificarRestricoes();

 } else {

 if (Utils.isStringVazia(this.getNovaSenhaDigitada()) && Utils.isStringVazia(this.getNovaSenhaConfirmacao())){

 return true;

 }

 verificarRestricoes();

 }

 this.setSenha(String.valueOf(this.getNovaSenhaDigitada().hashCode()));

 return true;

 }

 private void verificarRestricoes() throws ValidateException {

 if (Utils.isStringVazia(this.getNovaSenhaDigitada()))

 throw new ValidateException("A senha deve ser informada.");

 if (Utils.isStringVazia(this.getNovaSenhaConfirmacao()))

 throw new ValidateException(

 "A confirmação da senha deve ser informada.");

 if (!this.getNovaSenhaDigitada().equals(this.getNovaSenhaConfirmacao()))

 throw new ValidateException("Senhas não conferem.");

 }

 public boolean isPossuiRole(String... roles) {

 for (String role : roles) {

 if (this.getRole().equals(role))

 return true;

 }

 return false;

 }

 public boolean autentica(String senhaDigitada) {

 if (!StringUtils.isEmpty(senhaDigitada) && this.status.equals(ATIVO) && this.getSenha().equals(String.valueOf(senhaDigitada.hashCode())))

 return true;

 return false;

 }

 public Long getIdUsuario() {

 return idUsuario;

 }

 public void setIdUsuario(Long idUsuario) {

 this.idUsuario = idUsuario;

 }

 public String getRole() {

 return role;

 }

 public void setRole(String role) {

 this.role = role;

 }

 public String getSenha() {

 return senha;

 }

 public void setSenha(String senha) {

 this.senha = senha;

 }

 public String getLogin() {

 return login;

 }

 public void setLogin(String login) {

 this.login = login;

 }

 public String getNome() {

 return nome;

 }

 public void setNome(String nome) {

 this.nome = nome;

 }

 public String getStatus() {

 return status;

 }

 public void setStatus(String status) {

 this.status = status;

 }

 public Set<Emprestimo> getEmprestimos() {

 return emprestimos;

 }

 public void setEmprestimos(Set<Emprestimo> emprestimos) {

 this.emprestimos = emprestimos;

 }

 public String getEmail() {

 return email;

 }

 public void setEmail(String email) {

 this.email = email;

 }

 public String getNovaSenhaConfirmacao() {

 return novaSenhaConfirmacao;

 }

 public void setNovaSenhaConfirmacao(String novaSenhaConfirmacao) {

 this.novaSenhaConfirmacao = novaSenhaConfirmacao;

 }

 public String getNovaSenhaDigitada() {

 return novaSenhaDigitada;

 }

 public void setNovaSenhaDigitada(String novaSenhaDigitada) {

 this.novaSenhaDigitada = novaSenhaDigitada;

 }

 public void tocarObjetos() {

 this.getIdUsuario();

 this.getNome();

 this.getRole();

 }

 @Override

 public boolean equals(Object object) {

 if (!(object instanceof UsuarioInterface)) {

 return false;

 }

 Usuario usuario = (Usuario) object;

 UsuarioInterface user = (UsuarioInterface) object;

 return new EqualsBuilder()

 .append(this.getIdUsuario(), user.getIdUsuario())

 .append(this.login, usuario.getLogin()).isEquals();

 }

 @Override

 public int hashCode() {

 return new HashCodeBuilder().append(this.getIdUsuario())

 .append(this.getLogin()).toHashCode();

 }

 @Override

 public String toString() {

 return new ToStringBuilder(this, ToStringStyle.DEFAULT_STYLE)

 .append("Login", this.login).append("nome", this.nome)

 .append("role", this.role).toString();

 }

 public int compareTo(UsuarioInterface outro) {

 Integer compareRole = this.getRole().compareTo(outro.getRole());

 Integer compareNome = this.getNome().compareTo(outro.getNome());

 if (!compareRole.equals(0))

 return compareRole;

 return compareNome;

 }

}

===

===

Actual package: “datasource”

===

--Java file: DataSourceEtiquetaTombo.java

--

package br.com.infowaypi.jbook.datasource;

public class DataSourceEtiquetaTombo {

 public DataSourceEtiquetaTombo(Long[] tombos) {

 this.tombos = tombos;

 }

 private Long[] tombos;

 public Long[] getTombos() {

 return tombos;

 }

 public String getLogoInfoway() {

 return "/home/jbook/files/logoInfoway.png";

 }

}

===

===

Actual package: “enumeration”

===

--Java file: EstadoConservacaoEnum.java

--

package br.com.infowaypi.jbook.enumeration;

public enum EstadoConservacaoEnum {

 NOVO ("NOVO", "Novo"),

 EXCELENTE ("EXCELENTE", "Excelente"),

 BOM ("BOM", "Bom"),

 DEPRECIADO ("DEPRECIADO", "Depreciado"),

 INUTILIZAVEL ("INUTILIZAVEL", "Inutilizável");

 private String valor;

 private String descricao;

 public String getValor() {

 return valor;

 }

 public String getDescricao() {

 return descricao;

 }

 private EstadoConservacaoEnum(String valor, String descricao) {

 this.valor = valor;

 this.descricao = descricao;

 }

}

--

Java file: PeriodoSolicitacaoEnum.java

--

package br.com.infowaypi.jbook.enumeration;

public enum PeriodoSolicitacaoEmprestimoEnum {

 UMA (1, "Uma Semana"),

 DUAS (2, "Duas Semanas"),

 TRES (3, "Três Semanas"),

 QUATRO (4, "Quatro Semanas");

 private int valor;

 private String descricao;

 public int getValor() {

 return valor;

 }

 public String getDescricao() {

 return descricao;

 }

 private PeriodoSolicitacaoEmprestimoEnum(int valor, String descricao) {

 this.valor = valor;

 this.descricao = descricao;

 }

}

--

Java file: RolesEnum.java

--

package br.com.infowaypi.jbook.enumeration;

public enum RolesEnum {

 LEITOR ("LEITOR", "Leitor"),

 BIBLIOTECARIO ("BIBLIOTECARIO", "Bibliotecário"),

 ROOT ("ROOT", "Root");

 private String valor;

 private String descricao;

 RolesEnum(String valor, String descricao) {

 this.valor = valor;

 this.descricao = descricao;

 }

 public String getValor() {

 return valor;

 }

 public String getDescricao() {

 return descricao;

 }

}

--

Java file: SituacaoEmprestimoEnum.java

--

package br.com.infowaypi.jbook.enumeration;

public enum SituacaoEmprestimoEnum {

 SOLICITADO ("SOLICITADO", "Solicitado"),

 CONFIRMADO ("CONFIRMADO", "Confirmado"),

 CANCELADO ("CANCELADO", "Cancelado"),

 EXPIRADO ("EXPIRADO", "Expirado"),

 FINALIZADO ("FINALIZADO", "Finalizado");

 private String valor;

 private String descricao;

 public String getValor() {

 return valor;

 }

 public String getDescricao() {

 return descricao;

 }

 private SituacaoEmprestimoEnum(String valor, String descricao) {

 this.valor = valor;

 this.descricao = descricao;

 }

}

--

Java file: SituacaoExemplarEnum.java

--

package br.com.infowaypi.jbook.enumeration;

public enum SituacaoExemplarEnum {

 DISPONIVEL("DISPONIVEL", "Disponível"),

 SOLICITADO("SOLICITADO", "Solicitado"),

 EMPRESTADO("EMPRESTADO", "Emprestado");

 private String valor;

 private String descricao;

 public String getValor() {

 return valor;

 }

 public String getDescricao() {

 return descricao;

 }

 private SituacaoExemplarEnum(String valor, String descricao) {

 this.valor = valor;

 this.descricao = descricao;

 }

}

--

Java file: TipoPublicacao.java

--

package br.com.infowaypi.jbook.enumeration;

import java.io.Serializable;

public enum TipoPublicacaoEnum implements Serializable {

 LIVRO ("LIVRO", "Livro"),

 REVISTA ("REVISTA", "Revista");

 private TipoPublicacaoEnum(String valor, String descricao) {

 this.valor = valor;

 this.descricao = descricao;

 }

 private String valor;

 private String descricao;

 public String getValor() {

 return valor;

 }

 public String getDescricao() {

 return descricao;

 }

}

===

===

Actual package: “flow”

===

--Java file: AlterarSenhaFlow.java

--

package br.com.infowaypi.jbook.flow;

import br.com.infowaypi.jbook.autenticacao.UsuarioInterface;

import br.com.infowaypi.jbook.core.Usuario;

import br.com.infowaypi.molecular.HibernateUtil;

import br.com.infowaypi.molecular.ImplDAO;

import br.com.infowaypi.msr.exceptions.ValidateException;

import br.com.infowaypi.msr.utils.Utils;

public class AlterarSenhaFlow {

 public UsuarioInterface alteraSenha(UsuarioInterface usuario, String senhaAntiga, String senhaNova, String senhaConfirmacao) throws Exception {

 HibernateUtil.currentSession().evict(usuario);

 Usuario user = (Usuario) ImplDAO.findById(usuario.getIdUsuario(), Usuario.class);

 if(user == null){

 throw new ValidateException("Usuário nulo.");

 }

 boolean isSenhaNovaVazia = Utils.isStringVazia(senhaNova);

 boolean isSenhaConfirmacaoVazia = Utils.isStringVazia(senhaConfirmacao);

 boolean isSenhaAntigaVazia = Utils.isStringVazia(senhaAntiga);

 boolean isCamposSenhasVazios = isSenhaAntigaVazia && isSenhaConfirmacaoVazia && isSenhaNovaVazia;

 if (!isCamposSenhasVazios) {

 if(Utils.isStringVazia(senhaAntiga)){

 throw new ValidateException("A senha atual deve ser informada.");

 }

 if(isSenhaNovaVazia){

 throw new ValidateException("A nova senha deve ser informada.");

 }

 if(isSenhaConfirmacaoVazia){

 throw new ValidateException("A confirmação da nova senha deve ser informada.");

 }

 boolean isSenhasNaoConferem = !usuario.getSenha().equals(String.valueOf(senhaAntiga.hashCode()));

 if(isSenhasNaoConferem){

 throw new ValidateException("A senha atual não confere.");

 }

 user.setNovaSenhaDigitada(senhaNova);

 user.setNovaSenhaConfirmacao(senhaConfirmacao);

 }

 user.validate();

 HibernateUtil.currentSession().save(user);

 return user;

 }

}

--

Java file: CancelarSolicitacaoEmprestimoLeitorFlow.java

--

package br.com.infowaypi.jbook.flow;

import java.util.List;

import br.com.infowaypi.jbook.autenticacao.UsuarioInterface;

import br.com.infowaypi.jbook.core.Emprestimo;

import br.com.infowaypi.jbook.manager.EmprestimoManager;

public class CancelarSolicitacaoEmprestimoLeitorFlow {

 public List<Emprestimo> getBuscarEmprestimosSolicitados(UsuarioInterface leitor) {

 return EmprestimoManager.getBuscarEmprestimosSolicitados(leitor);

 }

 public void cancelarEmprestimo(Emprestimo emprestimo){

 EmprestimoManager.cancelarEmprestimo(emprestimo);

 }

}

--

Java file: EtiquetaTomboFlow.java

--

package br.com.infowaypi.jbook.flow;

import java.util.List;

import br.com.infowaypi.jbook.datasource.DataSourceEtiquetaTombo;

import br.com.infowaypi.jbook.manager.EtiquetaTomboManager;

import br.com.infowaypi.jbook.resumo.ResumoImpressaoEtiquetaTombo;

public class EtiquetaTomboFlow {

 public ResumoImpressaoEtiquetaTombo imprimirEtiquetasTombo(int qtdPaginas) throws Exception {

 List<DataSourceEtiquetaTombo> dataSource= EtiquetaTomboManager.getRelatorio(qtdPaginas);

 byte[] arquivo = EtiquetaTomboManager.getBytesRelatorio(dataSource);

 ResumoImpressaoEtiquetaTombo resumoEtiquetaTombo = new ResumoImpressaoEtiquetaTombo(arquivo);

 return resumoEtiquetaTombo;

 }

}

--

Java file: SolicitacaoEmprestimoFlow.java

--

package br.com.infowaypi.jbook.flow;

import br.com.infowaypi.jbook.autenticacao.UsuarioInterface;

import br.com.infowaypi.jbook.core.Exemplar;

import br.com.infowaypi.jbook.enumeration.PeriodoSolicitacaoEmprestimoEnum;

import br.com.infowaypi.jbook.enumeration.TipoPublicacaoEnum;

import br.com.infowaypi.jbook.manager.EmprestimoManager;

import br.com.infowaypi.jbook.resumo.ResumoExemplares;

import br.com.infowaypi.msr.exceptions.ValidateException;

public class SolicitacaoEmprestimoFlow {

 public ResumoExemplares buscarPublicacao(String titulo, String assunto, String autor, TipoPublicacaoEnum tipoDePublicacao)throws ValidateException {

 return EmprestimoManager.buscarPublicacao(titulo, assunto, autor, tipoDePublicacao);

 }

 public Exemplar selecionarExemplar(UsuarioInterface leitor, ResumoExemplares resumoExemplares, Exemplar exemplar) throws ValidateException {

 return EmprestimoManager.selecionarExemplar(leitor, resumoExemplares, exemplar);

 }

 public void confirmarSolicitacao(UsuarioInterface leitor, Exemplar exemplar, PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo) throws Exception {

 EmprestimoManager.confirmarSolicitacao(leitor, exemplar, periodoEmprestimo);

 }

}

===

===

Actual package: “manager”

===

--Java file: EmprestimoManager.java

--

package br.com.infowaypi.jbook.manager;

import java.util.Calendar;

import java.util.Collection;

import java.util.List;

import java.util.Stack;

import org.hibernate.Criteria;

import org.hibernate.criterion.Restrictions;

import br.com.infowaypi.jbook.autenticacao.UsuarioInterface;

import br.com.infowaypi.jbook.core.Emprestimo;

import br.com.infowaypi.jbook.core.Exemplar;

import br.com.infowaypi.jbook.core.Usuario;

import br.com.infowaypi.jbook.enumeration.PeriodoSolicitacaoEmprestimoEnum;

import br.com.infowaypi.jbook.enumeration.SituacaoEmprestimoEnum;

import br.com.infowaypi.jbook.enumeration.SituacaoExemplarEnum;

import br.com.infowaypi.jbook.enumeration.TipoPublicacaoEnum;

import br.com.infowaypi.jbook.resumo.ResumoExemplares;

import br.com.infowaypi.molecular.HibernateUtil;

import br.com.infowaypi.molecular.SearchAgent;

import br.com.infowaypi.molecular.parameter.Equals;

import br.com.infowaypi.molecular.parameter.LikeFull;

import br.com.infowaypi.molecular.parameter.OR;

import br.com.infowaypi.molecular.parameter.ParameterInterface;

import br.com.infowaypi.msr.exceptions.ValidateException;

import br.com.infowaypi.msr.utils.Utils;

public class EmprestimoManager {

 public static ResumoExemplares buscarPublicacao(String titulo, String assunto, String autor, TipoPublicacaoEnum tipoDePublicacao) throws ValidateException {

 boolean semParametrosDePesquisa = true;

 SearchAgent saExemplaresDisponiveis = new SearchAgent();

 SearchAgent saExemplaresIndisponiveis= new SearchAgent();

 Stack<ParameterInterface> parametros = new Stack<ParameterInterface>();

 if (!Utils.isStringVazia(titulo)) {

 parametros.add(new LikeFull("publicacao.titulo", titulo));

 semParametrosDePesquisa = false;

 }

 if (!Utils.isStringVazia(assunto)) {

 parametros.add(new LikeFull("publicacao.assunto", assunto));

 semParametrosDePesquisa = false;

 }

 if (!Utils.isStringVazia(autor)) {

 parametros.add(new LikeFull("publicacao.autor", autor));

 semParametrosDePesquisa = false;

 }

 if (tipoDePublicacao != null) {

 parametros.add(new Equals("publicacao.tipoDePublicacao",tipoDePublicacao.getValor()));

 semParametrosDePesquisa = false;

 }

 if(semParametrosDePesquisa){

 throw new ValidateException("Ã‰ necessário inserir pelo menos um parÃ¢metro de pesquisa!");

 }

 ResumoExemplares resumo = new ResumoExemplares(

 buscarExemplaresDisponiveis(saExemplaresDisponiveis, parametros),

 buscarExemplaresIndisponiveis(saExemplaresIndisponiveis, parametros)

);

 if (resumo.isExemplaresNaoLocalizados()) {

 throw new ValidateException("Nenhum ítem encontrado.");

 }

 return resumo;

 }

 private static Collection<Exemplar> buscarExemplaresDisponiveis(SearchAgent saExemplaresDisponiveis, Stack<ParameterInterface> parametros) {

 Stack<ParameterInterface> parametrosExemplaresDisponiveis = new Stack<ParameterInterface>();

 parametrosExemplaresDisponiveis.addAll(parametros);

 parametrosExemplaresDisponiveis.add(new Equals("situacao", SituacaoExemplarEnum.DISPONIVEL.getValor()));

 return saExemplaresDisponiveis.listByParam(parametrosExemplaresDisponiveis, Exemplar.class);

 }

 private static Collection<Exemplar> buscarExemplaresIndisponiveis(SearchAgent saExemplaresIndisponiveis,Stack<ParameterInterface> parametros) {

 Stack<ParameterInterface> parametrosExemplaresIndisponiveis = new Stack<ParameterInterface>();

 parametrosExemplaresIndisponiveis.addAll(parametros);

 parametrosExemplaresIndisponiveis.add(new OR(

 new Equals("situacao", SituacaoExemplarEnum.SOLICITADO.getValor()),

 new Equals("situacao", SituacaoExemplarEnum.EMPRESTADO.getValor())

)

);

 return saExemplaresIndisponiveis.listByParam(parametrosExemplaresIndisponiveis,Exemplar.class);

 }

 public static Exemplar selecionarExemplar(UsuarioInterface leitor, ResumoExemplares resumoExemplares, Exemplar exemplar) throws ValidateException {

 if (exemplar == null) {

 throw new ValidateException("Não há exemplares disponíveis para solicitação de empréstimo.");

 }

 if (passouLimiteEmprestimos((Usuario) leitor)) {

 throw new ValidateException(

 "O limite de 02 (duas) solicitaçÃµes de empréstimo foi atingido. Não será possível realizar a solicitação de empréstimo. ");

 }

 if (solicitouMesmaPublicacao((Usuario) leitor, exemplar)) {

 throw new ValidateException("Não é possível solicitar empréstimo de uma mesma publicação já solicitada e em aberto.");

 }

 return exemplar;

 }

 public static boolean passouLimiteEmprestimos(Usuario leitor) {

 SearchAgent sa = new SearchAgent();

 sa.addParameter(new Equals("leitor", leitor));

 sa.addParameter(new OR(

 new Equals("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),

 new Equals("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor())

)

);

 if (sa.resultCount(Emprestimo.class) > 1) {

 return true;

 }

 return false;

 }

 public static boolean solicitouMesmaPublicacao(Usuario leitor, Exemplar exemplar) {

 SearchAgent sa = new SearchAgent();

 sa.addParameter(new Equals("leitor", leitor));

 sa.addParameter(new OR(

 new Equals("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),

 new Equals("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor())

)

);

 Criteria criteria0 = sa.createCriteriaFor(Emprestimo.class);

 Criteria criteria1 = criteria0.createCriteria("exemplar");

 criteria1.add(Restrictions.eq("publicacao", exemplar.getPublicacao()));

 if (criteria1.list().size() != 0) {

 return true;

 }

 return false;

 }

 public static void confirmarSolicitacao(UsuarioInterface leitor, Exemplar exemplar, PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo) {

 Emprestimo emp = new Emprestimo();

 exemplar.setSituacao(SituacaoExemplarEnum.SOLICITADO.getValor());

 emp.setExemplar(exemplar);

 emp.setLeitor((Usuario) leitor);

 emp.setSituacao(SituacaoEmprestimoEnum.SOLICITADO.getValor());

 Calendar c = Calendar.getInstance();

 c.add(Calendar.WEEK_OF_MONTH, periodoEmprestimo.getValor());

 emp.setDataPrevisaoDeDevolucao(c.getTime());

 HibernateUtil.currentSession().save(emp);

 SchedulerManager.agendarExpiracaoDeSolicitacaoDeEmprestimo(emp.getIdEmprestimo());

 }

 public static List<Emprestimo> getBuscarEmprestimosSolicitados(UsuarioInterface leitor) {

 SearchAgent sa = new SearchAgent();

 sa.addParameter(new Equals("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()));

 sa.addParameter(new Equals("leitor", leitor));

 return sa.list(Emprestimo.class);

 }

 public static void cancelarEmprestimo(Emprestimo emprestimo){

 emprestimo.setSituacao(SituacaoEmprestimoEnum.CANCELADO.getValor());

 emprestimo.getExemplar().setSituacao(SituacaoExemplarEnum.DISPONIVEL.getValor());

 SchedulerManager.cancelarExpiracaoDeSolicitacaoDeEmprestimo(emprestimo.getIdEmprestimo());

 }

}

--

Java file: EtiquetaTomboManager.java

--

package br.com.infowaypi.jbook.manager;

import java.io.ByteArrayOutputStream;

import java.util.ArrayList;

import java.util.List;

import br.com.infowaypi.jbook.core.EtiquetaTombo;

import br.com.infowaypi.jbook.datasource.DataSourceEtiquetaTombo;

import br.com.infowaypi.jheat.reports.JHeatReport;

import br.com.infowaypi.molecular.SearchAgent;

public class EtiquetaTomboManager {

 private static final int NUMERO_DE_ETIQUETAS_POR_PAGINA = 14;

 public static Long getUltimoTombo() {

 SearchAgent sa = new SearchAgent();

 return ((EtiquetaTombo) sa.findById(1L, EtiquetaTombo.class)).getUltimoTombo();

 }

 private static void setUltimoTombo(Long ultimoTombo) {

 SearchAgent sa = new SearchAgent();

 EtiquetaTombo etiquetaTombo = (EtiquetaTombo) sa.findById(1L, EtiquetaTombo.class);

 etiquetaTombo.setUltimoTombo(ultimoTombo);

 }

 public static byte[] getBytesRelatorio(List<DataSourceEtiquetaTombo> dataSource) throws Exception {

 JHeatReport report = new JHeatReport("..\\file\\etiquetas-tombo.xml", dataSource);

 ByteArrayOutputStream output = new ByteArrayOutputStream();

 report.createPDF(output);

 return output.toByteArray();

 }

 public static List<DataSourceEtiquetaTombo> getRelatorio(int qtdPaginas) throws Exception {

 List<DataSourceEtiquetaTombo> dataSource = new ArrayList<DataSourceEtiquetaTombo>();

 Long ultimoTomboDispionivel = getUltimoTombo() + 1;

 for(int x = 0; x < qtdPaginas; x++){

 Long[] tombosDaPagina = new Long[NUMERO_DE_ETIQUETAS_POR_PAGINA];

 for (int i =0; i < NUMERO_DE_ETIQUETAS_POR_PAGINA; i++) {

 tombosDaPagina[i] = ++ultimoTomboDispionivel;

 }

 dataSource.add(new DataSourceEtiquetaTombo(tombosDaPagina));

 }

 setUltimoTombo(ultimoTomboDispionivel);

 return dataSource;

 }

}

--

Java file: NotificadorManager.java

--

package br.com.infowaypi.jbook.manager;

import br.com.infowaypi.jbook.core.Exemplar;

import br.com.infowaypi.jbook.core.Publicacao;

import br.com.infowaypi.jbook.msg.EmailThread;

import br.com.infowaypi.msr.user.Usuario;

public class NotificadorManager {

 public static boolean notificarNovasAquisicoes(Exemplar exemplar, Usuario usuario){

 if(exemplar.getPublicacao().getExemplares().size() == 1){

 enviarNotificacaoDeNovasAquisicoes(exemplar.getPublicacao(), usuario);

 }

 return true;

 }

 private static void enviarNotificacaoDeNovasAquisicoes(Publicacao publicacao, Usuario usuario) {

 String assunto = "Nova aquisição para nossa biblioteca!";

 StringBuilder corpo = new StringBuilder();

 corpo.append("A biblioteca acaba de disponibilizar a partir deste momento mais um exemplar. \n");

 corpo.append("Seguem abaixo os dados da publicação adquirida. \n");

 corpo.append("\n Titulo: " + publicacao.getTitulo());

 corpo.append("\n Assunto: " + publicacao.getAssunto());

 corpo.append("\n Autor: " + publicacao.getAutor());

 corpo.append("\n Editora: " + publicacao.getEditora());

 corpo.append("\n Tipo de publicação: " + publicacao.getTipoDePublicacao().toLowerCase());

 corpo.append("\n\n--\n");

 corpo.append("\n JBook - Sistema de controle de empréstimos de livros Infoway");

 new EmailThread(usuario, "JBook", assunto, corpo.toString()).starta();

 }

}

--

Java file: SchedulerManager.java

--

package br.com.infowaypi.jbook.manager;

import java.sql.Date;

import org.quartz.JobDetail;

import org.quartz.Scheduler;

import org.quartz.SchedulerException;

import org.quartz.SimpleTrigger;

import br.com.infowaypi.jbook.scheduler.ExpiraSolicitacaoEmprestimoTask;

import br.com.infowaypi.jbook.scheduler.QuartzConfigurator;

public class SchedulerManager {

 private static final String triggerName = "TRIGGER_EXPIRA_SOLICITACAO_DE_EMPRESTIMO_N:";

 private static final String jobName = "JOB_EXPIRA_SOLICITACAO_DE_EMPRESTIMO__N:";

 public static void agendarExpiracaoDeSolicitacaoDeEmprestimo(Long idSolicitacao){

 SimpleTrigger trigger = new SimpleTrigger(triggerName + idSolicitacao, Scheduler.DEFAULT_GROUP, new Date(System.currentTimeMillis() + (24 * (60 * 60000))));

 JobDetail tarefa = new JobDetail(jobName + idSolicitacao, Scheduler.DEFAULT_GROUP, ExpiraSolicitacaoEmprestimoTask.class);

 tarefa.getJobDataMap().put("idSolicitacao", idSolicitacao);

 try {

 QuartzConfigurator.getScheduler().scheduleJob(tarefa, trigger);

 } catch (SchedulerException e) {

 e.printStackTrace();

 }

 }

 public static void cancelarExpiracaoDeSolicitacaoDeEmprestimo(Long idSolicitacao){

 try {

 QuartzConfigurator.getScheduler().deleteJob(jobName + idSolicitacao, Scheduler.DEFAULT_GROUP);

 System.out.println("Cancelando Job");

 } catch (SchedulerException e) {

 e.printStackTrace();

 }

 }

 public static String getJobname() {

 return jobName;

 }

 public static String getTriggername() {

 return triggerName;

 }

}

===

===

Actual package: “msg”

===

--

Java file: EmailThread.java

--

package br.com.infowaypi.jbook.msg;

import java.util.HashSet;

import java.util.Set;

import br.com.infowaypi.msr.user.Usuario;

public class EmailThread extends Thread {

 private Set<Usuario> usuarios = new HashSet<Usuario>();

 private String nome;

 private String assunto;

 private String corpo;

 public EmailThread(Usuario usuario, String nome, String assunto, String corpo) {

 this.usuarios.add(usuario);

 this.nome = nome;

 this.assunto = assunto;

 this.corpo = corpo;

 }

 public EmailThread(Set<? extends Usuario> usuarios, String nome, String assunto, String corpo) {

 this.usuarios.addAll(usuarios);

 this.nome = nome;

 this.assunto = assunto;

 this.corpo = corpo;

 }

 public void run() {

 String destino = "contato-no-reply@infoway-pi.com.br";

 for (Usuario usuario : usuarios) {

 MailSender.mandarEmail(usuario, this.nome, this.assunto, this.corpo, destino);

 }

 }

 public void starta(){

 this.start();

 }

}

--

Java file: MailSender.java

--

package br.com.infowaypi.jbook.msg;

import java.util.Date;

import java.util.Set;

import br.com.infowaypi.msr.msg.Mensagem;

import br.com.infowaypi.msr.user.Usuario;

public class MailSender {

 public static void mandarEmail(Usuario usuario, String nome, String assunto, String corpo, String destino) {

 Usuario usuarioDestino = new Usuario();

 Usuario usuarioRemetente = new Usuario();

 usuarioRemetente.setEmail(destino);

 usuarioRemetente.setNome(nome);

 usuarioDestino.setNome(usuario.getNome());

 usuarioDestino.setEmail(usuario.getEmail());

 Mensagem mensagem = new Mensagem();

 mensagem.setAssunto(assunto);

 mensagem.setAvisarRemetente(true);

 mensagem.setCorpo(corpo);

 mensagem.setDataMensagem(new Date());

 mensagem.setDestinatario(usuarioDestino);

 mensagem.setRemetente(usuarioRemetente);

 mensagem.setEnviarEmail(true);

 mensagem.enviarEmail();

 }

 public static void mandarEmailHTML(Usuario usuario, String nome, String assunto, String corpo, String destino) {

 Usuario usuarioDestino = new Usuario();

 Usuario usuarioRemetente = new Usuario();

 usuarioRemetente.setEmail(destino);

 usuarioRemetente.setNome(nome);

 usuarioDestino.setNome(usuario.getNome());

 usuarioDestino.setEmail(usuario.getEmail());

 Mensagem mensagem = new Mensagem();

 mensagem.setAssunto(assunto);

 mensagem.setAvisarRemetente(true);

 mensagem.setCorpo(corpo);

 mensagem.setDataMensagem(new Date());

 mensagem.setDestinatario(usuarioDestino);

 mensagem.setRemetente(usuarioRemetente);

 mensagem.setEnviarEmail(true);

 mensagem.enviarEmail();

 }

 public static void mandarEmailHTML(Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {

 for (Usuario usuario : usuarios) {

 mandarEmailHTML(usuario, nome, assunto, corpo, destino);

 }

 }

 public static void mandarEmail(Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {

 for (Usuario usuario : usuarios) {

 mandarEmail(usuario, nome, assunto, corpo, destino);

 }

 }

}

===

===

Actual package: “report”

===

--Java file: EmprestimoReport.java

--

package br.com.infowaypi.jbook.report;

public class EmprestimoReport {

 public ReportEmprestimoResumo gerarRelatorio(TipoPublicacaoEnum tipoPublicacao,Exemplar exemplares,Usuario leitores,SituacaoEmprestimoEnum situacaoEmprestimo,Date dataEmprestimoInicio,Date dataEmprestimoFinal,

 Date dataDevolucaoInicial,Date dataDevolucaoFinal) {

 List<Emprestimo> emprestimos = buscaPorEmprestimos(tipoPublicacao,exemplares,leitores,situacaoEmprestimo,dataEmprestimoInicio,dataEmprestimoFinal,dataDevolucaoInicial,dataDevolucaoFinal);

 ReportEmprestimoResumo rre = new ReportEmprestimoResumo();

 rre.setEmprestimos(emprestimos);

 return rre;

 }

 private List<Emprestimo> buscaPorEmprestimos(TipoPublicacaoEnum tipoPublicacao, Exemplar exemplares,Usuario leitores,SituacaoEmprestimoEnum situacaoEmprestimo,Date dataEmprestimoInicio, Date dataEmprestimoFinal,

 Date dataDevolucaoInicial, Date dataDevolucaoFinal) {

 Criteria c = HibernateUtil.currentSession(Emprestimo.class).createCriteria(Emprestimo.class);

 if (tipoPublicacao !=null){

 c.createAlias("exemplar","e");

 c.createAlias("e.publicacao","p");

 c.add(Restrictions.eq("p.tipoDePublicacao", tipoPublicacao.getValor()));

 }

 if (exemplares!=null)

 c.add(Restrictions.eq("exemplar", exemplares));

 if (leitores!=null)

 c.add(Restrictions.eq("leitor", leitores));

 if (situacaoEmprestimo !=null){

 c.add(Restrictions.eq("situacao", situacaoEmprestimo.getValor()));

 }

 if (dataEmprestimoInicio!=null && dataEmprestimoFinal!=null)

 c.add(Restrictions.between("dataSolicitacao", dataEmprestimoInicio, dataEmprestimoFinal));

 if (dataDevolucaoInicial!=null && dataDevolucaoFinal!=null)

 c.add(Restrictions.between("dataDevolucao", dataDevolucaoInicial, dataDevolucaoFinal));

 return c.list();

 }

}

===

===

Actual package: “resumo”

===

--Java file: ReportEmprestimoResumo.java

--

package br.com.infowaypi.jbook.resumo;

import java.util.List;

import br.com.infowaypi.jbook.core.Emprestimo;

public class ReportEmprestimoResumo {

 private List<Emprestimo> emprestimos;

 public List<Emprestimo> getEmprestimos() {

 return emprestimos;

 }

 public void setEmprestimos(List<Emprestimo> emprestimos) {

 this.emprestimos = emprestimos;

 }

}

--

Java file: ResumoExemplares.java

--

package br.com.infowaypi.jbook.resumo;

import java.util.Collection;

import br.com.infowaypi.jbook.core.Exemplar;

public class ResumoExemplares {

 private Collection<Exemplar> exemplaresDisponiveis;

 private Collection<Exemplar> exemplaresIndisponiveis;

 public ResumoExemplares(Collection<Exemplar> exemplaresDisponiveis, Collection<Exemplar> exemplaresIndisponiveis) {

 this.exemplaresDisponiveis = exemplaresDisponiveis;

 this.exemplaresIndisponiveis = exemplaresIndisponiveis;

 }

 public boolean isExemplaresNaoLocalizados(){

 return ((exemplaresDisponiveis == null || exemplaresDisponiveis.size() == 0)

 && (exemplaresIndisponiveis == null || exemplaresIndisponiveis.size() == 0));

 }

 public Collection<Exemplar> getExemplaresDisponiveis() {

 return exemplaresDisponiveis;

 }

 public Collection<Exemplar> getExemplaresIndisponiveis() {

 return exemplaresIndisponiveis;

 }

}

--

Java file: ResumoImpressaoEtiquetaTombo.java

--

package br.com.infowaypi.jbook.resumo;

import java.io.Serializable;

public class ResumoImpressaoEtiquetaTombo implements Serializable {

 private static final long serialVersionUID = 6380683336794912126L;

 public ResumoImpressaoEtiquetaTombo(byte[] conteudoArquivo) {

 this.conteudoArquivo = conteudoArquivo;

 }

 private byte[] conteudoArquivo;

 public byte[] getConteudoArquivo() {

 return conteudoArquivo;

 }

 public String getFileName() {

 return "Etiquetas_de_Tombo.pdf";

 }

}

===

===

Actual package: “scheduler”

===

--Java file: ExpiraSolicitacaoEmprestimoTask.java

--

package br.com.infowaypi.jbook.scheduler;

import javax.servlet.ServletException;

import org.apache.struts.action.ActionServlet;

import org.apache.struts.action.PlugIn;

import org.apache.struts.config.ModuleConfig;

import org.quartz.Scheduler;

import org.quartz.SchedulerException;

import org.quartz.impl.StdSchedulerFactory;

public class QuartzConfigurator implements PlugIn{

 private static Scheduler scheduler = null;

 @Override

 public void destroy() {

 try {

 scheduler.shutdown();

 } catch (SchedulerException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void init(ActionServlet servlet, ModuleConfig config) throws ServletException {

 try {

 scheduler = StdSchedulerFactory.getDefaultScheduler();

 scheduler.start();

 } catch (SchedulerException e) {

 e.printStackTrace();

 }

 }

 public static Scheduler getScheduler() {

 return scheduler;

 }

 public static void setScheduler(Scheduler scheduler) {

 QuartzConfigurator.scheduler = scheduler;

 }

}

--

Java file: QuartzConfigurator.java

--

package br.com.infowaypi.jbook.scheduler;

import javax.servlet.ServletException;

import org.apache.struts.action.ActionServlet;

import org.apache.struts.action.PlugIn;

import org.apache.struts.config.ModuleConfig;

import org.quartz.Scheduler;

import org.quartz.SchedulerException;

import org.quartz.impl.StdSchedulerFactory;

public class QuartzConfigurator implements PlugIn{

 private static Scheduler scheduler = null;

 @Override

 public void destroy() {

 try {

 scheduler.shutdown();

 } catch (SchedulerException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void init(ActionServlet servlet, ModuleConfig config) throws ServletException {

 try {

 scheduler = StdSchedulerFactory.getDefaultScheduler();

 scheduler.start();

 } catch (SchedulerException e) {

 e.printStackTrace();

 }

 }

 public static Scheduler getScheduler() {

 return scheduler;

 }

 public static void setScheduler(Scheduler scheduler) {

 QuartzConfigurator.scheduler = scheduler;

 }

}

===

===

Actual package: “util”

===

--Java file: ConfiguraBaseDeDados.java

--

===

FIM

===

