JBook - Shadowing
Source folder: “src/main/java”
Main package: “br.com.infowaypi.jbook.”

Actual package: “autenticacao”

Java file: Autenticador.java

package br.com.infowaypi.jbook.autenticacao;
public class Autenticador {
private static final ThreadLocal<UsuarioInterface> threadUsuario = new ThreadLocal<UsuarioInterface>();

public Autenticador () {
}

public UsuarioInterface getUsuario() {
return threadUsuario.get () ;

}

public String[] getRoles (String login, String senha) throws Exception ({
if (Utils.isStringVazia(senha)) {
return null;
}

UsuarioInterface usuario = buscaUsuario (login);

if (usuario != null && usuario.autentica (senha)) {
threadUsuario.set (usuario) ;
return new String[] { usuario.getRole() };

}
return null;

}

public Usuario buscaUsuario(String login) {
SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals("login", login));
return sa.uniqueResult (Usuario.class);

Java file: UsuariolInterface.java
package br.com.infowaypi.jbook.autenticacao;

public interface UsuarioInterface extends Serializable, Comparable<UsuarioInterface> {

public static final String ATIVO = "A";
public static final String CANCELADO = "C";

public abstract Boolean validate() throws ValidateException;
public abstract Long getIdUsuariol();

public abstract void setIdUsuario (Long idUsuario);
public abstract String getNome () ;

public abstract void setNome (String nome) ;

public abstract String getEmail();

public abstract void setEmail (String email);
public abstract String getLogin();

public abstract void setLogin (String login);
public abstract String getSenhal();

public abstract void setSenha (String senha);
public abstract String getStatus();

public abstract void setStatus(String status);
public String getNovaSenhaConfirmacao();

public abstract void setNovaSenhaConfirmacao (String novaSenhaConfirmacao) ;

public String getNovaSenhaDigitada();

public abstract void setNovaSenhaDigitada (String novaSenhaDigitada) ;
public abstract String getRole();

public abstract void setRole(String role);

public abstract boolean isPossuiRole (String... roles);

public abstract boolean autentica(String senha);

public void tocarObjetos();

Actual package: “config”

Java file: Config.java

package br.com.infowaypi.jbook.config;
public class Config {
public static String aplicationPath = currentPath();
public static final String sourcePath = aplicationPath + File.separator + "src" + File.separator + "main" + File.separator;
public static final String resoucesPath = sourcePath + "resources" + File.separator;
public static final String webAppPath = sourcePath + "webapp" + File.separator;

public static String getFileInResources (String file) {
return resoucesPath + file;

}

public static String getFileInWebApp (String file) {
return webAppPath + file;
}

private static String currentPath () {
try{
return new File("").getCanonicalPath();
}catch (IOException e) {
new IOException(e.getMessage()):;
}

return null;

Actual package: “core”

Java file: Emprestimo.java
package br.com.infowaypi.jbook.core;
public class Emprestimo implements Serializable, Comparable<Emprestimo> {

private static final long serialVersionUID = -7427026885020906922L;

private Long idEmprestimo;

private Usuario bibliotecario;

private Usuario leitor;

private Exemplar exemplar;

private Date dataSolicitacao;

private Date dataPrevisaoDeDevolucao;

private Date dataDevolucao;

private String situacao;

public Long getIdEmprestimo () {
return idEmprestimo;

}

public void setIdEmprestimo (Long idEmprestimo) {
this.idEmprestimo = idEmprestimo;

}

public Usuario getBibliotecario() {
return bibliotecario;

}

public void setBibliotecario(Usuario bibliotecario) {
this.bibliotecario = bibliotecario;

}

public Usuario getLeitor () {
return leitor;

}

public void setLeitor (Usuario leitor) {
this.leitor = leitor;

}

public Exemplar getExemplar () {
return exemplar;

}

public void setExemplar (Exemplar exemplar) {

public Date getDataSolicitacao() {
return dataSolicitacao;

}

public void setDataSolicitacao (Date dataSolicitacao) {
this.dataSolicitacao = dataSolicitacao;

}
public Date getDataPrevisaoDeDevolucao () {
return dataPrevisaoDeDevolucao;

}

public void setDataPrevisaoDeDevolucao (Date dataPrevisaoDeDevolucao) {

public Date getDataDevolucao () {
return dataDevolucao;

}

public void setDataDevolucao (Date dataDevolucao) {
this.databDevolucao = dataDevolucao;

}

public Boolean validate (UsuarioInterface bibliotecario) throws ValidateException {

if (getbDataSolicitacao () .compareTo (getDataPrevisaoDeDevolucao()) > 0)

throw new ValidateException (

"A data de previsdo para devolucdo deve ser futura");
if (EmprestimoManager.passoulimiteEmprestimos (this.getLeitor())) {

throw new ValidateException (

"O limite de 02 (duas) solicitacbes de empréstimo foi atingido. N&o serd possivel realizar a solicitacdo de empréstimo.");
}
if (EmprestimoManager.solicitouMesmaPublicacao (this.getLeitor(),

this.getExemplar())) {

throw new ValidateException (

"Ndo é possivel solicitar empréstimo de uma mesma publicac¢do ja solicitada e em aberto.");
}
getExemplar () .setSituacao (SituacaoExemplarEnum.EMPRESTADO.getValor()) ;
this.setBibliotecario((Usuario) bibliotecario);
this.situacao = SituacaoEmprestimoEnum.CONFIRMADO.getValor () ;
return true;

}

public int hashCode() {

return new HashCodeBuilder () .append(getIdEmprestimo()) .toHashCode () ;
}

public boolean equals (Object obj) {
if (! (obj instanceof Emprestimo)) {
return false;
}
Emprestimo emprestimo = (Emprestimo) obj;
return new EqualsBuilder () .append(this.getIdEmprestimo(), emprestimo.getIdEmprestimo()) .isEquals();

}

public int compareTo (Emprestimo outro) {
return this.getDataSolicitacao () .compareTo (outro.getDataSolicitacao());

}

public String getSituacao() {
return situacao;

}

public void setSituacao (String situacao) {

public void cancelarSolicitacao () {
getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor());
setSituacao (SituacaoEmprestimoEnum.CANCELADO.getValor());
Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this);
trans.commit () ;

}

public void confirmarSolicitacao () {
getExemplar () .setSituacao (SituacaoExemplarEnum.EMPRESTADO.getValor());
setSituacao (SituacaoEmprestimoEnum.CONFIRMADO.getValor()) ;
Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this);
trans.commit () ;

}

public void encerrar () throws ValidateException{
getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor());
setSituacao (SituacaoEmprestimoEnum.FINALIZADO.getValor());
setDataDevolucao (new Date());
Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this);
trans.commit () ;
if (getDataDevolucao () .compareTo (getDataPrevisaobDeDevolucao()) > 0){

throw new ValidateException ("Devolucdo em atrasso");

Java file: EtiquetaTombo.java

package br.com.infowaypi.jbook.core;
public class EtiquetaTombo {
private Long idEtiquetaTombo = 1L;
private Long ultimoTombo;

public Long getIdEtiquetaTombo () {
return idEtiquetaTombo;

}

public void setIdEtiquetaTombo (Long idEtiquetaTombo) {
this.idEtiquetaTombo = idEtiquetaTombo;
}

public Long getUltimoTombo () {
return ultimoTombo;

}
public void setUltimoTombo (Long ultimoTombo) {

this.ultimoTombo = ultimoTombo;

}

public int hashCode() {

return new HashCodeBuilder () .append(getIdEtiquetaTombo ()) .toHashCode () ;
}

public boolean equals (Object obj) {
if (! (obj instanceof EtiquetaTombo)) {
return false;
}
EtiquetaTombo etiqueta = (EtiquetaTombo) obj;
return new EqualsBuilder () .append(this.getIdEtiquetaTombo (), etiqueta.getIdEtiquetaTombo ()).isEquals();

Java file: Exemplar.java

package br.com.infowaypi.jbook.core;

public class Exemplar implements Serializable, Comparable<Exemplar> {

private static final long serialVersionUID = 4448872540560235275L;

private Long idExemplar;

private Publicacao publicacao;
private Long tombo;

private Date dataCatalogacao;

private List<Emprestimo> emprestimos;
private String estadoDeConservacao;
private String situacao;

public Long getIdExemplar () {
return idExemplar;

}

public void setIdExemplar (Long idExemplar) {
this.idExemplar = idExemplar;

}

public Publicacao getPublicacao() {
return publicacao;

}

public void setPublicacao (Publicacao publicacao) {

public Long getTombo () {
return tombo;

}

public void setTombo (Long tombo) {

public Date getDataCatalogacao () {
return dataCatalogacao;

}

public void setDataCatalogacao (Date dataCatalogacao) {
this.dataCatalogacao = dataCatalogacao;

}

public List<Emprestimo> getEmprestimos () {
return emprestimos;

}

public void setEmprestimos (List<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

}

public String getEstadoDeConservacao () {
return estadoDeConservacao;

}

public void setEstadoDeConservacao (String estadoDeConservacao) {
this.estadoDeConservacao = estadoDeConservacao;

}

public String getSituacao() {
return situacao;

}

public void setSituacao (String situacao) {

public Usuario getUltimoLeitorAssociado () {

return getEmprestimos () .get (getEmprestimos().size() - 1).getlLeitor();
}
public Emprestimo getUltimoEmprestimoAssociado () {

return getEmprestimos () .get (getEmprestimos().size() - 1);

}

public String getTituloTombo () {
return publicacao.getTitulo() + " - " + getTombo();

}

public Boolean validate() throws Exception ({
SearchAgent sa = new SearchAgent () ;

sa.addParameter (new Equals ("tombo", getTombo()));
Exemplar exemplar = sa.uniqueResult (Exemplar.class);
if (exemplar != null && !this.equals(exemplar)) {

throw new ValidateException ("Tombo j& cadastrado!");
}

return true;

}
public boolean equals (Object obj) {
if (! (obj instanceof Exemplar)) {

return false;

}
Exemplar exemplar = (Exemplar) obj;
return new EqualsBuilder ()
.append (this.getIdExemplar (), exemplar.getIdExemplar())
.append (this.getTombo (), exemplar.getTombo ())
.isEquals () ;
}
public int hashCode () {
return new HashCodeBuilder () .append(this.getTombo ()) .toHashCode() ;
}
public int compareTo (Exemplar outro) {
return this.getPublicacao () .getTitulo ()
.compareTo (outro.getPublicacao () .getTitulo());

package br.com.infowaypi.jbook.core;
public class Publicacao implements Serializable, Comparable<Publicacao> {
private static final long serialVersionUID = 7770198638083066524L;
 public Publicacao() {}
private Long idPublicacao;
private String titulo;
private String assunto;
private String autor;
private String editora;

private Long ISBN;

private String tipoDePublicacao;
private Set<Exemplar> exemplares;

public Long getIdPublicacao() {
return idPublicacao;

}

public void setIdPublicacao (Long idPublicacao) {
this.idPublicacao = idPublicacao;

}
public String getTitulo() {
return titulo;

}

public void setTitulo (String titulo) {

public String getAssunto() {
return assunto;

}

public void setAssunto (String assunto) {

public String getAutor () {
return autor;

}

public void setAutor (String autor) {

public String getEditora() {
return editora;

}

public void setEditora(String editora) {
this.editora = editora;

}

public Long getISBN() {
return ISBN;

}

public void setISBN(Long iSBN) {

public String getTipoDePublicacao () {
return tipoDePublicacao;

}

public void setTipoDePublicacao (String tipoDePublicacao) {

public Set<Exemplar> getExemplares () {
return exemplares;

}

public void setExemplares (Set<Exemplar> exemplares) {
this.exemplares = exemplares;

}

public Boolean validate() throws ValidateException {
boolean retorno = false;
if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.LIVRO.getValor())
&& this.getISBN() == null) {
throw new ValidateException ("O preenchimento do ISBN é obrigatério para livros.");
} else if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.REVISTA.getValor())
&& this.getISBN() != null) {
throw new ValidateException ("O preenchimento do ISBN ndo é necessario para revistas.");
}
retorno = verificaPreExistenciaPublicacao();
return retorno;

}

private Boolean verificaPreExistenciaPublicacao () throws ValidateException ({
SearchAgent sa = new SearchAgent();
sa.addParameter (new Equals ("titulo", this.getTitulo()));
sa.addParameter (new Equals ("assunto", this.getAssunto()));
(
(

sa.addParameter (new Equals ("autor", this.getAutor()));

sa.addParameter (new Equals ("editora", getEditora()));
sa.addParameter (new Equals ("tipoDePublicacao", this.tipoDePublicacao));
if (sa.uniqueResultAny (Publicacao.class) != null) {

throw new ValidateException ("Publicacdo j& cadastrada!");
}
if (Utils.isCampoDuplicado(this, "ISBN", this.getISBN())) {
throw new ValidateException ("Ndo é permitido cadastrar duas publicacApes com o mesmo ISBN!");
}
return true;

}

public int hashCode () {
return new HashCodeBuilder ()
.append (this.idPublicacao)
.append (this.ISBN)
.toHashCode () ;

}

public boolean equals (Object obj) {
if (! (obj instanceof Publicacao)) {
return false;
}
Publicacao publicacao = (Publicacao) obj;
return new EqualsBuilder () .append(this.getIdPublicacao (), publicacao.getIdPublicacao())
.append (this.getISBN (), publicacao.getISBN())
.isEquals () ;
}

public int compareTo (Publicacao outro) {
return this.getTitulo () .compareTo (outro.getTitulo());

Java file: Usuario.java
package br.com.infowaypi.jbook.core;
public class Usuario implements UsuariolInterface ({
private static final long serialVersionUID = 1L;
protected Long idUsuario;
private String login;
private String senha;
private String novaSenhaDigitada;
private String novaSenhaConfirmacao;
private String role;
private String nome;
private String email;
private String status;

private Set<Emprestimo> emprestimos;

public Boolean validate() throws ValidateException {
if (Utils.isStringVazia(this.getLogin()))
throw new ValidateException("O Login deve ser informado.");
if (Utils.isStringVazia (this.getNome ()))
throw new ValidateException ("O Nome do usuédrio deve ser informado.");
if (Utils.isStringVazia(this.getEmail())) {
throw new ValidateException("O Email deve ser informado.");

}

if (Utils.isStringVazia(this.getRole()))
throw new ValidateException("O role do usudrio deve ser informado.");
if (Utils.isCampoDuplicado (this, "login", this.getLogin()))
throw new ValidateException ("O login informado j& existe. Escolha outro nome para o login e tente novamente.");
if (Utils.isStringVazia(this.getSenha())) {
verificarRestricoes();
} else {
if (Utils.isStringVazia (this.getNovaSenhaDigitada()) && Utils.isStringVazia (this.getNovaSenhaConfirmacao())) {
return true;
}
verificarRestricoes();
}
this.setSenha (String.valueOf (this.getNovaSenhaDigitada () .hashCode()));
return true;

}

private void verificarRestricoes () throws ValidateException {

if (Utils.isStringVazia(this.getNovaSenhaDigitada()))
throw new ValidateException ("A senha deve ser informada.");

if (Utils.isStringVazia (this.getNovaSenhaConfirmacao()))
throw new ValidateException (

"A confirmacdo da senha deve ser informada.");

if (!this.getNovaSenhaDigitada () .equals (this.getNovaSenhaConfirmacao()))

throw new ValidateException ("Senhas ndo conferem.");

}

public boolean isPossuiRole (String... roles) {
for (String role : roles) {
if (this.getRole() .equals(role))
return true;
}
return false;

}

public boolean autentica (String senhaDigitada) {
if (!StringUtils.isEmpty (senhaDigitada) && this.status.equals(ATIVO) && this.getSenha() .equals(String.valueOf (senhaDigitada.hashCode())))
return true;
return false;

}

public Long getIdUsuario() {
return idUsuario;

}

public void setIdUsuario (Long idUsuario) {
this.idUsuario = idUsuario;

}

public String getRole () {
return role;

}

public void setRole(String role) {
this.role = role;

}

public String getSenha() {
return senha;

}

public void setSenha (String senha) {
this.senha = senha;

}

public String getLogin() {
return login;

}

public void setLogin(String login) {
this.login = login;
}

public String getNome () {
return nome;

}

public void setNome (String nome) {
this.nome = nome;

}

public String getStatus() {
return status;

}

public void setStatus (String status) {
this.status = status;

}

public Set<Emprestimo> getEmprestimos () {
return emprestimos;

}

public void setEmprestimos (Set<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

}

public String getEmail () {
return email;

}

public void setEmail (String email) {
this.email = email;

}

public String getNovaSenhaConfirmacao () {
return novaSenhaConfirmacao;

}

public void setNovaSenhaConfirmacao (String novaSenhaConfirmacao) {
this.novaSenhaConfirmacao = novaSenhaConfirmacao;

}

public String getNovaSenhaDigitada() {
return novaSenhaDigitada;

}

public void setNovaSenhaDigitada (String novaSenhaDigitada) {
this.novaSenhaDigitada = novaSenhaDigitada;

}

public void tocarObjetos() {
this.getIdUsuario();
this.getNome () ;
this.getRole();

}

public boolean equals (Object object) {
if (! (object instanceof UsuariolInterface)) {
return false;

}

Usuario usuario = (Usuario) object;
UsuarioInterface user = (UsuarioInterface) object;
return new EqualsBuilder ()
.append(this.getIdUsuario (), user.getIdUsuario())
.append(this.login, usuario.getLogin()) .isEquals{();

}

public int hashCode () {
return new HashCodeBuilder () .append(this.getIdUsuario())
.append (this.getLogin()) .toHashCode () ;
}

public String toString() {
return new ToStringBuilder (this, ToStringStyle.DEFAULT STYLE)
.append ("Login", this.login) .append("nome", this.nome)
.append("role", this.role).toString();
}

public int compareTo (UsuarioInterface outro) {
Integer compareRole = this.getRole () .compareTo (outro.getRole())
Integer compareNome = this.getNome () .compareTo (outro.getNome ())
if (!compareRole.equals(0))
return compareRole;
return compareNome;

’
’

Actual package: “datasource”

Java file: DataSourceEtiquetaTombo.java

package br.com.infowaypi.jbook.datasource;
public class DataSourceEtiquetaTombo {

public DataSourceEtiquetaTombo (Long[] tombos) {
this.tombos = tombos;

}
private Long[] tombos;

public Long[] getTombos () {
return tombos;

}

public String getLogoInfoway () {
return "/home/jbook/files/logoInfoway.png";
}

Actual package: “enumeration”

Java file: EstadoConservacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum EstadoConservacaoEnum {

NOVO ("NOVO", "Novo"),

EXCELENTE ("EXCELENTE", "Excelente"),

BOM ("BOM", "Bom"),

DEPRECIADO ("DEPRECIADO", "Depreciado™),
INUTILIZAVEL ("INUTILIZAVEL", "Inutilizavel™);

private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private EstadoConservacaoEnum(String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

Java file: PeriodoSolicitacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum PeriodoSolicitacaoEmprestimoEnum {

UMA (1, "Uma Semana"),

DUAS (2, "Duas Semanas"),
TRES (3, "Trés Semanas"),
QUATRO (4, "Quatro Semanas");

private int wvalor;
private String descricao;

public int getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private PeriodoSolicitacaoEmprestimoEnum(int valor, String descricao) {
this.valor = valor;

this.descricao = descricao;

Java file: RolesEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum RolesEnum {

LEITOR ("LEITOR", "Leitor"),
BIBLIOTECARIO ("BIBLIOTECARIO", "Bibliotecario"),
ROOT ("ROOT", "Root");

private String valor;
private String descricao;

RolesEnum (String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

}

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {

public String getDescricao() {
return descricao;

}

Java file: SituacaoExemplarEnum.java

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {

public String getDescricao () {

return descricao;

Java file: TipoPublicacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

—

Java file: AlterarSenhaFlow.java

package br.com.infowaypi.jbook.flow;
public class AlterarSenhaFlow {

public UsuarioInterface alteraSenha (UsuarioInterface usuario, String senhaAntiga, String senhaNova, String senhaConfirmacao) throws Exception {
HibernateUtil.currentSession () .evict (usuario);
Usuario user = (Usuario) ImplDAO.findById(usuario.getIdUsuario(), Usuario.class);
if (user == null){
throw new ValidateException ("Usuario nulo.");
}
boolean isSenhaNovaVazia = Utils.isStringVazia (senhaNova) ;
boolean isSenhaConfirmacaoVazia = Utils.isStringVazia (senhaConfirmacao);
boolean isSenhaAntigaVazia = Utils.isStringVazia (senhaAntiga);
boolean isCamposSenhasVazios = isSenhaAntigaVazia && isSenhaConfirmacaoVazia && isSenhaNovaVazia;
if (!isCamposSenhasVazios) {
if (Utils.isStringVazia (senhaAntiga)) {
throw new ValidateException ("A senha atual deve ser informada.");
}
if (isSenhaNovaVazia) {
throw new ValidateException("A nova senha deve ser informada.");
}
if (isSenhaConfirmacaoVazia) {
throw new ValidateException("A confirmacdo da nova senha deve ser informada.");
}
boolean isSenhasNaoConferem = !usuario.getSenha () .equals (String.valueOf (senhaAntiga.hashCode()));
if (isSenhasNaoConferem) {
throw new ValidateException ("A senha atual ndo confere.");
}
user.setNovaSenhaDigitada (senhaNova) ;
user.setNovaSenhaConfirmacao (senhaConfirmacao) ;
}
user.validate () ;
HibernateUtil.currentSession () .save (user);
return user;

Java file: CancelarSolicitacaoEmprestimoLeitorFlow.java

package br.com.infowaypi.jbook.flow;

public class CancelarSolicitacaoEmprestimoLeitorFlow {

public List<Emprestimo> getBuscarEmprestimosSolicitados (UsuarioInterface leitor) {

}

return EmprestimoManager.getBuscarEmprestimosSolicitados (leitor);

public void cancelarEmprestimo (Emprestimo emprestimo) {

EmprestimoManager.cancelarEmprestimo (emprestimo) ;

Java file: EtiquetaTomboFlow.java

package br.com.infowaypi.jbook.flow;

public class EtiquetaTomboFlow {

public ResumoImpressaoEtiquetaTombo imprimirEtiquetasTombo (int gtdPaginas)

List<DataSourceEtiquetaTombo> dataSource= EtigquetaTomboManager.getRelatorio (gtdPaginas);
byte[] arquivo = EtiquetaTomboManager.getBytesRelatorio (dataSource);

throws Exception {

ResumoImpressaoEtiquetaTombo resumoEtiquetaTombo = new ResumoImpressaoEtiquetaTombo (arquivo) ;

return resumoEtiquetaTombo;

Java file: SolicitacaoEmprestimoFlow.java

package br.com.infowaypi.jbook.flow;

public class SolicitacaoEmprestimoFlow {

public ResumoExemplares buscarPublicacao (String titulo, String assunto, String autor, TipoPublicacaoEnum tipoDePublicacao)throws ValidateException {

}

public Exemplar selecionarExemplar (UsuarioInterface leitor,

}

return EmprestimoManager.buscarPublicacao(titulo, assunto, autor, tipoDePublicacao);

return EmprestimoManager.selecionarExemplar (leitor, resumoExemplares, exemplar);

public void confirmarSolicitacao (UsuarioInterface leitor, Exemplar exemplar, PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo)

}

EmprestimoManager.confirmarSolicitacao(leitor, exemplar, periodoEmprestimo) ;

Actual package: “manager”

Java file: EmprestimoManager.java

package br.com.infowaypi.jbook.manager;

public class EmprestimoManager {

public static ResumoExemplares buscarPublicacao (String titulo, String assunto, String autor,

boolean semParametrosDePesquisa = true;

SearchAgent saExemplaresDisponiveis = new SearchAgent () ;
SearchAgent saExemplaresIndisponiveis= new SearchAgent();
Stack<ParameterInterface> parametros = new Stack<ParameterInterface>();

if (!Utils.isStringVazia(titulo)) {
parametros.add(new LikeFull ("publicacao.titulo", titulo));
semParametrosDePesquisa = false;

}

if (!Utils.isStringVazia (assunto)) {
parametros.add(new LikeFull ("publicacao.assunto", assunto));
semParametrosDePesquisa = false;

}

if (!Utils.isStringVazia (autor)) {
parametros.add(new LikeFull ("publicacao.autor", autor));
semParametrosDePesquisa = false;

}

if (tipoDePublicacao != null) {
parametros.add (new Equals ("publicacao.tipoDePublicacao", tipoDePublicacao.getValor()));
semParametrosDePesquisa = false;

}

if (semParametrosDePesquisa) {

TipoPublicacaoEnum tipoDePublicacao)

throw new ValidateException ("A% necessario inserir pelo menos um parA¢metro de pesquisal!");

ResumoExemplares resumoExemplares, Exemplar exemplar) throws ValidateException {

throws Exception ({

throws ValidateException {

}

ResumoExemplares resumo = new ResumoExemplares (
buscarExemplaresDisponiveis (saExemplaresDisponiveis, parametros),
buscarExemplaresIndisponiveis (saExemplaresIndisponiveis, parametros)
)i

if (resumo.isExemplaresNaoLocalizados()) {

throw new ValidateException ("Nenhum item encontrado.");
}
return resumo;

}

private static Collection<Exemplar> buscarExemplaresDisponiveis (SearchAgent saExemplaresDisponiveis, Stack<ParameterInterface> parametros) {

Stack<ParameterInterface> parametrosExemplaresDisponiveis = new Stack<ParameterInterface>();
parametrosExemplaresDisponiveis.addAll (parametros) ;
parametrosExemplaresDisponiveis.add (new Equals ("situacao", SituacaoExemplarEnum.DISPONIVEL.getValor())):;

return saExemplaresDisponiveis.listByParam(parametrosExemplaresDisponiveis, Exemplar.class);

}

private static Collection<Exemplar> buscarExemplaresIndisponiveis (SearchAgent saExemplaresIndisponiveis,Stack<ParameterInterface> parametros) {
Stack<ParameterInterface> parametrosExemplaresIndisponiveis = new Stack<ParameterInterface>();
parametrosExemplaresIndisponiveis.addAll (parametros) ;
parametrosExemplaresIndisponiveis.add (new OR(
new Equals ("situacao", SituacaoExemplarEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoExemplarEnum.EMPRESTADO.getValor())
)
)i
return saExemplaresIndisponiveis.listByParam(parametrosExemplaresIndisponiveis,Exemplar.class);

}

public static Exemplar selecionarExemplar (UsuarioInterface leitor, ResumoExemplares resumoExemplares, Exemplar exemplar) throws ValidateException {

if (exemplar == null) {
throw new ValidateException ("Ndo hd exemplares disponiveis para solicitagdo de empréstimo.");

}

if (passoulimiteEmprestimos ((Usuario) leitor)) {
throw new ValidateException (
"O limite de 02 (duas) solicitacBAupes de empréstimo foi atingido. N&o serd possivel realizar a solicitacdo de empréstimo. ");
}
if (solicitouMesmaPublicacao ((Usuario) leitor, exemplar)) {
throw new ValidateException ("N&o é possivel solicitar empréstimo de uma mesma publicagdo j& solicitada e em aberto.");

}

return exemplar;

}

public static boolean passoulimiteEmprestimos (Usuario leitor) {

SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals("leitor", leitor));

sa.addParameter (new OR(
new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor ())
)

)i

if (sa.resultCount (Emprestimo.class) > 1) {

return true;
}
return false;

}

public static boolean solicitouMesmaPublicacao (Usuario leitor, Exemplar exemplar) {
SearchAgent sa = new SearchAgent () ;
sa.addParameter (new Equals("leitor", leitor));
sa.addParameter (new OR (
new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor())
)
)i

Criteria criteria0 = sa.createCriteriaFor (Emprestimo.class);

Criteria criterial = criteriaO.createCriteria("exemplar");
criterial.add(Restrictions.eqg("publicacao", exemplar.getPublicacao()));
if (criterial.list().size() != 0) {

return true;

}

return false;

}

public static void confirmarSolicitacao (UsuarioInterface leitor, Exemplar exemplar, PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo) {
Emprestimo emp = new Emprestimo () ;
exemplar.setSituacao (SituacaoExemplarEnum.SOLICITADO.getValor());
emp.setExemplar (exemplar) ;
emp.setlLeitor ((Usuario) leitor);
emp.setSituacao (SituacaoEmprestimoEnum.SOLICITADO.getValor());

Calendar c¢ = Calendar.getInstance();
c.add(Calendar.WEEK OF MONTH, periodoEmprestimo.getValor());
emp.setDataPrevisaoDeDevolucao (c.getTime ()) ;
HibernateUtil.currentSession () .save (emp) ;
SchedulerManager.agendarExpiracaoDeSolicitacaoDeEmprestimo (emp.getIdEmprestimo()) ;

}

public static List<Emprestimo> getBuscarEmprestimosSolicitados (UsuarioInterface leitor) {

SearchAgent sa = new SearchAgent();
sa.addParameter (new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor())):;

sa.addParameter (new Equals ("leitor", leitor));
return sa.list (Emprestimo.class);

}

public static void cancelarEmprestimo (Emprestimo emprestimo) {
emprestimo.setSituacao (SituacaoEmprestimoEnum.CANCELADO.getValor()) ;
emprestimo.getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor()) ;
SchedulerManager.cancelarExpiracaoDeSolicitacaoDeEmprestimo (emprestimo.getIdEmprestimo()) ;

package br.com.infowaypi.jbook.manager;
public class EtiquetaTomboManager {

private static final int NUMERO DE ETIQUETAS POR PAGINA = 14;

public static Long getUltimoTombo () {
SearchAgent sa = new SearchAgent () ;
return ((EtiquetaTombo) sa.findById(lL, EtiquetaTombo.class)).getUltimoTombo () ;

}

private static void setUltimoTombo (Long ultimoTombo) {
SearchAgent sa = new SearchAgent();
EtiquetaTombo etiquetaTombo = (EtiquetaTombo)
etiquetaTombo.setUltimoTombo (ultimoTombo) ;

}

sa.findById (1L, EtiquetaTombo.class);

public static byte[] getBytesRelatorio (List<DataSourceEtiquetaTombo> dataSource) throws Exception {
JHeatReport report = new JHeatReport ("..\\file\\etiquetas-tombo.xml", dataSource);
ByteArrayOutputStream output = new ByteArrayOutputStream();
report.createPDF (output) ;
return output.toByteArray();

}

public static List<DataSourceEtiquetaTombo> getRelatorio (int gtdPaginas) throws Exception {
List<DataSourceEtiquetaTombo> dataSource = new ArrayList<DataSourceEtiquetaTombo> () ;
Long ultimoTomboDispionivel = getUltimoTombo () + 1;
for(int x = 0; x < gtdPaginas; x++) {
Long[] tombosDaPagina = new Long[NUMERO DE ETIQUETAS POR PAGINA];
for (int i =0; 1 < NUMERO_DE_ETIQUETAS POR_PAGINA; i++) {
tombosDaPagina[i] = ++ultimoTomboDispionivel;

}

dataSource.add (new DataSourceEtiquetaTombo (tombosDaPagina)) ;
}
setUltimoTombo (ultimoTomboDispionivel) ;
return dataSource;

Java file: NotificadorManager.java

package br.com.infowaypi.jbook.manager;
public class NotificadorManager {

public static boolean notificarNovasAquisicoes (Exemplar exemplar, Usuario usuario) {
if (exemplar.getPublicacao () .getExemplares () .size() == 1) {
enviarNotificacaoDeNovasAquisicoes (exemplar.getPublicacao (), usuario);
}

return true;

}

private static void enviarNotificacaoDeNovasAquisicoes (Publicacao publicacao, Usuario usuario) {

String assunto = "Nova aquisicdo para nossa bibliotecal!";

StringBuilder corpo = new StringBuilder();
corpo.append ("A biblioteca acaba de disponibilizar a partir deste momento mais um exemplar.

corpo.append ("Seguem abaixo os dados da publicacdo adquirida. \n");

\n") ;

corpo.append ("\n Titulo: " + publicacao.getTitulo());

(

corpo.append ("\n Assunto: " + publicacao.getAssunto());

corpo.append ("\n Autor: " + publicacao.getAutor());

corpo.append ("\n Editora: " + publicacao.getEditora());

corpo.append ("\n Tipo de publicacdo: " + publicacao.getTipoDePublicacao () .toLowerCase());
(

corpo.append ("\n\n--\n") ;

corpo.append ("\n JBook - Sistema de controle de empréstimos de livros Infoway");
new EmailThread (usuario, "JBook", assunto, corpo.toString()) .starta();

Java file: SchedulerManager.java

package br.com.infowaypi.jbook.manager;

public class SchedulerManager {

private static final String triggerName = "TRIGGER EXPIRA SOLICITACAO DE EMPRESTIMO N:";

private static final String jobName = "JOB EXPIRA SOLICITACAOC DE EMPRESTIMO N:";

public static void agendarExpiracaoDeSolicitacaoDeEmprestimo (Long idSolicitacao) {
SimpleTrigger trigger = new SimpleTrigger (triggerName + idSolicitacao, Scheduler.DEFAULT GROUP, new Date (System.currentTimeMillis ()

JobDetail tarefa = new JobDetail (jobName + idSolicitacao, Scheduler.DEFAULT GROUP, ExpiraSolicitacaoEmprestimoTask.class);

tarefa.getJobDataMap () .put ("idSolicitacao", idSolicitacao);

try {

QuartzConfigurator.getScheduler () .scheduleJob (tarefa,

} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

trigger);

public static void cancelarExpiracaoDeSolicitacaoDeEmprestimo (Long idSolicitacao) {

try {

QuartzConfigurator.getScheduler () .deleteJob (jobName + idSolicitacao,

System.out.println ("Cancelando Job");
} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public static String getJobname () {
return jobName;

}

public static String getTriggername () {
return triggerName;

}

w ”

Actual package: “msg

Java file: EmailThread.java

package br.com.infowaypi.jbook.msg;

public class EmailThread extends Thread {

private Set<Usuario> usuarios = new HashSet<Usuario>();

private String nome;
private String assunto;

private String corpo;

public EmailThread (Usuario usuario, String nome, String assunto,

this.usuarios.add (usuario) ;
this.nome = nome;
this.assunto = assunto;
this.corpo = corpo;

}

public EmailThread(Set<? extends Usuario> usuarios,
this.usuarios.addAll (usuarios);
this.nome = nome;
this.assunto = assunto;

String nome,

String corpo) {

String assunto,

String corpo)

Scheduler.DEFAULT GROUP) ;

{

+

(24 *

(60 * 60000))))

this.corpo = corpo;

public void run() {
String destino = "contato-no-reply@infoway-pi.com.br";
for (Usuario usuario : usuarios) {
MailSender.mandarEmail (usuario, this.nome, this.assunto, this.corpo, destino);

public void starta() {
this.start();

Java file: MailSender.java

package br.com.infowaypi.jbook.msg;
public class MailSender ({

public static void mandarEmail (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true);
mensagem.enviarEmail () ;

public static void mandarEmailHTML (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true) ;
mensagem.enviarEmail () ;

public static void mandarEmailHTML (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmailHTML (usuario, nome, assunto, corpo, destino);

public static void mandarEmail (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmail (usuario, nome, assunto, corpo, destino);

Actual package: “report”

Java file: EmprestimoReport.java

package br.com.infowaypi.jbook.report;

public class EmprestimoReport ({

public ReportEmprestimoResumo gerarRelatorio (
TipoPublicacaoEnum tipoPublicacao,
Exemplar exemplares,
Usuario leitores,
SituacaoEmprestimoEnum situacaoEmprestimo,
Date dataEmprestimoInicio,
Date dataEmprestimoFinal,
Date dataDevolucaolInicial,
Date dataDevolucaoFinal
) A
List<Emprestimo> emprestimos = buscaPorEmprestimos (tipoPublicacao,
exemplares,
leitores,
situacaoEmprestimo,
dataEmprestimoInicio,
dataEmprestimoFinal,
dataDevolucaoInicial,
dataDevolucaoFinal) ;
ReportEmprestimoResumo rre = new ReportEmprestimoResumo () ;
rre.setEmprestimos (emprestimos) ;
return rre;

}

private List<Emprestimo> buscaPorEmprestimos (
TipoPublicacaoEnum tipoPublicacao,
Exemplar exemplares,
Usuario leitores,
SituacaoEmprestimoEnum situacaoEmprestimo,
Date dataEmprestimolInicio,
Date dataEmprestimoFinal,
Date dataDevolucaolInicial,
Date dataDevolucaoFinal) {
Criteria ¢ = HibernateUtil.currentSession (Emprestimo.class) .createCriteria (Emprestimo.class);
if (tipoPublicacao !=null){
c.createAlias ("exemplar","e");
c.createAlias ("e.publicacao", "p");
c.add (Restrictions.eqg("p.tipoDePublicacao", tipoPublicacao.getValor()));
}
if (exemplares!=null)
c.add (Restrictions.eg("exemplar", exemplares));
if (leitores!=null)
c.add(Restrictions.eg("leitor"™, leitores));
if (situacaoEmprestimo !=null) {
c.add (Restrictions.eqg("situacao", situacaoEmprestimo.getValor())):;
}
if (dataEmprestimoInicio!=null && dataEmprestimoFinal!=null)
c.add (Restrictions.between ("dataSolicitacao", dataEmprestimoInicio, dataEmprestimoFinal));
if (dataDevolucaoInicial!=null && dataDevolucaoFinal!=null)
c.add (Restrictions.between ("dataDevolucao", dataDevolucaolInicial, dataDevolucaoFinal));
return c.list();

Actual package: “resumo”

Java file: ReportEmprestimoResumo.java

package br.com.infowaypi.jbook.resumo;
public class ReportEmprestimoResumo {
private List<Emprestimo> emprestimos;
public List<Emprestimo> getEmprestimos () {
return emprestimos;
}
public void setEmprestimos (List<Emprestimo> emprestimos) {

this.emprestimos = emprestimos;

Java file: ResumoExemplares.java

package br.com.infowaypi.jbook.resumo;

public class ResumoExemplares {

private Collection<Exemplar> exemplaresDisponiveis;
private Collection<Exemplar> exemplaresIndisponiveis;

public ResumoExemplares (Collection<Exemplar> exemplaresDisponiveis, Collection<Exemplar> exemplaresIndisponiveis) ({
this.exemplaresDisponiveis = exemplaresDisponiveis;
this.exemplaresIndisponiveis = exemplaresIndisponiveis;

}

public boolean isExemplaresNaoLocalizados () {
return ((exemplaresDisponiveis == null || exemplaresDisponiveis.size() == 0)
&& (exemplaresIndisponiveis == null || exemplaresIndisponiveis.size() == 0));
}
public Collection<Exemplar> getExemplaresDisponiveis() {

return exemplaresDisponiveis;

}

public Collection<Exemplar> getExemplaresIndisponiveis () {
return exemplaresIndisponiveis;

Java file: ResumolImpressaoEtiquetaTombo.java

package br.com.infowaypi.jbook.resumo;
public class ResumoImpressaoEtiquetaTombo implements Serializable {
private static final long serialVersionUID = 6380683336794912126L;

public ResumoImpressaoEtiquetaTombo (byte[] conteudoArquivo) {
this.conteudoArquivo = conteudoArquivo;

}
private byte[] conteudoArquivo;

public byte[] getConteudoArquivo () {
return conteudoArquivo;

}

public String getFileName () {
return "Etiquetas de Tombo.pdf";

}

Actual package: “scheduler”

Java file: ExpiraSolicitacaoEmprestimoTask.java

package br.com.infowaypi.jbook.scheduler;
public class QuartzConfigurator implements PlugIn{
private static Scheduler scheduler = null;

public void destroy () {
try {
scheduler.shutdown () ;
} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public void init (ActionServlet servlet, ModuleConfig config) throws ServletException {
try {
scheduler = StdSchedulerFactory.getDefaultScheduler();
scheduler.start();
} catch (SchedulerException e) {
e.printStackTrace () ;

}

public static Scheduler getScheduler () {
return scheduler;

}

public static void setScheduler (Scheduler scheduler) {
QuartzConfigurator.scheduler = scheduler;

Java file: QuartzConfigurator.java

package br.com.infowaypi.jbook.scheduler;
public class QuartzConfigurator implements PlugIn({
private static Scheduler scheduler = null;

public void destroy () {
try {
scheduler.shutdown () ;
} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public void init (ActionServlet servlet, ModuleConfig config) throws ServletException {

try {
scheduler = StdSchedulerFactory.getDefaultScheduler();

scheduler.start();
} catch (SchedulerException e) {
e.printStackTrace();

}
}

public static Scheduler getScheduler () {
return scheduler;

}

public static void setScheduler (Scheduler scheduler) {

QuartzConfigurator.scheduler = scheduler;

}

Actual package: “util”

Java file: ConfiguraBaseDeDados.java

