JBook - Shadowing
Source folder: “src/main/java”
Main package: “br.com.infowaypi.jbook.”

Actual package: “autenticacao”

package br.com.infowaypi.jbook.autenticacao;
public class Autenticador {
private static final ThreadLocal<UsuarioInterface> threadUsuario = new ThreadLocal<UsuarioInterface>();

public Autenticador () {
}

public UsuarioInterface getUsuario() {
return threadUsuario.get () ;

}

public String[] getRoles (String login, String senha) throws Exception ({
if (Utils.isStringVazia(senha)) {
return null;
}

UsuarioInterface usuario = buscaUsuario (login);

if (usuario != null && usuario.autentica (senha)) {
threadUsuario.set (usuario) ;
return new String[] { usuario.getRole() };

}
return null;

}

public Usuario buscaUsuario(String login) {
SearchAgent sa = new SearchAgent();

sa.addParameter (new Equals("login", login));
return sa.uniqueResult (Usuario.class);

Java file: UsuariolInterface.java
package br.com.infowaypi.jbook.autenticacao;

public interface UsuarioInterface extends Serializable, Comparable<UsuarioInterface> {

public static final String ATIVO = "A";
public static final String CANCELADO = "C";

public abstract Boolean validate() throws ValidateException;
public abstract Long getIdUsuariol();

public abstract void setIdUsuario (Long idUsuario);
public abstract String getNome () ;

public abstract void setNome (String nome) ;

public abstract String getEmail();

public abstract void setEmail (String email);
public abstract String getLogin();

public abstract void setLogin (String login);
public abstract String getSenhal();

public abstract void setSenha (String senha);
public abstract String getStatus();

public abstract void setStatus(String status);
public String getNovaSenhaConfirmacao();

public abstract void setNovaSenhaConfirmacao (String novaSenhaConfirmacao) ;

public String getNovaSenhaDigitada();

public abstract void setNovaSenhaDigitada (String novaSenhaDigitada) ;
public abstract String getRole();

public abstract void setRole(String role);

public abstract boolean isPossuiRole (String... roles);

public abstract boolean autentica(String senha);

public void tocarObjetos();

Actual package: “config”

Java file: Config.java

package br.com.infowaypi.jbook.config;
public class Config {
public static String aplicationPath = currentPath();
public static final String sourcePath = aplicationPath + File.separator + "src" + File.separator + "main" + File.separator;
public static final String resoucesPath = sourcePath + "resources" + File.separator;
public static final String webAppPath = sourcePath + "webapp" + File.separator;

public static String getFileInResources (String file) {
return resoucesPath + file;

}

public static String getFileInWebApp (String file) {
return webAppPath + file;
}

private static String currentPath () {
try{
return new File("").getCanonicalPath();
}catch (IOException e) {
new IOException(e.getMessage()):;
}

return null;

Actual package: “core”

Java file: Emprestimo.java
package br.com.infowaypi.jbook.core;
public class Emprestimo implements Serializable, Comparable<Emprestimo> {

private static final long serialVersionUID = -7427026885020906922L;

private Long idEmprestimo;

private Usuario bibliotecario;

private Usuario leitor;

private Exemplar exemplar;

private Date dataSolicitacao;

private Date dataPrevisaoDeDevolucao;

private Date dataDevolucao;

private String situacao;

public Emprestimo() {
this.dataSolicitacao = new Date();

}

public Long getIdEmprestimo () {
return idEmprestimo;

}

public void setIdEmprestimo (Long idEmprestimo) {
this.idEmprestimo = idEmprestimo;

}

public Usuario getBibliotecario() {
return bibliotecario;

}

public void setBibliotecario(Usuario bibliotecario) {
this.bibliotecario = bibliotecario;

}

public Usuario getLeitor() {
return leitor;

}

public void setLeitor (Usuario leitor) {
this.leitor = leitor;

}

public Exemplar getExemplar () {
return exemplar;

}

public void setExemplar (Exemplar exemplar) {
this.exemplar = exemplar;

}

public Date getDataSolicitacao() {
return dataSolicitacao;

}

public void setDataSolicitacao (Date dataSolicitacao) {
this.dataSolicitacao = dataSolicitacao;

}

public Date getDataPrevisaoDeDevolucao () {
return dataPrevisaoDeDevolucao;

}

public void setDataPrevisaoDeDevolucao (Date dataPrevisaoDeDevolucao) {
this.dataPrevisaoDeDevolucao = dataPrevisaoDeDevolucao;

}

public Date getDataDevolucao() {
return dataDevolucao;

}

public void setDataDevolucao (Date dataDevolucao) {
this.databDevolucao = dataDevolucao;

}

public Boolean validate (UsuarioInterface bibliotecario) throws ValidateException {

if (getbDataSolicitacao () .compareTo (getDataPrevisaoDeDevolucao()) > 0)
throw new ValidateException ("A data de previsdo para devolucdo deve ser futura");
if (EmprestimoManager.passoulLimiteEmprestimos (this.getLeitor())) {
throw new ValidateException("O limite de 02 (duas) solicitag¢des de empréstimo foi atingido. N&o serd possivel realizar a solicitagdo de empréstimo.");
}
if (EmprestimoManager.solicitouMesmaPublicacao (this.getLeitor (), this.getExemplar())) {

throw new ValidateException ("N&do é possivel solicitar empréstimo de uma mesma publicacdo j& solicitada e em aberto.");
}
getExemplar () .setSituacao (SituacaoExemplarEnum.EMPRESTADO.getValor());
this.setBibliotecario((Usuario) bibliotecario);
this.situacao = SituacaoEmprestimoEnum.CONFIRMADO.getValor () ;
return true;

}

public int hashCode () {
return new HashCodeBuilder () .append(getIdEmprestimo ()) .toHashCode () ;
}

public boolean equals (Object obj) {

if (! (obj instanceof Emprestimo)) {
return false;
}
Emprestimo emprestimo = (Emprestimo) obj;
return new EqualsBuilder () .append(this.getIdEmprestimo(), emprestimo.getIdEmprestimo()) .isEquals();

}

public int compareTo (Emprestimo outro) {
return this.getDataSolicitacao () .compareTo (outro.getDataSolicitacao());

}

public String getSituacao() {
return situacao;

}

public void setSituacao (String situacao) {
this.situacao = situacao;

}

public void cancelarSolicitacao () {
getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor());
setSituacao (SituacaoEmprestimoEnum.CANCELADO.getValor());
Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this) ;
trans.commit () ;

}

public void confirmarSolicitacao() {
getExemplar () .setSituacao (SituacaoExemplarEnum.EMPRESTADO.getValor());
setSituacao (SituacaoEmprestimoEnum.CONFIRMADO.getValor ()) ;
Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this) ;
trans.commit () ;

}

public void encerrar() throws ValidateException({
getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor());
setSituacao (SituacaoEmprestimoEnum.FINALIZADO.getValor());
setDataDevolucao (new Date());
Transaction trans = HibernateUtil.currentSession() .beginTransaction();
HibernateUtil.currentSession () .saveOrUpdate (this) ;
trans.commit () ;
if (getDataDevolucao () .compareTo (getDataPrevisaobDeDevolucao ()) > 0){

throw new ValidateException ("Devolucédo em atrasso");

Java file: EtiquetaTombo.java

package br.com.infowaypi.jbook.core;
public class EtiquetaTombo {
private Long idEtiquetaTombo = 1L;
private Long ultimoTombo;

public Long getIdEtiquetaTombo () {
return idEtiquetaTombo;

}

public void setIdEtiquetaTombo (Long idEtiquetaTombo) {
this.idEtiquetaTombo = idEtiquetaTombo;
}

public Long getUltimoTombo () {
return ultimoTombo;

}

public void setUltimoTombo (Long ultimoTombo) {
this.ultimoTombo = ultimoTombo;

}

public int hashCode () {
return new HashCodeBuilder () .append(getIdEtiquetaTombo ()) .toHashCode () ;
}

public boolean equals (Object obj) {

if (! (obj instanceof EtiquetaTombo)) {
return false;
}
EtiquetaTombo etiqueta = (EtiquetaTombo) obj;
return new EqualsBuilder () .append(this.getIdEtiquetaTombo (), etiqueta.getIdEtiquetaTombo ()).isEquals();

package br.com.infowaypi.jbook.core;
public class Exemplar implements Serializable, Comparable<Exemplar> {
private static final long serialVersionUID = 4448872540560235275L;

public Exemplar () {
this.dataCatalogacao = new Date();
this.situacao = SituacaoExemplarEnum.DISPONIVEL.getValor();
this.emprestimos = new ArrayList<Emprestimo>();

}

private Long idExemplar;

private Publicacao publicacao;
private Long tombo;

private Date dataCatalogacao;

private List<Emprestimo> emprestimos;
private String estadoDeConservacao;
private String situacao;

public Long getIdExemplar () {
return idExemplar;

}

public void setIdExemplar (Long idExemplar) {
this.idExemplar = idExemplar;

}

public Publicacao getPublicacao () {
return publicacao;

}

public void setPublicacao (Publicacao publicacao) {
this.publicacao = publicacao;

}

public Long getTombo () {
return tombo;

}

public void setTombo (Long tombo) {
this.tombo = tombo;

}

public Date getDataCatalogacao () {
return dataCatalogacao;

}

public void setDataCatalogacao (Date dataCatalogacao) {
this.dataCatalogacao = dataCatalogacao;

}

public List<Emprestimo> getEmprestimos () {
return emprestimos;

}

public void setEmprestimos (List<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

}

public String getEstadoDeConservacao () {
return estadoDeConservacao;

}

public void setEstadoDeConservacao (String estadoDeConservacao) {
this.estadoDeConservacao = estadoDeConservacao;

}
public String getSituacao() {
return situacao;

}

public void setSituacao (String situacao) {

this.situacao = situacao;
}
public Usuario getUltimoLeitorAssociado () {
return getEmprestimos () .get (getEmprestimos().size() - 1).getlLeitor();
}
public Emprestimo getUltimoEmprestimoAssociado () {
return getEmprestimos () .get (getEmprestimos().size() - 1);

}

public String getTituloTombo () {
return publicacao.getTitulo() + " - " + getTombo();

}

public Boolean validate() throws Exception {
SearchAgent sa = new SearchAgent () ;
sa.addParameter (new Equals ("tombo", getTombo()));
Exemplar exemplar = sa.uniqueResult (Exemplar.class);
if (exemplar != null && !this.equals(exemplar)) {
throw new ValidateException ("Tombo j& cadastrado!");

}

return true;

}

public boolean equals (Object obj) {
if (! (obj instanceof Exemplar)) {
return false;
}
Exemplar exemplar = (Exemplar) obj;
return new EqualsBuilder ()
.append (this.getIdExemplar (), exemplar.getIdExemplar())
.append (this.getTombo (), exemplar.getTombo ())
.isEquals () ;
}

public int hashCode () {

return new HashCodeBuilder () .append(this.getTombo ()) .toHashCode() ;
}
public int compareTo (Exemplar outro) {

return this.getPublicacao().getTitulo ()
.compareTo (outro.getPublicacao () .getTitulo()) ;

Java file: Publicacao.java
package br.com.infowaypi.jbook.core;
public class Publicacao implements Serializable, Comparable<Publicacao> {
private static final long serialVersionUID = 7770198638083066524L;
public Publicacao () {}
private Long idPublicacao;
private String titulo;
private String assunto;
private String autor;
private String editora;
private Long ISBN;

private String tipoDePublicacao;

private Set<Exemplar> exemplares;

public Long getIdPublicacao() {
return idPublicacao;

}

public void setIdPublicacao (Long idPublicacao) {
this.idPublicacao = idPublicacao;

}

public String getTitulo() {
return titulo;

}

public void setTitulo(String titulo) {
this.titulo = titulo;
}

public String getAssunto() {
return assunto;

}

public void setAssunto (String assunto) {
this.assunto = assunto;

}

public String getAutor () {
return autor;

}

public void setAutor (String autor) {
this.autor = autor;

}

public String getEditora() {
return editora;

}

public void setEditora(String editora) {
this.editora = editora;

}

public Long getISBN() {
return ISBN;
}

public void setISBN(Long iSBN) {
ISBN = iSBN;
}

public String getTipoDePublicacao () {
return tipoDePublicacao;

}

public void setTipoDePublicacao (String tipoDePublicacao) {
this.tipoDePublicacao = tipoDePublicacao;

}

public Set<Exemplar> getExemplares () {
return exemplares;

}

public void setExemplares (Set<Exemplar> exemplares) {
this.exemplares = exemplares;

}

public Boolean validate() throws ValidateException {
boolean retorno = false;
if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.LIVRO.getValor())

)
&& this.getISBN() == null) {
throw new ValidateException("O preenchimento do ISBN é obrigatdério para livros.");
} else if (this.getTipoDePublicacao () .equals (TipoPublicacaoEnum.REVISTA.getValor())
&& this.getISBN() != null) {
throw new ValidateException ("O preenchimento do ISBN ndo é necessario para revistas.");
}
retorno = verificaPreExistenciaPublicacao();
return retorno;

}

private Boolean verificaPreExistenciaPublicacao() throws ValidateException {
SearchAgent sa = new SearchAgent () ;

"titulo", this.getTitulo()))

sa.addParameter ;
"assunto", this.getAssunto()));

sa.addParameter

new Equals
new Equals

(
(
(
(

sa.addParameter (new Equals ("autor", this.getAutor()));

sa.addParameter (new Equals ("editora", getEditora()));
sa.addParameter (new Equals ("tipoDePublicacao", this.tipoDePublicacao));
if (sa.uniqueResultAny (Publicacao.class) != null) {

throw new ValidateException ("Publicacdo ja& cadastrada!");
}
if (Utils.isCampoDuplicado(this, "ISBN", this.getISBN())) {
throw new ValidateException ("Ndo é permitido cadastrar duas publicacApes com o mesmo ISBN!");
}
return true;

}

public int hashCode () {
return new HashCodeBuilder ()
.append (this.idPublicacao)
.append (this.ISBN)
.toHashCode () ;

}

public boolean equals (Object obj) {
if (! (obj instanceof Publicacao)) {
return false;
}
Publicacao publicacao = (Publicacao) obj;
return new EqualsBuilder () .append(this.getIdPublicacao(), publicacao.getIdPublicacao())
.append (this.getISBN (), publicacao.getISBN())
.isEquals () ;
}

public int compareTo (Publicacao outro) {
return this.getTitulo () .compareTo (outro.getTitulo());

Java file: Usuario.java
package br.com.infowaypi.jbook.core;
public class Usuario implements UsuariolInterface ({
private static final long serialVersionUID = 1L;
protected Long idUsuario;
private String login;
private String senha;
private String novaSenhaDigitada;
private String novaSenhaConfirmacao;
private String role;
private String nome;
private String email;
private String status;

private Set<Emprestimo> emprestimos;

public Boolean validate() throws ValidateException {
if (Utils.isStringVazia(this.getLogin()))
throw new ValidateException("O Login deve ser informado.");
if (Utils.isStringVazia (this.getNome ()))
throw new ValidateException ("O Nome do usudrio deve ser informado.");
if (Utils.isStringVazia(this.getEmail())) {
throw new ValidateException("O Email deve ser informado.");
}
if (Utils.isStringVazia(this.getRole()))
throw new ValidateException("O role do usudrio deve ser informado.");
if (Utils.isCampobDuplicado(this, "login", this.getLogin()))
throw new ValidateException("O login informado j& existe. Escolha outro nome para o login e tente novamente.");

if (Utils.isStringVazia(this.getSenha())) {
verificarRestricoes();
} else {
if (Utils.isStringVazia(this.getNovaSenhaDigitada()) && Utils.isStringVazia (this.getNovaSenhaConfirmacao())) {
return true;
}
verificarRestricoes();
}
this.setSenha (String.valueOf (this.getNovaSenhaDigitada () .hashCode()));
return true;

}

private void verificarRestricoes () throws ValidateException {

if (Utils.isStringVazia(this.getNovaSenhaDigitada()))
throw new ValidateException("A senha deve ser informada.");

if (Utils.isStringVazia (this.getNovaSenhaConfirmacao()))
throw new ValidateException (

"A confirmacdo da senha deve ser informada.");

if (!this.getNovaSenhaDigitada () .equals (this.getNovaSenhaConfirmacao()))

throw new ValidateException ("Senhas ndo conferem.");

}

public boolean isPossuiRole (String... roles) {
for (String role : roles) {
if (this.getRole() .equals(role))
return true;
}
return false;

}

public boolean autentica(String senhaDigitada) {
if (!StringUtils.isEmpty (senhaDigitada) && this.status.equals (ATIVO) && this.getSenha () .equals (String.valueOf (senhaDigitada.hashCode())))
return true;
return false;

}

public Long getIdUsuario() {

public void setIdUsuario (Long idUsuario) {
this.idUsuario = idUsuario;

}

public String getRole () {

public void setRole(String role) {

public String getSenha() {
}

public void setSenha (String senha) {

public String getLogin() {

public void setLogin(String login) {

public String getNome () {

public void setNome (String nome) {

public String getStatus() {
return status;

}

public void setStatus (String status) {

public Set<Emprestimo> getEmprestimos () {
return emprestimos;

}

public void setEmprestimos (Set<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

}

public String getEmail () {
return email;

}

public void setEmail (String email) {

public String getNovaSenhaConfirmacao () {
return novaSenhaConfirmacao;

}

public void setNovaSenhaConfirmacao (String novaSenhaConfirmacao) {

public String getNovaSenhaDigitada () {
return novaSenhaDigitada;

}

public void setNovaSenhaDigitada (String novaSenhaDigitada) {

public void tocarObjetos () {
this.getIdUsuario();
this.getNome () ;
this.getRole();

}

public boolean equals (Object object) {

return false;

}

public int hashCode () {
return new HashCodeBuilder () .append(this.getIdUsuario())
.append (this.getLogin()) .toHashCode () ;
}

public String toString() {
return new ToStringBuilder (this, ToStringStyle.DEFAULT STYLE)
.append ("Login", this.login) .append("nome", this.nome)
.append("role", this.role).toString();
}

public int compareTo (UsuarioInterface outro) {
Integer compareRole = this.getRole() .compareTo (outro.getRole());
Integer compareNome = this.getNome () .compareTo (outro.getNome ()) ;
if (!compareRole.equals(0))
return compareRole;
return compareNome;

package br.com.infowaypi.jbook.datasource;

public class DataSourceEtiquetaTombo {

public DataSourceEtiquetaTombo (Long[] tombos) {
this.tombos = tombos;

}
private Long[] tombos;

public Long[] getTombos () {
return tombos;

}

public String getLogoInfoway () {
return "/home/jbook/files/logoInfoway.png";
}

Actual package: “enumeration”

Java file: EstadoConservacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum EstadoConservacaoEnum {

NOVO ("NOVO", "Novo"),

EXCELENTE ("EXCELENTE", "Excelente"),

BOM ("BOM", "Bom"),

DEPRECIADO ("DEPRECIADO", "Depreciado"),
INUTILIZAVEL ("INUTILIZAVEL", "Inutilizavel");

private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private EstadoConservacaoEnum(String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

Java file: PeriodoSolicitacaoEnum.java

package br.com.infowaypi.jbook.enumeration;

public enum PeriodoSolicitacaoEmprestimoEnum {

UMA (1, "Uma Semana"),

DUAS (2, "Duas Semanas"),
TRES (3, "Trés Semanas"),
QUATRO (4, "Quatro Semanas");

private int valor;
private String descricao;

public int getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private PeriodoSolicitacaoEmprestimoEnum(int valor, String descricao) ({
this.valor = valor;
this.descricao = descricao;

Java file: RolesEnum.java

package br.com.infowaypi.jbook.enumeration;

private String valor;
private String descricao;

public String getValor () {
}

public String getDescricao() {
return descricao;

package br.com.infowaypi.jbook.enumeration;
public enum SituacaoEmprestimoEnum {

SOLICITADO ("SOLICITADO", "Solicitado"),
CONFIRMADO ("CONFIRMADO", "Confirmado"),
CANCELADO ("CANCELADO", "Cancelado"),
EXPIRADO ("EXPIRADO", "Expirado"),
FINALIZADO ("FINALIZADO", "Finalizado");

private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private SituacaoEmprestimoEnum (String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

package br.com.infowaypi.jbook.enumeration;
public enum SituacaoExemplarEnum {

DISPONIVEL ("DISPONIVEL", "Disponivel"),
SOLICITADO ("SOLICITADO", "Solicitado"),
EMPRESTADO ("EMPRESTADO", "Emprestado");

private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

private SituacaoExemplarEnum(String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

Java file: TipoPublicacaoEnum.java

package br.com.infowaypi.jbook.enumeration;
public enum TipoPublicacaoEnum implements Serializable {

LIVRO ("LIVRO", "Livro"),
REVISTA ("REVISTA", "Revista");

private TipoPublicacaoEnum(String valor, String descricao) {
this.valor = valor;
this.descricao = descricao;

}

private String valor;
private String descricao;

public String getValor () {
return valor;

}

public String getDescricao() {
return descricao;

}

Actual package: “flow”

Java file: AlterarSenhaFlow.java

package br.com.infowaypi.jbook.flow;

public class AlterarSenhaFlow {

public UsuarioInterface alteraSenha (UsuarioInterface usuario, String senhaAntiga, String senhaNova,

HibernateUtil.currentSession () .evict (usuario);
Usuario user = (Usuario) ImplDAO.findById(usuario.getIdUsuario(), Usuario.class);
if (user == null) {
throw new ValidateException ("Usuario nulo.");
}
boolean isSenhaNovaVazia = Utils.isStringVazia (senhaNova) ;
boolean isSenhaConfirmacaoVazia = Utils.isStringVazia (senhaConfirmacao);
boolean isSenhaAntigaVazia = Utils.isStringVazia (senhaAntiga);

boolean isCamposSenhasVazios = isSenhaAntigaVazia && isSenhaConfirmacaoVazia && isSenhaNovaVazia;

if (!isCamposSenhasVazios) {
if (Utils.isStringVazia (senhaAntiga)) {
throw new ValidateException("A senha atual deve ser informada.");
}
if (isSenhaNovaVazia) {
throw new ValidateException ("A nova senha deve ser informada.");
}
if (isSenhaConfirmacaoVazia) {
throw new ValidateException ("A confirmacdo da nova senha deve ser informada.");

}

String senhaConfirmacao)

boolean isSenhasNaoConferem = !usuario.getSenha () .equals (String.valueOf (senhaAntiga.hashCode()));

if (isSenhasNaoConferem) {
throw new ValidateException("A senha atual ndo confere.");
}
user.setNovaSenhaDigitada (senhaNova) ;
user.setNovaSenhaConfirmacao (senhaConfirmacao) ;
}
user.validate();
HibernateUtil.currentSession () .save (user);
return user;

Java file: CancelarSolicitacaoEmprestimolLeitorFlow.java

package br.com.infowaypi.jbook.flow;
public class CancelarSolicitacaoEmprestimoLeitorFlow {

public List<Emprestimo> getBuscarEmprestimosSolicitados (UsuarioInterface leitor) {

throws Exception ({

return EmprestimoManager.getBuscarEmprestimosSolicitados (leitor);

}

public void cancelarEmprestimo (Emprestimo emprestimo) {
EmprestimoManager.cancelarEmprestimo (emprestimo) ;

package br.com.infowaypi.jbook.flow;
public class EtigquetaTomboFlow {

public ResumoImpressaoEtiquetaTombo imprimirEtiquetasTombo (int gtdPaginas)

throws Exception {

List<DataSourceEtiquetaTombo> dataSource= EtiquetaTomboManager.getRelatorio (gtdPaginas);

byte[] arquivo = EtiquetaTomboManager.getBytesRelatorio (dataSource);

ResumoImpressaoEtiquetaTombo resumoEtiquetaTombo = new ResumoImpressaoEtiquetaTombo (arquivo) ;

return resumoEtiquetaTombo;

Java file: SolicitacaoEmprestimoFlow.java

package br.com.infowaypi.jbook.flow;

public class SolicitacaoEmprestimoFlow {

public ResumoExemplares buscarPublicacao (String titulo, String assunto, String autor,

return EmprestimoManager.buscarPublicacao(titulo, assunto, autor, tipoDePublicacao);

}

TipoPublicacaoEnum tipoDePublicacao)throws ValidateException {

public Exemplar selecionarExemplar (UsuarioInterface leitor, ResumoExemplares resumoExemplares, Exemplar exemplar) throws ValidateException {
return EmprestimoManager.selecionarExemplar (leitor, resumoExemplares, exemplar);

}

public void confirmarSolicitacao (UsuarioInterface leitor, Exemplar exemplar,
EmprestimoManager.confirmarSolicitacao(leitor, exemplar, periodoEmprestimo);

}

Actual package: “manager”

PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo)

Java file: EmprestimoManager.java

package br.com.infowaypi.jbook.manager;

public class EmprestimoManager {

public static ResumoExemplares buscarPublicacao (String titulo, String assunto,

boolean semParametrosDePesquisa = true;

SearchAgent saExemplaresDisponiveis = new SearchAgent();

SearchAgent saExemplaresIndisponiveis= new SearchAgent () ;
Stack<ParameterInterface> parametros = new Stack<ParameterInterface>();

if (!Utils.isStringVazia(titulo)) {
parametros.add(new LikeFull ("publicacao.titulo", titulo));
semParametrosDePesquisa = false;

}

if (!Utils.isStringVazia (assunto)) {
parametros.add(new LikeFull ("publicacao.assunto", assunto));
semParametrosDePesquisa = false;

}

if (!Utils.isStringVazia (autor)) {
parametros.add (new LikeFull ("publicacao.autor", autor));
semParametrosDePesquisa = false;

}

if (tipoDePublicacao != null) {

String autor,

parametros.add (new Equals ("publicacao.tipoDePublicacao",tipoDePublicacao.getValor()));

semParametrosDePesquisa = false;

}

if (semParametrosDePesquisa) {

TipoPublicacaoEnum tipoDePublicacao)

throw new ValidateException ("A%o necessédrio inserir pelo menos um parA¢metro de pesquisa!");

}

ResumoExemplares resumo = new ResumoExemplares (
buscarExemplaresDisponiveis (saExemplaresDisponiveis, parametros),
buscarExemplaresIndisponiveis (saExemplaresIndisponiveis, parametros)
)7

if (resumo.isExemplaresNaoLocalizados()) {

throws Exception {

throws ValidateException {

throw new ValidateException ("Nenhum item encontrado.");
}
return resumo;

}

private static Collection<Exemplar> buscarExemplaresDisponiveis (SearchAgent saExemplaresDisponiveis, Stack<ParameterInterface> parametros) {
Stack<ParameterInterface> parametrosExemplaresDisponiveis = new Stack<ParameterInterface>();
parametrosExemplaresDisponiveis.addAll (parametros) ;
parametrosExemplaresDisponiveis.add (new Equals ("situacao", SituacaoExemplarEnum.DISPONIVEL.getValor()));
return saExemplaresDisponiveis.listByParam(parametrosExemplaresDisponiveis, Exemplar.class);

}

private static Collection<Exemplar> buscarExemplaresIndisponiveis (SearchAgent saExemplaresIndisponiveis,Stack<ParameterInterface> parametros) {
Stack<ParameterInterface> parametrosExemplaresIndisponiveis = new Stack<ParameterInterface>();
parametrosExemplaresIndisponiveis.addAll (parametros) ;
parametrosExemplaresIndisponiveis.add (new OR (
new Equals ("situacao", SituacaoExemplarEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoExemplarEnum.EMPRESTADO.getValor())
)
)i
return saExemplaresIndisponiveis.listByParam(parametrosExemplaresIndisponiveis,Exemplar.class);

}

public static Exemplar selecionarExemplar (UsuarioInterface leitor, ResumoExemplares resumoExemplares, Exemplar exemplar) throws ValidateException {

if (exemplar == null) {

throw new ValidateException ("N&do ha exemplares disponiveis para solicitagdo de empréstimo.");
}
if (passoulimiteEmprestimos ((Usuario) leitor)) {

throw new ValidateException (

"0 limite de 02 (duas) solicitacApes de empréstimo foi atingido. N&do seré& possivel realizar a solicitacdo de empréstimo. ");

}
if (solicitouMesmaPublicacao ((Usuario) leitor, exemplar)) {

throw new ValidateException ("Ndo é possivel solicitar empréstimo de uma mesma publicacdo ja& solicitada e em aberto.");
}
return exemplar;

}

public static boolean passoulimiteEmprestimos (Usuario leitor) {
SearchAgent sa = new SearchAgent () ;
sa.addParameter (new Equals("leitor", leitor));
sa.addParameter (new OR (
new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor())
new Equals ("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor ())
)

’

)i

if (sa.resultCount (Emprestimo.class) > 1) {
return true;

}

return false;

}

public static boolean solicitouMesmaPublicacao (Usuario leitor, Exemplar exemplar) {
SearchAgent sa = new SearchAgent () ;
sa.addParameter (new Equals("leitor", leitor));
sa.addParameter (new OR(
new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor()),
new Equals ("situacao", SituacaoEmprestimoEnum.CONFIRMADO.getValor ())
)
)i

Criteria criteria0 = sa.createCriteriaFor (Emprestimo.class);

Criteria criterial = criteriaO.createCriteria("exemplar");
criterial.add(Restrictions.eq("publicacao", exemplar.getPublicacao()));
if (criterial.list().size() != 0) {

return true;
}
return false;

}

public static void confirmarSolicitacao (UsuarioInterface leitor, Exemplar exemplar, PeriodoSolicitacaoEmprestimoEnum periodoEmprestimo) {
Emprestimo emp = new Emprestimo();
exemplar.setSituacao (SituacaoExemplarEnum.SOLICITADO.getValor()) ;
emp.setExemplar (exemplar) ;
emp.setlLeitor ((Usuario) leitor);
emp.setSituacao (SituacaoEmprestimoEnum.SOLICITADO.getValor());
Calendar c¢ = Calendar.getInstance();
c.add(Calendar.WEEK OF MONTH, periodoEmprestimo.getValor());
emp.setDataPrevisaoDeDevolucao (c.getTime ()) ;
HibernateUtil.currentSession () .save (emp) ;
SchedulerManager.agendarExpiracaoDeSolicitacaoDeEmprestimo (emp.getIdEmprestimo()) ;

public static List<Emprestimo> getBuscarEmprestimosSolicitados (UsuarioInterface leitor) {
SearchAgent sa = new SearchAgent () ;
sa.addParameter (new Equals ("situacao", SituacaoEmprestimoEnum.SOLICITADO.getValor())):;
sa.addParameter (new Equals("leitor", leitor));
return sa.list (Emprestimo.class);

}

public static void cancelarEmprestimo (Emprestimo emprestimo) {
emprestimo.setSituacao (SituacaoEmprestimoEnum.CANCELADO.getValor()) ;
emprestimo.getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor()) ;
SchedulerManager.cancelarExpiracaoDeSolicitacaoDeEmprestimo (emprestimo.getIdEmprestimo()) ;

Java file: EtiquetaTomboManager.java

package br.com.infowaypi.jbook.manager;
public class EtiquetaTomboManager {
private static final int NUMERO DE ETIQUETAS POR PAGINA = 14;

public static Long getUltimoTombo () {

SearchAgent sa = new SearchAgent();

return ((EtiquetaTombo) sa.findById(lL, EtiquetaTombo.class)).getUltimoTombo () ;
}

private static void setUltimoTombo (Long ultimoTombo) {
SearchAgent sa = new SearchAgent () ;
EtiquetaTombo etiquetaTombo = (EtiquetaTombo) sa.findById (1L, EtiquetaTombo.class);
etiquetaTombo.setUltimoTombo (ultimoTombo) ;

}

public static byte[] getBytesRelatorio (List<DataSourceEtiquetaTombo> dataSource) throws Exception {
JHeatReport report = new JHeatReport ("..\\file\\etiquetas-tombo.xml", dataSource);
ByteArrayOutputStream output = new ByteArrayOutputStream();
report.createPDF (output) ;
return output.toByteArray();

}

public static List<DataSourceEtiquetaTombo> getRelatorio (int gtdPaginas) throws Exception {

List<DataSourceEtiquetaTombo> dataSource = new ArrayList<DataSourceEtiquetaTombo> () ;
Long ultimoTomboDispionivel = getUltimoTombo () + 1;
for(int x = 0; x < gtdPaginas; x++) {

Long[] tombosDaPagina = new Long[NUMERO DE ETIQUETAS POR PAGINA];

for (int i =0; i < NUMERO DE ETIQUETAS POR _PAGINA; i++) {

tombosDaPagina[i] = ++ultimoTomboDispionivel;

}

dataSource.add (new DataSourceEtiquetaTombo (tombosDaPagina)) ;
}
setUltimoTombo (ultimoTomboDispionivel) ;
return dataSource;

Java file: NotificadorManager.java

package br.com.infowaypi.jbook.manager;
public class NotificadorManager {

public static boolean notificarNovasAquisicoes (Exemplar exemplar, Usuario usuario) {
if (exemplar.getPublicacao () .getExemplares () .size() == 1) {
enviarNotificacaoDeNovasAquisicoes (exemplar.getPublicacao (), usuario);
}
return true;

}

private static void enviarNotificacaoDeNovasAquisicoes (Publicacao publicacao, Usuario usuario) {
String assunto = "Nova aquisig¢do para nossa biblioteca!";
StringBuilder corpo = new StringBuilder();
corpo.append ("A biblioteca acaba de disponibilizar a partir deste momento mais um exemplar. \n");
corpo.append ("Seguem abaixo os dados da publicacdo adquirida. \n");

v
v

(

corpo.append ("\n Titulo: " + publicacao.getTitulo());

corpo.append ("\n Assunto: " + publicacao.getAssunto());

corpo.append ("\n Autor: " + publicacao.getAutor());

corpo.append ("\n Editora: " + publicacao.getEditora());

corpo.append ("\n Tipo de publicacdo: " + publicacao.getTipoDePublicacao () .toLowerCase());
(

corpo.append ("\n\n--\n") ;

corpo.append ("\n JBook - Sistema de controle de empréstimos de livros Infoway");
new EmailThread (usuario, "JBook", assunto, corpo.toString()).starta();

Java file: SchedulerManager.java

package br.com.infowaypi.jbook.manager;

public class SchedulerManager {
private static final String triggerName = "TRIGGER EXPIRA SOLICITACAO DE EMPRESTIMO N:";
private static final String jobName = "JOB EXPIRA SOLICITACAO DE EMPRESTIMO N:";

public static void agendarExpiracaoDeSolicitacaoDeEmprestimo (Long idSolicitacao) {
SimpleTrigger trigger = new SimpleTrigger (triggerName + idSolicitacao, Scheduler.DEFAULT GROUP, new Date(System.currentTimeMillis() + (24 * (60 * 60000))));
JobDetail tarefa = new JobDetail (jobName + idSolicitacao, Scheduler.DEFAULT GROUP, ExpiraSolicitacaoEmprestimoTask.class);
tarefa.getJobDataMap () .put ("idSolicitacao", idSolicitacao);
try {
QuartzConfigurator.getScheduler () .scheduleJob (tarefa, trigger);
} catch (SchedulerException e) {
e.printStackTrace () ;

}

public static void cancelarExpiracaoDeSolicitacaoDeEmprestimo (Long idSolicitacao) {
try {
QuartzConfigurator.getScheduler () .deleteJob (jobName + idSolicitacao, Scheduler.DEFAULT GROUP);
System.out.println ("Cancelando Job");
} catch (SchedulerException e) {
e.printStackTrace () ;

}

public static String getJobname () {
return jobName;

}

public static String getTriggername () {
return triggerName;

}

w ”

Actual package: “msg

Java file: EmailThread.java
package br.com.infowaypi.jbook.msgr
public class EmailThread extends Thread ({

private Set<Usuario> usuarios = new HashSet<Usuario>();

private String nome;

private String assunto;

private String corpo;

public EmailThread(Usuario usuario, String nome, String assunto, String corpo) {
this.usuarios.add (usuario);

this.nome = nome;
this.assunto = assunto;
this.corpo = corpo;

}

public EmailThread (Set<? extends Usuario> usuarios, String nome, String assunto, String corpo) {
this.usuarios.addAll (usuarios) ;
this.nome = nome;
this.assunto = assunto;

this.corpo = corpo;

}

public void run() {
String destino = "contato-no-reply@infoway-pi.com.br";
for (Usuario usuario : usuarios) {

MailSender.mandarEmail (usuario, this.nome, this.assunto, this.corpo, destino);

public void starta() {
this.start();

Java file: MailSender.java

package br.com.infowaypi.jbook.msg;
public class MailSender {

public static void mandarEmail (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());
mensagem.setDestinatario (usuarioDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true);
mensagem.enviarkEmail () ;

public static void mandarEmailHTML (Usuario usuario, String nome, String assunto, String corpo, String destino) {
Usuario usuarioDestino = new Usuario();
Usuario usuarioRemetente = new Usuario();
usuarioRemetente.setEmail (destino) ;
usuarioRemetente.setNome (nome) ;
usuarioDestino.setNome (usuario.getNome ()) ;
usuarioDestino.setEmail (usuario.getEmail());
Mensagem mensagem = new Mensagem() ;
mensagem.setAssunto (assunto) ;
mensagem.setAvisarRemetente (true) ;
mensagem.setCorpo (corpo) ;
mensagem.setDataMensagem (new Date());
mensagem.setDestinatario (usuariobDestino) ;
mensagem.setRemetente (usuarioRemetente) ;
mensagem.setEnviarEmail (true) ;
mensagem.enviarEmail () ;

public static void mandarEmailHTML (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmailHTML (usuario, nome, assunto, corpo, destino);

public static void mandarEmail (Set<Usuario> usuarios, String nome, String assunto, String corpo, String destino) {
for (Usuario usuario : usuarios) {
mandarEmail (usuario, nome, assunto, corpo, destino);

Actual package: “report”

Java file: EmprestimoReport.java

package br.com.infowaypi.jbook.report;
public class EmprestimoReport {

public ReportEmprestimoResumo gerarRelatorio (
TipoPublicacaoEnum tipoPublicacao,
Exemplar exemplares,
Usuario leitores,
SituacaoEmprestimoEnum situacaoEmprestimo,
Date dataEmprestimolInicio,
Date dataEmprestimoFinal,

Date dataDevolucaolInicial,
Date dataDevolucaoFinal
) o
List<Emprestimo> emprestimos = buscaPorEmprestimos (tipoPublicacao,
exemplares,
leitores,
situacaoEmprestimo,
dataEmprestimoInicio,
dataEmprestimoFinal,
dataDevolucaoInicial,
dataDevolucaoFinal) ;
ReportEmprestimoResumo rre = new ReportEmprestimoResumo () ;
rre.setEmprestimos (emprestimos) ;
return rre;

private List<Emprestimo> buscaPorEmprestimos (
TipoPublicacaoEnum tipoPublicacao,
Exemplar exemplares,
Usuario leitores,
SituacaoEmprestimoEnum situacaoEmprestimo,
Date dataEmprestimoInicio,
Date dataEmprestimoFinal,
Date dataDevolucaolInicial,
Date dataDevolucaoFinal) {
Criteria ¢ = HibernateUtil.currentSession (Emprestimo.class) .createCriteria(Emprestimo.class);
if (tipoPublicacao !=null){
c.createAlias ("exemplar","e");
c.createAlias ("e.publicacao", "p");
c.add (Restrictions.eqg("p.tipoDePublicacao", tipoPublicacao.getValor()));
}
if (exemplares!=null)
c.add (Restrictions.eg("exemplar", exemplares));
if (leitores!=null)
c.add (Restrictions.eqg("leitor", leitores));
if (situacaoEmprestimo !=null) {
c.add(Restrictions.eg("situacao", situacaoEmprestimo.getValor()));
}
if (dataEmprestimoInicio!=null && dataEmprestimoFinal!=null)
c.add (Restrictions.between ("dataSolicitacao", dataEmprestimoInicio, dataEmprestimoFinal));
if (databDevolucaoInicial!=null && dataDevolucaoFinal!=null)
c.add (Restrictions.between ("dataDevolucao", dataDevolucaolInicial, dataDevolucaoFinal));
return c.list();

Actual package: “resumo”

Java file: ReportEmprestimoResumo.java
package br.com.infowaypi.jbook.resumo;
public class ReportEmprestimoResumo {

private List<Emprestimo> emprestimos;

public List<Emprestimo> getEmprestimos () {

return emprestimos;

public void setEmprestimos (List<Emprestimo> emprestimos) {
this.emprestimos = emprestimos;

Java file: ResumoExemplares.java
package br.com.infowaypi.jbook.resumo;
public class ResumoExemplares {

private Collection<Exemplar> exemplaresDisponiveis;

private Collection<Exemplar> exemplaresIndisponiveis;

public ResumoExemplares (Collection<Exemplar> exemplaresDisponiveis, Collection<Exemplar> exemplaresIndisponiveis) {

this.exemplaresDisponiveis = exemplaresDisponiveis;
this.exemplaresIndisponiveis = exemplaresIndisponiveis;

}

public boolean isExemplaresNaoLocalizados () {

return ((exemplaresDisponiveis == null || exemplaresDisponiveis.size() == 0)
&& (exemplaresIndisponiveis == null || exemplaresIndisponiveis.size() == 0));
}
public Collection<Exemplar> getExemplaresDisponiveis() {

return exemplaresDisponiveis;

}
public Collection<Exemplar> getExemplaresIndisponiveis() {
return exemplaresIndisponiveis;

package br.com.infowaypi.jbook.resumo;
public class ResumoImpressaoEtiquetaTombo implements Serializable ({
private static final long serialVersionUID = 6380683336794912126L;

public ResumoImpressaoEtiquetaTombo (byte[] conteudoArquivo) {
this.conteudoArquivo = conteudoArquivo;

}
private byte[] conteudoArquivo;

public byte[] getConteudoArquivo () {
return conteudoArquivo;

}

public String getFileName () {
return "Etiquetas de Tombo.pdf";

}

Actual package: “scheduler”

Java file: ExpiraSolicitacaoEmprestimoTask.java

package br.com.infowaypi.jbook.scheduler;
public class ExpiraSolicitacaoEmprestimoTask implements Job {
public void execute (JobExecutionContext arg0) throws JobExecutionException {

Long idSolicitacaoDeEmprestimo = (Long) argO.getJobDetail () .getJobDataMap () .get ("idSolicitacao");
expirarSolicitacaoDeEmprestimo (idSolicitacaoDeEmprestimo) ;

}

public boolean expirarSolicitacaoDeEmprestimo (Long idSolicitacaoDeEmprestimo) {
Session sessao = HibernateUtil.currentSession();
Transaction tx = sessao.beginTransaction();

Emprestimo solicitacaoDeEmprestimo = (Emprestimo) sessao.load(Emprestimo.class, idSolicitacaoDeEmprestimo) ;

if (solicitacaoDeEmprestimo.getSituacao () .equals (SituacaoEmprestimoEnum.SOLICITADO.getValor())) {
solicitacaoDeEmprestimo.setSituacao (SituacaoEmprestimoEnum.EXPIRADO.getValor ()) ;
solicitacaoDeEmprestimo.getExemplar () .setSituacao (SituacaoExemplarEnum.DISPONIVEL.getValor()) ;

}

sessao.update (solicitacaoDeEmprestimo) ;
tx.commit () ;
return true;

Java file: QuartzConfigurator.java

package br.com.infowaypi.jbook.scheduler;
public class QuartzConfigurator implements PlugIn({

private static Scheduler scheduler = null;

public void destroy () {

try {
scheduler.shutdown () ;

} catch (SchedulerException e) {
e.printStackTrace () ;
}
}

public void init (ActionServlet servlet, ModuleConfig config) throws ServletException ({

try {
scheduler = StdSchedulerFactory.getDefaultScheduler();

scheduler.start();
} catch (SchedulerException e) {
e.printStackTrace () ;

}
}

public static Scheduler getScheduler () {
return scheduler;

}

public static void setScheduler (Scheduler scheduler) {

QuartzConfigurator.scheduler = scheduler;

}

Actual package: “util”

package br.com.infowaypi.jbook.scheduler;
public class QuartzConfigurator implements PlugIn{
private static Scheduler scheduler = null;

public void destroy () {
try {
scheduler.shutdown () ;
} catch (SchedulerException e) {
e.printStackTrace();
}
}

public void init (ActionServlet servlet, ModuleConfig config) throws ServletException {

try {
scheduler = StdSchedulerFactory.getDefaultScheduler();
scheduler.start () ;

} catch (SchedulerException e) {
e.printStackTrace();

}
}

public static Scheduler getScheduler () {
return scheduler;

}

public static void setScheduler (Scheduler scheduler) {

QuartzConfigurator.scheduler = scheduler;

}

FIM

