
 @Entity

 @Table(name = "categories")

1 public class Category implements java.io.Serializable {

2 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue

3 private Long id;

4 private String categoryName;

 @OneToOne(mappedBy = "productCategory")

5 private Product categoryProduct;

6 public Category() {

 // Used by JPA.

7 }

8 public void setId(Long id) {

9 this.id = id;

10 }

11 public Long getId() {

12 return id;

12 }

13 public String getCategoryName() {

14 return this.categoryName;

15 }

16 public void setCategoryName(String categoryName) {

17 this.categoryName = categoryName;

18 }

19 public Product getCategoryProduct() {

20 return this.categoryProduct;

21 }

22 public void setCategoryProduct(Product categoryProduct) {

23 this.categoryProduct = categoryProduct;

24 }

25 }

1

1 public class CategoryRepository implements ServletContextListener {

 @PersistenceUnit(unitName = "store-pu")

2 private EntityManagerFactory emf;

3 private EntityManager em;

4 public CategoryRepository() {

5 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

6 System.out.println("[SERVLET-TEST-INFO]: CategoryRepository Constructor");

7 }

 @Override

8 public void contextDestroyed(ServletContextEvent sce) {

9 if (emf.isOpen()) {

10 emf.close();

11 }

12 }

 @Override

13 public void contextInitialized(ServletContextEvent sce) {

14 ServletContext context = sce.getServletContext();

15 context.setAttribute("categoryRepository", this);

16 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado!

CategoryRepository");

17 }

18 public final EntityManager entityManager() {

19 if (em == null || !em.isOpen()) {

20 em = emf.createEntityManager();

21 }

22 return em;

23 }

24 public void persistOrMerge(Serializable entity, Serializable id) {

25 em = entityManager();

26 if (entity == null) {

27 throw new IllegalArgumentException("entity");

28 }

29 try {

30 em.getTransaction().begin();

31 if (id == null) {

32 em.persist(entity);

33 } else {

34 em.merge(entity);

35 }

36 em.getTransaction().commit();

37 } finally {

38 em.close();

39 }

40 }

41 public Category findCategoryById(Long id) {

42 em = entityManager();

43 return em.find(Category.class, id);

44 }

45 public List findAllCategories() {

46 em = entityManager();

47 Query q = em.createQuery("select c from Category c");

48 return q.getResultList();

49 }

50 public List findAllDistinctCategories() {

51 em = entityManager();

52 Query q = em.createQuery("select DISTINCT (c.categoryName) from Category c");

53 return q.getResultList();

54 }

55 public Category newCategory() {

56 Category c = new Category();

57 persistOrMerge(c, c.getId());

58 return c;

59 }

60 }

2

1 public interface ControllerAction {

2 void execute(HttpServletRequest request, HttpServletResponse response);

3 }

3

1 public class ControllerServlet extends HttpServlet {

2 private static final long serialVersionUID = 1L;

3 private Map<String, ControllerAction> actions = new HashMap<String, ControllerAction>();

4 private static final String ACTION_IDENTIFIER = "action";

5 public void init() {

6 actions.put("goToHome", new GoToAction("home.jsp"));

7 actions.put("goToCatalog", new GoToAction("catalog.jsp"));

8 actions.put("goToCheckout", new GoToAction("checkout.jsp"));

 //#if defined(DisplayByCategory)

9 actions.put("goToCatalogShowByCategory", new GoToAction("catalogByCategory.jsp"));

 //#endif

 //#if defined(DisplayWhatIsNew)

10 actions.put("goToCatalogShowByNearestDate", new

GoToAction("catalogByNearestDate.jsp"));

 //#endif

11 actions.put("goToSeller", new GoToAction("seller.jsp"));

 //#if defined(Paypal)

12 actions.put("goToPaypal", new GoToAction("paypal.jsp"));

 //#endif

13 actions.put("goToPayment", new GoToAction("payment.jsp"));

 //#if defined(Bankslip)

14 actions.put("goToBankSlip", new GoToAction("bankslip.jsp"));

 //#endif

15 actions.put("goToResponse", new GoToAction("response.jsp"));

16 actions.put("verifyCatalogForm", new VerifyCatalogFormAction());

17 actions.put("verifySellerForm", new VerifySellerFormAction());

18 actions.put("verifyCheckoutForm", new VerifyCheckoutFormAction());

19 actions.put("processSellerForm", new ProcessSellerFormAction());

20 actions.put("processCheckoutForm", new ProcessCheckoutFormAction());

21 }

22 public void processAction(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

23 String actionRequestParameter = request.getParameter(ACTION_IDENTIFIER);

24 if (null == actionRequestParameter) {

25 actionRequestParameter = "goToHome";

26 }

27 ControllerAction command = (ControllerAction) actions.get(actionRequestParameter);

28 if (null == command) {

29 throw new IllegalArgumentException("No command for form action: " +

actionRequestParameter);

30 }

31 command.execute(request, response);

32 }

33 public void doPost(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {

34 processAction(request, response);

35 }

36 public void doGet(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {

37 processAction(request, response);

38 }

39 }

4

 @Entity

 @Table(name = "customers")

1 public class Customer implements Serializable {

2 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue

3 private Long id;

4 private String name;

5 public void setName(String name) {

6 this.name = name;

7 }

8 private String address;

9 private String email;

 @OneToMany(targetEntity = Order.class, mappedBy = "customer", fetch = FetchType.LAZY)

10 private List<Order> orders;

11 public Customer() {

 // JPA

13 }

14 public Long getId() {

15 return id;

16 }

17 public String getName() {

18 return name;

19 }

20 public void setAddress(String address) {

21 this.address = address;

22 }

23 public String getAddress() {

24 return address;

25 }

26 public void setOrders(List<Order> orders) {

27 this.orders = orders;

28 }

29 public List<Order> getOrders() {

30 return orders;

31 }

32 public void setEmail(String email) {

33 this.email = email;

34 }

35 public String getEmail() {

36 return email;

37 }

38 }

5

1 public class CustomerRepository implements ServletContextListener {

 @PersistenceUnit(unitName = "store-pu")

2 private EntityManagerFactory emf;

3 private EntityManager em;

4 public CustomerRepository() {

5 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

6 System.out.println("[SERVLET-TEST-INFO]: CustomerRepository Constructor");

7 }

 @Override

8 public void contextDestroyed(ServletContextEvent sce) {

9 if (emf.isOpen()) {

10 emf.close();

11 }

12 }

 @Override

13 public void contextInitialized(ServletContextEvent sce) {

14 ServletContext context = sce.getServletContext();

15 context.setAttribute("customerRepository", this);

16 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado! CustomerRepository");

17 }

18 public final EntityManager entityManager() {

19 if (em == null || !em.isOpen()) {

20 em = emf.createEntityManager();

21 }

22 return em;

23 }

24 public void persistOrMerge(Serializable entity, Serializable id) {

25 em = entityManager();

26 if (entity == null) {

27 throw new IllegalArgumentException("entity");

28 }

29 try {

30 em.getTransaction().begin();

31 if (id == null) {

32 em.persist(entity);

33 } else {

34 em.merge(entity);

35 }

36 em.getTransaction().commit();

37 } finally {

38 em.close();

39 }

40 }

41 public Customer findCustomerById(Long id) {

42 em = entityManager();

43 return em.find(Customer.class, id);

44 }

45 public List findAllCustomers() {

46 em = entityManager();

47 Query q = em.createQuery("select c from Customer c");

48 return q.getResultList();

49 }

50 public Customer newCustomer() {

51 Customer c = new Customer();

52 persistOrMerge(c, c.getId());

53 return c;

54 }

55 }

6

1 public class GoToAction implements ControllerAction {

2 private String jspFileName;

3 public GoToAction(String jspFileName) {

4 this.setJspFileName(jspFileName);

5 }

 @Override

6 public void execute(HttpServletRequest request, HttpServletResponse response) {

7 ServletContext context = request.getSession().getServletContext();

8 try {

9 context.getRequestDispatcher("/" + jspFileName).forward(request, response);

10 } catch (Exception e) {

11 e.printStackTrace();

12 }

13 }

14 public void setJspFileName(String jspFileName) {

15 this.jspFileName = jspFileName;

16 }

17 public String getJspFileName() {

18 return jspFileName;

19 }

20 }

7

1 public abstract class ModelAction {

2 public Object execute(HttpServletRequest request, HttpServletResponse response) {

3 setPersistenceRepository(request);

4 getRequestParameters(request);

5 return newEntity();

6 }

7 Object newEntity() {

8 Object o = createEntity();

9 setEntityAssociations(o);

10 return o;

11 }

12 abstract Object createEntity();

13 abstract void getRequestParameters(HttpServletRequest request);

14 abstract void setPersistenceRepository(HttpServletRequest request);

15 abstract void setEntityAssociations(Object o);

16 }

8

1 public class NewCategoryAction extends ModelAction {

2 Object params[];

3 private CategoryRepository categoryRepository;

4 @Override

5 public void setPersistenceRepository(HttpServletRequest request) {

6 ServletContext context = request.getSession().getServletContext();

7 categoryRepository = (CategoryRepository) context.getAttribute("categoryRepository");

8 }

 @Override

9 public Object createEntity() {

10 Category c = categoryRepository.newCategory();

11 setEntityAssociations(c);

12 categoryRepository.persistOrMerge(c, c.getId());

13 return c;

14 }

 @Override

15 public void setEntityAssociations(Object o) {

16 ((Category) o).setCategoryName((String) params[0]);

17 }

 @Override

18 public void getRequestParameters(HttpServletRequest request) {

19 params = new Object[1];

20 params[0] = request.getParameter("CategoryName");

21 }

22 }

9

1 public class NewCustomerAction extends ModelAction {

2 Object params[];

3 private CustomerRepository customerRepository;

 @Override

4 public void setPersistenceRepository(HttpServletRequest request) {

5 ServletContext context = request.getSession().getServletContext();

6 customerRepository = (CustomerRepository)

context.getAttribute("customerRepository");

7 }

 @Override

8 public Object createEntity() {

9 Customer c = customerRepository.newCustomer();

10 setEntityAssociations(c);

11 return c;

12 }

 @Override

13 public void setEntityAssociations(Object o) {

14 ((Customer) o).setName((String) params[0]);

15 ((Customer) o).setAddress((String) params[1]);

16 ((Customer) o).setEmail((String) params[2]);

17 }

 @Override

18 public void getRequestParameters(HttpServletRequest request) {

19 params = new Object[3];

20 params[0] = request.getParameter("CustomerName");

21 params[1] = request.getParameter("CustomerAddress");

22 params[2] = request.getParameter("CustomerMail");

23 }

24 }

10

1 public class NewOrderAction extends ModelAction {

2 Object params[];

3 private OrderRepository orderRepository;

 @Override

4 public void setPersistenceRepository(HttpServletRequest request) {

5 ServletContext context = request.getSession().getServletContext();

6 orderRepository = (OrderRepository) context.getAttribute("orderRepository");

7 }

 @Override

8 public Object createEntity() {

9 Order o = orderRepository.newOrder();

10 setEntityAssociations(o);

11 orderRepository.persistOrMerge(o, o.getId());

12 return o;

13 }

 @Override

14 public void setEntityAssociations(Object o) {

15 ((Order) o).setCustomer((Customer) params[0]);

16 ((Order) o).setProducts((List<Product>) params[1]);

17 }

 @Override

18 public void getRequestParameters(HttpServletRequest request) {

19 params = new Object[2];

20 params[0] = request.getAttribute("customer");

21 params[1] = request.getAttribute("products");

22 }

23 }

11

1 public class NewPaymentAction extends ModelAction {

2 Object params[];

3 private PaymentRepository paymentRepository;

 @Override

4 public void setPersistenceRepository(HttpServletRequest request) {

5 ServletContext context = request.getSession().getServletContext();

6 paymentRepository = (PaymentRepository) context.getAttribute("paymentRepository");

7 }

 @Override

8 public Object createEntity() {

9 Payment object = paymentRepository.newPayment();

10 setEntityAssociations(object);

11 paymentRepository.persistOrMerge(object, object.getId());

12 return object;

13 }

 @Override

14 public void setEntityAssociations(Object payment) {

15 ((Payment) payment).setPaymentStatus("NOT YET PAID");

16 ((Payment) payment).setPaymentOrder((Order) params[0]);

17 ((Payment) payment).setPaymentType((String) params[1]);

18 }

 @Override

19 public void getRequestParameters(HttpServletRequest request) {

20 params = new Object[2];

21 params[0] = request.getAttribute("order");

22 params[1] = request.getParameter("paymentType");

23 }

24 }

12

1 public class NewProductAction extends ModelAction {

2 private ProductRepository productRepository;

3 Object params[];

 @Override

4 public void setPersistenceRepository(HttpServletRequest request) {

5 ServletContext context = request.getSession().getServletContext();

6 productRepository = (ProductRepository) context.getAttribute("productRepository");

7 }

 @Override

8 public Object createEntity() {

9 Product p = productRepository.newProduct();

10 setEntityAssociations(p);

11 productRepository.persistOrMerge(p, p.getId());

12 return p;

13 }

 @Override

14 public void setEntityAssociations(Object product) {

15 ((Product) product).setProductName((String) params[0]);

16 ((Product) product).setProductDescription((String) params[1]);

17 Double price;

18 if (params[2] == null) {

19 price = Double.valueOf("0");

20 } else {

21 price = Double.valueOf((String) params[2]);

22 }

23 ((Product) product).setProductPrice(price);

 //#if defined(DisplayWhatIsNew)

24 ((Product) product).setProductInsertDate(new Date());

 //#endif

25 }

 @Override

26 public void getRequestParameters(HttpServletRequest request) {

27 params = new Object[3];

28 params[0] = request.getParameter("ProductName");

29 params[1] = request.getParameter("ProductDescription");

30 params[2] = request.getParameter("ProductPrice");

31 }

32 }

13

1 public class NewSellerAction extends ModelAction {

2 SellerRepository sellerRepository;

3 Object params[];

 @Override

4 public Object createEntity() {

5 Seller s = sellerRepository.newSeller();

6 setEntityAssociations(s);

7 sellerRepository.persistOrMerge(s, s.getId());

8 return s;

9 }

 @Override

10 public void setEntityAssociations(Object seller) {

11 ((Seller) seller).setName((String) params[0]);

12 ((Seller) seller).setAddress((String) params[1]);

13 ((Seller) seller).setEmail((String) params[2]);

14 }

 @Override

15 public void setPersistenceRepository(HttpServletRequest request) {

16 ServletContext context = request.getSession().getServletContext();

17 sellerRepository = (SellerRepository) context.getAttribute("sellerRepository");

18 }

 @Override

19 public void getRequestParameters(HttpServletRequest request) {

20 params = new Object[3];

21 params[0] = request.getParameter("SellerName");

22 params[1] = request.getParameter("SellerAddress");

23 params[2] = request.getParameter("SellerMail");

24 }

25 }

14

 @Entity

 @Table(name = "orders")

1 public class Order implements Serializable {

2 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue

3 private Long id;

 @ManyToOne(targetEntity = Customer.class, fetch = FetchType.LAZY)

4 private Customer customer;

 @OneToMany(targetEntity = Product.class, mappedBy = "productOrder", fetch = FetchType.LAZY)

 @Column(name = "orderProducts")

5 private List<Product> products;

 @OneToOne(mappedBy = "paymentOrder")

6 private Payment orderPayment;

7 public Order() {

 // JPA

8 }

9 public Order(Customer c) {

 customer = c;

10 }

11 public void setId(Long id) {

12 this.id = id;

13 }

14 public Long getId() {

15 return id;

16 }

17 public void setCustomer(Customer client) {

18 this.customer = client;

19 }

20 public Customer getClient() {

21 return customer;

22 }

23 public void setProducts(List<Product> products) {

24 this.products = products;

25 }

26 public List<Product> getProducts() {

27 return products;

28 }

29 public Payment getOrderPayment() {

30 return this.orderPayment;

31 }

32 public void setOrderPayment(Payment orderPayment) {

33 this.orderPayment = orderPayment;

34 }

35 }

15

1 public class OrderRepository implements ServletContextListener {

 @PersistenceUnit(unitName = "store-pu")

2 private EntityManagerFactory emf;

3 private EntityManager em;

4 public OrderRepository() {

5 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

6 System.out.println("[SERVLET-TEST-INFO]: OrderRepository Constructor");

7 }

 @Override

8 public void contextDestroyed(ServletContextEvent sce) {

9 if (emf.isOpen()) {

10 emf.close();

11 }

12 }

 @Override

13 public void contextInitialized(ServletContextEvent sce) {

14 ServletContext context = sce.getServletContext();

15 context.setAttribute("orderRepository", this);

16 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado! OrderRepository");

17 }

18 public final EntityManager entityManager() {

19 if (em == null || !em.isOpen()) {

20 em = emf.createEntityManager();

21 }

22 return em;

23 }

24 public void persistOrMerge(Serializable entity, Serializable id) {

25 em = entityManager();

26 if (entity == null) {

27 throw new IllegalArgumentException("entity");

28 }

29 try {

30 em.getTransaction().begin();

31 if (id == null) {

32 em.persist(entity);

33 } else {

34 em.merge(entity);

35 }

36 em.getTransaction().commit();

37 } finally {

38 em.close();

39 }

40 }

41 public Order findOrderById(Long id) {

42 em = entityManager();

43 return em.find(Order.class, id);

44 }

45 public List<Order> findAllOrders() {

46 em = entityManager();

47 Query q = em.createQuery("select o from Order o");

48 return q.getResultList();

49 }

50 public Order newOrder() {

51 Order o = new Order();

52 persistOrMerge(o, o.getId());

53 return o;

54 }

55 }

16

 @Entity

 @Table(name = "payments")

1 public class Payment implements java.io.Serializable {

2 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue

3 private Long id;

4 private String paymentType;

 @OneToOne

5 private Order paymentOrder;

6 private String paymentStatus;

7 public Payment() {

 // Used by JPA.

8 }

9 public void setId(Long id) {

10 this.id = id;

11 }

12 public Long getId() {

13 return id;

14 }

15 public String getPaymentStatus() {

16 return this.paymentStatus;

17 }

18 public void setPaymentStatus(String paymentStatus) {

19 this.paymentStatus = paymentStatus;

20 }

21 public Order getPaymentOrder() {

22 return this.paymentOrder;

23 }

24 public void setPaymentOrder(Order paymentOrder) {

25 this.paymentOrder = paymentOrder;

26 }

27 public void setPaymentType(String paymentType) {

28 this.paymentType = paymentType;

29 }

30 public String getPaymentType() {

31 return paymentType;

32 }

33 }

17

1 public class PaymentRepository implements ServletContextListener {

 @PersistenceUnit(unitName = "store-pu")

2 private EntityManagerFactory emf;

3 private EntityManager em;

4 public PaymentRepository() {

5 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

6 System.out.println("[SERVLET-TEST-INFO]: PaymentRepository Constructor");

7 }

 @Override

8 public void contextDestroyed(ServletContextEvent sce) {

9 if (emf.isOpen()) {

10 emf.close();

11 }

12 }

 @Override

13 public void contextInitialized(ServletContextEvent sce) {

14 ServletContext context = sce.getServletContext();

15 context.setAttribute("paymentRepository", this);

16 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado! PaymentRepository");

17 }

18 public final EntityManager entityManager() {

19 if (em == null || !em.isOpen()) {

20 em = emf.createEntityManager();

21 }

22 return em;

23 }

24 public void persistOrMerge(Serializable entity, Serializable id) {

25 em = entityManager();

26 if (entity == null) {

27 throw new IllegalArgumentException("entity");

28 }

29 try {

30 em.getTransaction().begin();

31 if (id == null) {

32 em.persist(entity);

33 } else {

34 em.merge(entity);

35 }

36 em.getTransaction().commit();

37 } finally {

38 em.close();

39 }

40 }

41 public Payment findPaymentById(Long id) {

42 em = entityManager();

43 return em.find(Payment.class, id);

44 }

45 public List findAllPayments() {

46 em = entityManager();

47 Query q = em.createQuery("select obj from Payment obj");

48 return q.getResultList();

49 }

50 public Payment newPayment() {

51 Payment object = new Payment();

52 persistOrMerge(object, object.getId());

53 return object;

54 }

55 }

18

1 public class ProcessCheckoutFormAction implements ControllerAction {

 @Override

2 public void execute(HttpServletRequest request, HttpServletResponse response) {

3 ControllerAction paymentAction = null;

4 createEntities(request, response);

5 String paymentType = request.getParameter("PaymentType");

6 paymentAction = selectPaymentMethod(paymentAction, paymentType);

7 paymentAction.execute(request, response);

8 }

9 private ControllerAction selectPaymentMethod(ControllerAction paymentAction, String

paymentType) {

10 if (paymentType.equals("Default")) {

11 paymentAction = new GoToAction("payment.jsp");

12 }

 //#if defined(Bankslip)

13 if (paymentType.equals("Bankslip")) {

14 paymentAction = new GoToAction("bankslip.jsp");

15 }

 //#endif

 //#if defined(Paypal)

16 if (paymentType.equals("Paypal")) {

17 paymentAction = new GoToAction("paypal.jsp");

18 }

 //#endif

19 return paymentAction;

20 }

21 private void createEntities(HttpServletRequest request, HttpServletResponse response) {

22 NewCustomerAction newCustomerAction = new NewCustomerAction();

23 Customer c = (Customer) newCustomerAction.execute(request, response);

24 request.setAttribute("customer", c);

25 request.setAttribute("products", request.getSession().getAttribute("products"));

26 NewOrderAction newOrderAction = new NewOrderAction();

27 Order o = (Order) newOrderAction.execute(request, response);

28 request.setAttribute("order", o);

29 NewPaymentAction newPaymentAction = new NewPaymentAction();

30 newPaymentAction.execute(request, response);

31 }

32 }

19

1 public class ProcessSellerFormAction implements ControllerAction {

 @Override

2 public void execute(HttpServletRequest request, HttpServletResponse response) {

3 try {

4 Product p = createProduct(request, response);

5 setProductAssociations(request, response, p);

6 updateEntity(request, p);

7 forward(request, response);

8 } catch (Exception e) {

9 e.printStackTrace();

10 }

11 }

12 private Product createProduct(HttpServletRequest request, HttpServletResponse response) {

13 NewProductAction newProductAction = new NewProductAction();

14 Product p = (Product) newProductAction.execute(request, response);

15 return p;

16 }

17 private void forward(HttpServletRequest request, HttpServletResponse response) {

18 try {

19 request.setAttribute("message", "
 Product inserted with success");

20

21 GoToAction responseAction = new GoToAction("response.jsp");

22 responseAction.execute(request, response);

23 } catch (Exception e) {

24 e.printStackTrace();

25 }

26 }

27 private void updateEntity(HttpServletRequest request, Product p) {

28 ServletContext context = request.getSession().getServletContext();

29 ProductRepository productRepository = (ProductRepository)

context.getAttribute("productRepository");

30 productRepository.persistOrMerge(p, p.getId());

31 }

32 private void setProductAssociations(HttpServletRequest request, HttpServletResponse

response, Product p) {

33 setProductSeller(request, response, p);

34 setProductCategory(request, response, p);

35 }

36 private void setProductCategory(HttpServletRequest request, HttpServletResponse response,

Product p) {

37 NewCategoryAction newCategoryAction = new NewCategoryAction();

38 Category c = (Category) newCategoryAction.execute(request, response);

39 p.setProductCategory(c);

40 }

41 private void setProductSeller(HttpServletRequest request, HttpServletResponse response,

Product p) {

42 NewSellerAction newSellerAction = new NewSellerAction();

43 Seller s = (Seller) newSellerAction.execute(request, response);

44 p.setProductSeller(s);

45 }

46 }

20

 @Entity

 @Table(name = "products")

1 public class Product implements Serializable {

2 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue

3 private Long id;

4 private String productName;

5 private String productDescription;

6 private Double productPrice;

 @ManyToOne(targetEntity = Order.class, fetch = FetchType.LAZY)

7 private Order productOrder;

 @OneToOne

8 private Seller productSeller;

 @OneToOne

9 private Category productCategory;

 //#if defined(DisplayWhatIsNew)

10 private Date productInsertDate;

 //#endif

11 public Product() {

 // JPA

12 }

13 public Long getId() {

14 return id;

15 }

16 public void setId(Long id) {

17 this.id = id;

18 }

19 public void setProductName(String productName) {

20 this.productName = productName;

21 }

22 public String getProductName() {

23 return productName;

24 }

25 public void setProductDescription(String productDescription) {

26 this.productDescription = productDescription;

27 }

28 public String getProductDescription() {

29 return productDescription;

30 }

31 public void setProductPrice(Double productPrice) {

32 this.productPrice = productPrice;

33 }

34 public Double getProductPrice() {

35 return productPrice;

36 }

37 public void setProductOrder(Order productOrder) {

38 this.productOrder = productOrder;

39 }

40 public Order getProductOrder() {

41 return productOrder;

42 }

43 public void setProductSeller(Seller productSeller) {

44 this.productSeller = productSeller;

45 }

46 public Seller getProductSeller() {

47 return productSeller;

48 }

 //#if defined(DisplayWhatIsNew)

49 public void setProductInsertDate(Date productInsertDate) {

50 this.productInsertDate = productInsertDate;

51 }

52 public Date getProductInsertDate() {

53 return productInsertDate;

54 }

 //#endif

55 public void setProductCategory(Category productCategory) {

56 this.productCategory = productCategory;

57 }

58 public Category getProductCategory() {

59 return productCategory;

60 }

61 }

21

1 public class ProductRepository implements ServletContextListener {

 @PersistenceUnit(unitName = "store-pu")

2 private EntityManagerFactory emf;

3 private EntityManager em;

4 public ProductRepository() {

5 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

6 System.out.println("[SERVLET-TEST-INFO]: ProductRepository Constructor");

7 }

 @Override

8 public void contextDestroyed(ServletContextEvent sce) {

9 if (emf.isOpen()) {

10 emf.close();

11 }

12 }

 @Override

13 public void contextInitialized(ServletContextEvent sce) {

14 ServletContext context = sce.getServletContext();

15 context.setAttribute("productRepository", this);

16 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado!

ProductRepository");

17 }

18 public final EntityManager entityManager() {

19 if (em == null || !em.isOpen()) {

20 em = emf.createEntityManager();

21 }

22 return em;

23 }

24 public void persistOrMerge(Serializable entity, Serializable id) {

25 em = entityManager();

26 if (entity == null) {

27 throw new IllegalArgumentException("entity");

28 }

29 try {

30 em.getTransaction().begin();

31 if (id == null) {

32 em.persist(entity);

33 } else {

34 em.merge(entity);

35 }

36 em.getTransaction().commit();

37 } finally {

38 em.close();

39 }

40 }

41 public Product newProduct() {

42 Product p = new Product();

43 persistOrMerge(p, p.getId());

44 return p;

45 }

46 public Product findProductById(Long id) {

47 em = entityManager();

48 return em.find(Product.class, id);

49 }

50 public List findAllProducts() {

51 em = entityManager();

52 Query q = em.createQuery("select p from Product p");

53 return q.getResultList();

54 }

55 public List findAllProductsAvailable() {

56 em = entityManager();

57 Query q = em.createQuery("select p from Product p where p.productOrder = NULL");

58 return q.getResultList();

59 }

 //#if defined(DisplayWhatIsNew)

60 public List findAllProductsAvailableByNearestDate() {

61 em = entityManager();

62 Query q = em.createQuery("select p from Product p where p.productOrder = NULL

ORDER BY p.productInsertDate DESC");

63 return q.getResultList();

64 }

 //#endif

 //#if defined(DisplayByCategory)

65 public List findAllProductsByCategory(String category) {

66 em = entityManager();

67 Query q = em.createQuery("select p from Product p where p.productOrder = NULL AND

p.productCategory.categoryName=:cat");

68 q.setParameter("cat", category);

69 return q.getResultList();

70 }

 //#endif

71 }

22

 @Entity

 @Table(name = "sellers")

1 public class Seller implements Serializable {

2 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue

3 private Long id;

4 private String name;

5 private String address;

6 private String email;

 @OneToOne(mappedBy = "productSeller")

7 private Product product;

8 public Seller() {

 // JPA

9 }

10 public Long getId() {

11 return id;

12 }

13 public void setId(Long id) {

14 this.id = id;

15 }

16 public String getName() {

17 return name;

18 }

19 public void setName(String name) {

20 this.name = name;

21 }

22 public void setEmail(String email) {

23 this.email = email;

24 }

25 public String getEmail() {

26 return email;

27 }

28 public void setAddress(String address) {

29 this.address = address;

30 }

31 public String getAddress() {

32 return address;

33 }

34 public void setProduct(Product product) {

35 this.product = product;

36 }

37 public Product getProduct() {

38 return product;

39 }

40 }

23

1 public class SellerRepository implements ServletContextListener {

 @PersistenceUnit(unitName = "store-pu")

2 private EntityManagerFactory emf;

3 private EntityManager em;

4 public SellerRepository() {

5 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

6 System.out.println("[SERVLET-TEST-INFO]: SellerRepository Constructor");

7 }

 @Override

8 public void contextDestroyed(ServletContextEvent sce) {

9 if (emf.isOpen()) {

10 emf.close();

11 }

12 }

 @Override

14 public void contextInitialized(ServletContextEvent sce) {

15 ServletContext context = sce.getServletContext();

16 context.setAttribute("sellerRepository", this);

17 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado! SellerRepository");

18 }

19 public final EntityManager entityManager() {

20 if (em == null || !em.isOpen()) {

21 em = emf.createEntityManager();

22 }

23 return em;

24 }

25 public void persistOrMerge(Serializable entity, Serializable id) {

26 em = entityManager();

27

28 if (entity == null) {

29 throw new IllegalArgumentException("entity");

30 }

31 try {

32 em.getTransaction().begin();

33 if (id == null) {

34 em.persist(entity);

35 } else {

36 em.merge(entity);

37 }

38 em.getTransaction().commit();

39 } finally {

40 em.close();

41 }

42 }

43 public Seller findSellerById(Long id) {

44 em = entityManager();

45 return em.find(Seller.class, id);

46 }

47 public Seller findSellerByEmail(String sellerEmail) {

48 em = entityManager();

49 return (Seller) em.createQuery("select s from Seller s where s.email = '" +

sellerEmail + "'").getSingleResult();

50 }

51 public List<Seller> findAllSellers() {

52 em = entityManager();

53 Query q = em.createQuery("select s from Seller s");

54 return q.getResultList();

55 }

56 public Seller newSeller() {

57 Seller s = new Seller();

58 persistOrMerge(s, s.getId());

59 return s;

60 }

61 }

24

1 public class VerifyCatalogFormAction implements ControllerAction {

 @Override

2 public void execute(HttpServletRequest request, HttpServletResponse response) {

3 String[] productsIds = request.getParameterValues("productsIds");

4 if (productsIds == null) {

5 request.setAttribute("message", "<br/ > ERROR: You must select at least a

product!");

6 GoToAction responseAction = new GoToAction("response.jsp");

7 responseAction.execute(request, response);

8 }

9 else {

10 getProductList(request, productsIds);

11 GoToAction checkoutAction = new GoToAction("checkout.jsp");

12 checkoutAction.execute(request, response);

13 }

14 }

15 private void getProductList(HttpServletRequest request, String[] productsIds) {

16 ServletContext context = request.getSession().getServletContext();

17 ProductRepository productRepository = (ProductRepository)

context.getAttribute("productRepository");

18 List<Product> products = new ArrayList();

19 for (String productId : productsIds) {

20 products.add(productRepository.findProductById((Long.valueOf(productId))));

21 }

22 HttpSession session = request.getSession();

23 session.setAttribute("products", products);

24 }

25 }

25

1 public class VerifyCheckoutFormAction implements ControllerAction {

 @Override

2 public void execute(HttpServletRequest request, HttpServletResponse response) {

3 List params = getRequestParameters(request);

4 Boolean emptyFields = false;

5 for (Object param : params) {

6 if (param == null || param.equals("")) {

7 emptyFields = true;

8 }

9 }

10 if (emptyFields) {

11 request.setAttribute("message", "Form with blank fields! Complete your

form first!");

12 GoToAction responseAction = new GoToAction("response.jsp");

13 responseAction.execute(request, response);

14 } else {

15 ProcessCheckoutFormAction checkoutFormAction = new

ProcessCheckoutFormAction();

16 checkoutFormAction.execute(request, response);

17 }

18 }

19 private List getRequestParameters(HttpServletRequest request) {

20 List params = new ArrayList();

21 addParameters(request, params);

22 return params;

23 }

24 private void addParameters(HttpServletRequest request, List params) {

25 params.add(request.getParameter("CustomerName"));

26 params.add(request.getParameter("CustomerAddress"));

27 params.add(request.getParameter("CustomerMail"));

28 params.add(request.getParameter("paymentType"));

29 }

30 }

26

1 public class VerifySellerFormAction implements ControllerAction {

 @Override

2 public void execute(HttpServletRequest request, HttpServletResponse response) {

3 List params = getRequestParameters(request);

4 Boolean emptyFields = false;

5 for (Object param : params) {

6 if (param == null || param.equals("")) {

7 emptyFields = true;

8 }

9 }

10 if (emptyFields) {

11 request.setAttribute("message", "Form with blank fields! Complete your

form first!");

12 GoToAction responseAction = new GoToAction("response.jsp");

13 responseAction.execute(request, response);

14 } else {

15 ProcessSellerFormAction sellerFormAction = new ProcessSellerFormAction();

16 sellerFormAction.execute(request, response);

17 }

18 }

19 private List getRequestParameters(HttpServletRequest request) {

20 List params = new ArrayList();

21 addParameters(request, params);

22 return params;

23 }

24 private void addParameters(HttpServletRequest request, List params) {

25 params.add(request.getParameter("CategoryName"));

26 params.add(request.getParameter("SellerName"));

27 params.add(request.getParameter("SellerAddress"));

28 params.add(request.getParameter("SellerMail"));

29 params.add(request.getParameter("ProductName"));

30 params.add(request.getParameter("ProductDescription"));

31 params.add(request.getParameter("ProductPrice"));

32 }

33 }

27

