@Entity

@Table (name = "categories")

il public class Category implements java.io.Serializable ({

2 private static final long serialVersionUID = 1L;
QId
@GeneratedvValue

3 private Long id;

a private String categoryName;
@OneToOne (mappedBy = "productCategory")

5 private Product categoryProduct;

6

7

3 public void setId(Long id) {

9 this.id = id;

10 }

19 public Product getCategoryProduct () {
L0 return this.categoryProduct;
1 }

|1

‘public class CategoryRepository implements ServletContextListener ({

@PersistenceUnit (unitName = "store-pu")

private EntityManagerFactory emf;

private EntityManager em;

@Override
3 public void contextDestroyed(ServletContextEvent sce) {
9 if (emf.isOpen()) {
10 emf.close();
11 }
12 }

@Override
13 public void contextInitialized(ServletContextEvent sce) {
14 ServletContext context = sce.getServletContext () ;
15 context.setAttribute ("categoryRepository", this);
16 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado!

CategoryRepository") ;

17

}

public interface ControllerAction ({

void execute (HttpServletRequest request, HttpServletResponse response);

1 public class ControllerServlet extends HttpServlet ({

private static final long serialVersionUID = 1L;
3 private Map<String, ControllerAction> actions = new HashMap<String, ControllerAction>();
4 private static final String ACTION IDENTIFIER = "action";
5 public void init () {
6 actions.put ("goToHome", new GoToAction ("home.jsp"));
7 actions.put ("goToCatalog", new GoToAction ("catalog.jsp"));
8 actions.put ("goToCheckout", new GoToAction ("checkout.jsp"));

//#1if defined(DisplayByCategory)

9 actions.put ("goToCatalogShowByCategory", new GoToAction ("catalogByCategory.jsp")):;

//#endif

//#1if defined (DisplayWhatIsNew)

10 actions.put ("goToCatalogShowByNearestDate", new
GoToAction ("catalogByNearestDate.jsp"))
//#endif
11 actions.put ("goToSeller", new GoToAction("seller.jsp"));
//#1f defined (Paypal)
12 actions.put ("goToPaypal", new GoToAction ("paypal.jsp"));
//#endif
13 actions.put ("goToPayment", new GoToAction ("payment.jsp"));
//#if defined (Bankslip)
14 actions.put ("goToBankSlip", new GoToAction ("bankslip.jsp"));
//#endif
15 actions.put ("goToResponse", new GoToAction ("response.jsp"));
16 actions.put ("verifyCatalogForm", new VerifyCatalogFormAction());
17 actions.put ("verifySellerForm", new VerifySellerFormAction());
18 actions.put ("verifyCheckoutForm", new VerifyCheckoutFormAction());
19 actions.put ("processSellerForm", new ProcessSellerFormAction());
240} actions.put ("processCheckoutForm", new ProcessCheckoutFormAction());
P1 }
L2 public void processAction (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException ({
L3 String actionRequestParameter = request.getParameter (ACTION IDENTIFIER);
L4 if (null == actionRequestParameter) {
L5 actionRequestParameter = "goToHome";
L6 }
2 ControllerAction command = (ControllerAction) actions.get (actionRequestParameter) ;
L3 if (null == command) {
L9 throw new IllegalArgumentException ("No command for form action: " +
actionRequestParameter) ;
30 }
31 command.execute (request, response);
2 }
3 public void doPost (HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {
4 processAction (request, response);
5 }
36 public void doGet (HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException ({
37 processAction (request, response);
38 }

39

@Entity
@Table (name = "customers")
1 | public class Customer implements Serializable {
2 private static final long serialVersionUID
@Id
@GeneratedValue
3 private Long id;
4 private String name;
5 public void setName (String name) {
[this.name = name;
7 }
8 private String address;
9 private String email;
@OneToMany (targetEntity = Order.class, mappedBy = "customer", FetchType.LAZY)
10 private List<Order> orders;
11 public Customer () {
// JPA
13 }
14 public Long getId() {
15 return id;
16 }
17 public String getName () {
18 return name;
19 }
240) public void setAddress (String address) {
P1 this.address = address;
2 }
L3 public String getAddress () {
pa return address;
L5 }
Lo public void setOrders (List<Order> orders)
R7 this.orders = orders;

28

L9 public List<Order> getOrders () {
B30 return orders;
31 }
32 public void setEmail (String email) {
33 this.email = email;
34 }
B35 public String getEmail () {
36 return email;
37 }
38 }
5
1 public class CustomerRepository implements ServletContextListener ({
@PersistenceUnit (unitName = "store-pu")
2 private EntityManagerFactory emf;
3 private EntityManager em;
4 public CustomerRepository () {
5 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");
[System.out.println (" [SERVLET-TEST-INFO]: CustomerRepository Constructor");
7 }
@Override
8 public void contextDestroyed(ServletContextEvent sce) {
9 if (emf.isOpen()) {
10 emf.close();
11 }
12 }
@Override
13 public void contextInitialized(ServletContextEvent sce) {
14 ServletContext context = sce.getServletContext();
15 context.setAttribute ("customerRepository", this);
16 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado! CustomerRepository");
17 }
18 public final EntityManager entityManager () {
19 if (em == null || !em.isOpen()) {
20 em = emf.createEntityManager () ;
21 }
22 return em;
23 }

24 public void persistOrMerge (Serializable entity, Serializable id) {
25 em = entityManager();

26 if (entity == null) ({

27 throw new IllegalArgumentException ("entity");
28 }

29 try |

30 em.getTransaction () .begin();

31 if (id == null) {

32 em.persist (entity);

33 } else {

34 em.merge (entity) ;

35 }

36 em.getTransaction () .commit () ;

37 } finally {

38 em.close () ;

39 }

40 }

41 public Customer findCustomerById(Long id) {

42 em = entityManager () ;

43 return em.find (Customer.class, id);

44 }

45 public List findAllCustomers () {

46 em = entityManager();

47 Query g = em.createQuery("select ¢ from Customer c");
48 return g.getResultlList();

49 }

50 public Customer newCustomer () {

51 Customer ¢ = new Customer();

52 persistOrMerge (c, c.getId());

53 return c;

54 }

55

6

1 public class GoToAction implements ControllerAction {
2 private String jspFileName;

3 public GoToAction(String jspFileName) {

4 this.setJspFileName (jspFileName) ;

5 }

@Override

6 public void execute (HttpServletRequest request, HttpServletResponse response) {
7 ServletContext context = request.getSession() .getServletContext();
8 try {

9 context.getRequestDispatcher ("/" + jspFileName) .forward(request, response);
10 } catch (Exception e) {

11 e.printStackTrace () ;

12 }

13 }

14 public void setJspFileName (String jspFileName) {

15 this.jspFileName = jspFileName;

16 }

17 public String getJspFileName () {

18 return jspFileName;

19 }

20

7

1

2

3

4

5

6

7

8

9

10

11

12 abstract Object createEntity();

13 abstract void getRequestParameters (HttpServletRequest request);

14 abstract void setPersistenceRepository (HttpServletRequest request);
15 abstract void setEntityAssociations (Object o) ;

16

Bl ——

2 Object params|[];
3 private CategoryRepository categoryRepository;
4 @Override
5
6
7
8
@Override
9
10
11
12
13
14
@Override
15
16
17
@Override
18
19
21
22
9
1 public class NewCustomerAction extends ModelAction {
2 Object params|[];
3 private CustomerRepository customerRepository;
@Override
4 public void setPersistenceRepository (HttpServletRequest request) {
5 ServletContext context = request.getSession().getServletContext () ;
6 customerRepository = (CustomerRepository)
context.getAttribute ("customerRepository") ;
7 }
@Override
8 public Object createEntity() {
9 Customer c = customerRepository.newCustomer () ;
10 setEntityAssociations (c);

11

return c;

12 }
@Override
13 public void setEntityAssociations (Object o) {
14 ((Customer) o) .setName ((String) params|[0]);
15 ((Customer) o) .setAddress ((String) params[1l]);
16 ((Customer) o) .setEmail ((String) params[2]);
17 }
@Override
18 public void getRequestParameters (HttpServletRequest request) {
19 params = new Object[3];
20 params[0] = request.getParameter ("CustomerName") ;
21 params[1l] = request.getParameter ("CustomerAddress") ;
22 params[2] = request.getParameter ("CustomerMail");
23 }
24 }
10
1 public class NewOrderAction extends ModelAction {
2 Object params|[];
3 private OrderRepository orderRepository;
@Override
4 public void setPersistenceRepository (HttpServletRequest request) {
5 ServletContext context = request.getSession().getServletContext () ;
6 orderRepository = (OrderRepository) context.getAttribute ("orderRepository");
7 }
@Override
8 public Object createEntity() {
9 Order o = orderRepository.newOrder () ;
10 setEntityAssociations (o) ;
11 orderRepository.persistOrMerge (0, o.getId());
12 return o;
13 }
@Override
14 public void setEntityAssociations (Object o) {
15 ((Order) o) .setCustomer ((Customer) params[0]);
16 ((Order) o) .setProducts ((List<Product>) params[1l]);
17 }
@Override
18 public void getRequestParameters (HttpServletRequest request) {

19 params = new Object[2];
20 params[0] = request.getAttribute ("customer");
21 params[l] = request.getAttribute ("products") ;
22 }
23 }
11
1 public class NewPaymentAction extends ModelAction {
2 Object params|[];
3 private PaymentRepository paymentRepository;
@Override
4 public void setPersistenceRepository (HttpServletRequest request) {
5 ServletContext context = request.getSession().getServletContext () ;
6 paymentRepository = (PaymentRepository) context.getAttribute ("paymentRepository");
7 }
@Override
8 public Object createEntity() {
9 Payment object = paymentRepository.newPayment () ;
10 setEntityAssociations (object) ;
11 paymentRepository.persistOrMerge (object, object.getId()):;
12 return object;
13 }
@Override
14 public void setEntityAssociations (Object payment) {
15 ((Payment) payment) .setPaymentStatus ("NOT YET PAID");
16 ((Payment) payment) .setPaymentOrder ((Order) params[0]);
17 ((Payment) payment) .setPaymentType ((String) params[l]);
18 }
@Override
19 public void getRequestParameters (HttpServletRequest request) {
20 params = new Object[2];
21 params[0] = request.getAttribute ("order");
22 params[l] = request.getParameter ("paymentType") ;
23 }
24 }
12
1 public class NewProductAction extends ModelAction {
2 private ProductRepository productRepository;
3 Object params|[];

SellerRepository sellerRepository;

Object params|[];

o
o
-
s
0
<
—
)
T
o)
=
0]
g
[~
(U]
)
L]
(]
o
o
-
)
0
<
4
o
—
—
)
%)
=
@)
=4
0]
0]
]
—
o
4]
-
3
¢

@Override

4 public Object createEntity() {
5 Seller s = sellerRepository.newSeller();
[setEntityAssociations(s);
7 sellerRepository.persistOrMerge (s, s.getId());
8 return s;
9 }
@Override
10 public void setEntityAssociations (Object seller) {
11 ((Seller) seller) .setName ((String) params[0]);
12 ((Seller) seller).setAddress((String) params[1l]);
13 ((Seller) seller).setEmail ((String) params([2]);
14 }
@Override
15 public void setPersistenceRepository (HttpServletRequest request) {
16 ServletContext context = request.getSession().getServletContext () ;
17 sellerRepository = (SellerRepository) context.getAttribute("sellerRepository");
18 }
@Override
19 public void getRequestParameters (HttpServletRequest request) {
20 params = new Object([3];
21 params[0] = request.getParameter ("SellerName") ;
22 params[l] = request.getParameter ("SellerAddress");
23 params[2] = request.getParameter ("SellerMail");
24 }
25 }
14
@Entity
@Table (name = "orders")
1 public class Order implements Serializable {
2 private static final long serialVersionUID = 1L;
@Id
@GeneratedValue
3 private Long id;
@ManyToOne (targetEntity = Customer.class, fetch = FetchType.LAZY)
4 private Customer customer;
@OneToMany (targetEntity = Product.class, mappedBy = "productOrder", fetch = FetchType.LAZY)
@Column (name = "orderProducts")
5 private List<Product> products;

@OneToOne (mappedBy = "paymentOrder")

6 private Payment orderPayment;

7

8

9 public Order (Customer c) {
customer = c;

10 }

11 public void setId(Long id) {

12 this.id = id;

13 }

17 public void setCustomer (Customer client) {

18 this.customer = client;

19 }

20 public Customer getClient () {

21 return customer;

22 }

23 public void setProducts (List<Product> products) {
24 this.products = products;

25 }

26 public List<Product> getProducts () {

27 return products;

28 }

29 public Payment getOrderPayment () {

30 return this.orderPayment;

31 }

32 public void setOrderPayment (Payment orderPayment) {
33 this.orderPayment = orderPayment;

34 }

35 }

15

1

‘public class OrderRepository implements ServletContextListener {

@PersistenceUnit (unitName = "store-pu")
2 private EntityManagerFactory emf;
3 private EntityManager em;
4
5
6
7
@Override
8 public void contextDestroyed(ServletContextEvent sce) {
9 if (emf.isOpen()) {
10 emf.close();
11 }
12 }
@Override
13 public void contextInitialized(ServletContextEvent sce) {
14 ServletContext context = sce.getServletContext();
15 context.setAttribute ("orderRepository", this);
16 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado! OrderRepository");
17 }

public void persistOrMerge (Serializable entity, Serializable id) {

throw new IllegalArgumentException ("entity");

em.merge (entity) ;

40

41 public Order findOrderById(Long id) {

42 em = entityManager();

43 return em.find(Order.class, id);

44 }

45 public List<Order> findAllOrders () {

46 em = entityManager () ;

47 Query g = em.createQuery("select o from Order o");
48 return g.getResultlList();

49 }

16
@Entity
@Table (name = "payments")
1 public class Payment implements java.io.Serializable {
2 private static final long serialVersionUID = 1L;
@Id
@GeneratedvValue
3 private Long id;
4 private String paymentType;
@OneToOne
5 private Order paymentOrder;
6 private String paymentStatus;
5
8
9 public void setId(Long id) {
10 this.id = id;
11 }

12 public Long getId() {

13 return id;

14 }

15 public String getPaymentStatus() {

16 return this.paymentStatus;

17 }

18 public void setPaymentStatus (String paymentStatus) {

19 this.paymentStatus = paymentStatus;

20 }

21 public Order getPaymentOrder () {

22 return this.paymentOrder;

23 }

24 public void setPaymentOrder (Order paymentOrder) {

25 this.paymentOrder = paymentOrder;

26 }

27 public void setPaymentType (String paymentType) {

28 this.paymentType = paymentType;

29 }

30 public String getPaymentType () {

31 return paymentType;

32 }

33 }

17

1 public class PaymentRepository implements ServletContextListener {
@PersistenceUnit (unitName = "store-pu")

2 private EntityManagerFactory emf;

3 private EntityManager em;

4 public PaymentRepository () {

5 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

6 System.out.println (" [SERVLET-TEST-INFO]: PaymentRepository Constructor");

7 }
@Override

8 public void contextDestroyed(ServletContextEvent sce) {

9 if (emf.isOpen()) {

10 emf.close () ;

11

12

@Override
13 public void contextInitialized(ServletContextEvent sce) {
14 ServletContext context = sce.getServletContext();
15 context.setAttribute ("paymentRepository", this);
16 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado! PaymentRepository");
17 }
18 public final EntityManager entityManager () {
19 if (em == null || !em.isOpen()) {
20 em = emf.createEntityManager () ;
21 }
22 return em;
23 }
24 public void persistOrMerge (Serializable entity, Serializable id) {
25 em = entityManager();
26 if (entity == null) ({
27 throw new IllegalArgumentException ("entity");
28 }
29 try {
30 em.getTransaction () .begin();
31 if (id == null) {
32 em.persist (entity);
33 } else {
34 em.merge (entity) ;
35 }
36 em.getTransaction () .commit () ;
37 } finally ({
38 em.close () ;
39 }
40 }
41 public Payment findPaymentById(Long id) {
42 em = entityManager () ;
43 return em.find(Payment.class, id);
44 }
45 public List findAllPayments () {
46 em = entityManager () ;
47 Query g = em.createQuery("select obj from Payment obj");
48 return g.getResultList () ;
49 }
50 public Payment newPayment () {
51 Payment object = new Payment () ;

52 persistOrMerge (object, object.getId());
53 return object;
54 }
55 }
18
1 public class ProcessCheckoutFormAction implements ControllerAction {
@Override
2 public void execute (HttpServletRequest request, HttpServletResponse response) {
3 ControllerAction paymentAction = null;
4 createEntities (request, response);
5 String paymentType = request.getParameter ("PaymentType") ;
6 paymentAction = selectPaymentMethod (paymentAction, paymentType) ;
7 paymentAction.execute (request, response);
8 }
9 private ControllerAction selectPaymentMethod (ControllerAction paymentAction, String
paymentType) {

10 if (paymentType.equals ("Default")) {
11 paymentAction = new GoToAction ("payment.jsp");
12 }

//#if defined (Bankslip)
13 if (paymentType.equals ("Bankslip")) {
14 paymentAction = new GoToAction ("bankslip.jsp"):;
15 }

//#endif

//#1if defined (Paypal)
16 if (paymentType.equals ("Paypal")) {
17 paymentAction = new GoToAction ("paypal.jsp");
18 }

//#endif
19 return paymentAction;
20 }
21 private void createEntities (HttpServletRequest request, HttpServletResponse response) |
22 NewCustomerAction newCustomerAction = new NewCustomerAction();
23 Customer ¢ = (Customer) newCustomerAction.execute (request, response);
24 request.setAttribute ("customer", c);
25 request.setAttribute ("products", request.getSession().getAttribute ("products")) ;
26 NewOrderAction newOrderAction = new NewOrderAction();
27 Order o = (Order) newOrderAction.execute(request, response);
28 request.setAttribute ("order", o);

29

NewPaymentAction newPaymentAction = new NewPaymentAction();

30 newPaymentAction.execute (request, response);
31 }
32 }
19
1 public class ProcessSellerFormAction implements ControllerAction {
@Override
2 public void execute (HttpServletRequest request, HttpServletResponse response) {
3 try {
4 Product p = createProduct (request, response);
5 setProductAssociations (request, response, p);
6 updateEntity (request, p);
7 forward (request, response);
8 } catch (Exception e) {
9 e.printStackTrace () ;
10 }
11 }
12 private Product createProduct (HttpServletRequest request, HttpServletResponse response) {
13 NewProductAction newProductAction = new NewProductAction () ;
14 Product p = (Product) newProductAction.execute (request, response);
15 return p;
16 }
17 private void forward(HttpServletRequest request, HttpServletResponse response) {
18 try {
19 request.setAttribute ("message", "
 Product inserted with success");
20
21 GoToAction responseAction = new GoToAction ("response.jsp");
22 responseAction.execute (request, response);
23 } catch (Exception e) {
24 e.printStackTrace () ;
25 }
26 }
27 private void updateEntity (HttpServletRequest request, Product p) {
28 ServletContext context = request.getSession().getServletContext();
29 ProductRepository productRepository = (ProductRepository)
context.getAttribute ("productRepository") ;
30 productRepository.persistOrMerge (p, p.getId()):;
31 }
32 private void setProductAssociations (HttpServletRequest request, HttpServletResponse

response, Product p) {

33 setProductSeller (request, response, p);
34 setProductCategory (request, response, p);
35 }
36 private void setProductCategory (HttpServletRequest request, HttpServletResponse response,
Product p) {
37 NewCategoryAction newCategoryAction = new NewCategoryAction () ;
38 Category c = (Category) newCategoryAction.execute (request, response);
39 p.setProductCategory(c) ;
40 }
41 private void setProductSeller (HttpServletRequest request, HttpServletResponse response,
Product p) {
42 NewSellerAction newSellerAction = new NewSellerAction();
43 Seller s = (Seller) newSellerAction.execute (request, response);
44 p.setProductSeller (s);
45 }
46 }
20
@Entity
@Table (name = "products")
1 public class Product implements Serializable ({
2 private static final long serialVersionUID = 1L;
@Id
@GeneratedvValue
3 private Long id;
4 private String productName;
5 private String productDescription;
) private Double productPrice;
@ManyToOne (targetEntity = Order.class, fetch = FetchType.LAZY)
7 private Order productOrder;
@OneToOne
8 private Seller productSeller;
@OneToOne
9 private Category productCategory;
//#1if defined (DisplayWhatIsNew)
10 private Date productInsertDate;

//#endif

11

12

13

14
15

16

public void setId(Long id) {

17

this.id = id;

18

28 public String getProductDescription() {
29 return productDescription;
30 }

34 public Double getProductPrice() {

35 return productPrice;

36 }

37

38

39

40 public Order getProductOrder () {

41 return productOrder;

42 }

43 public void setProductSeller (Seller productSeller) {
44 this.productSeller = productSeller;
45 }

46 public Seller getProductSeller () {

47

return productSeller;

48

//#if defined (DisplayWhatIsNew)

58 public Category getProductCategory () {
59 return productCategory;
60 }
61 }
21
1 public class ProductRepository implements ServletContextListener ({
@PersistenceUnit (unitName = "store-pu")
2 private EntityManagerFactory emf;
3 private EntityManager em;
4
5
6
7
@Override
8 public void contextDestroyed(ServletContextEvent sce) {
9 if (emf.isOpen()) {
10 emf.close();
11 }
12 }
@Override
13 public void contextInitialized(ServletContextEvent sce) {
14 ServletContext context = sce.getServletContext () ;
15 context.setAttribute ("productRepository", this);
16 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado!

ProductRepository") ;

17

}

//#endif

71 }
22
@Entity
@Table (name = "sellers")
1 public class Seller implements Serializable ({
2 private static final long serialVersionUID = 1L;
@Id
@GeneratedvValue
3 private Long id;
4 private String name;
5 private String address;
) private String email;
@OneToOne (mappedBy = "productSeller")
7 private Product product;
8
9
10 public Long getId() {
11 return id;
12 }

13 public void setId(Long id) {

14 this.id = id;

15 }

16 public String getName () {

17 return name;

18 }

19 public void setName (String name) {

20 this.name = name;

21 }

22 public void setEmail (String email) {

23 this.email = email;

24 }

25 public String getEmail () {

26 return email;

27 }

28 public void setAddress (String address) {

29 this.address = address;

30 }

31 public String getAddress () {

32 return address;

33 }

34 public void setProduct (Product product) {

35 this.product = product;

36 }

37 public Product getProduct () {

38 return product;

39 }

40 }

23

1 public class SellerRepository implements ServletContextListener ({
@PersistenceUnit (unitName = "store-pu")

2 private EntityManagerFactory emf;

3 private EntityManager em;

4 public SellerRepository() {

5 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

6 System.out.println (" [SERVLET-TEST-INFO]: SellerRepository Constructor");

@Override
8 public void contextDestroyed(ServletContextEvent sce) {
9 if (emf.isOpen()) {
10 emf.close();
11 }
12 }
@Override
14 public void contextInitialized(ServletContextEvent sce) {
15 ServletContext context = sce.getServletContext();
16 context.setAttribute ("sellerRepository", this);
17 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado! SellerRepository");
18 }
19 public final EntityManager entityManager () {
20 if (em == null || !em.isOpen()) {
21 em = emf.createEntityManager () ;
22 }
23 return em;
24 }
25 public void persistOrMerge (Serializable entity, Serializable id) {
26 em = entityManager();
27
28 if (entity == null) {
29 throw new IllegalArgumentException ("entity");
30 }
31 try {
32 em.getTransaction () .begin();
33 if (id == null) {
34 em.persist (entity);
35 } else {
36 em.merge (entity) ;
37 }
38 em.getTransaction () .commit () ;
39 } finally {
40 em.close () ;
41 }
42 }
43 public Seller findSellerById(Long id) {
44 em = entityManager () ;
45 return em.find(Seller.class, id);
46 }
47 public Seller findSellerByEmail (String sellerEmail) {
48 em = entityManager () ;

49 return (Seller) em.createQuery("select s from Seller s where s.email = '" +
sellerEmail + "'").getSingleResult();

50 }

51 public List<Seller> findAllSellers() {

52 em = entityManager () ;

53 Query g = em.createQuery("select s from Seller s");

54 return g.getResultlList();

55 }

56 public Seller newSeller () {

57 Seller s = new Seller():;

58 persistOrMerge (s, s.getId());

59 return s;

60 }

61 }

24

1 public class VerifyCatalogFormAction implements ControllerAction {

@Override

2 public void execute (HttpServletRequest request, HttpServletResponse response) {

3 String[] productsIds = request.getParameterValues ("productsIds");

4 if (productsIds == null) {

5 request.setAttribute ("message", "<br/ > ERROR: You must select at least a
product!");

6 GoToAction responseAction = new GoToAction ("response.jsp");

7 responseAction.execute (request, response);

8 }

9 else {

10 getProductlist (request, productsIds);

11 GoToAction checkoutAction = new GoToAction ("checkout.jsp");

12 checkoutAction.execute (request, response);

13 }

14 }

15 private void getProductList (HttpServletRequest request, String[] productsIds) {

16 ServletContext context = request.getSession().getServletContext () ;

17 ProductRepository productRepository = (ProductRepository)
context.getAttribute ("productRepository") ;

18 List<Product> products = new ArrayList();

19 for (String productId : productsIds) {

20 products.add (productRepository.findProductById ((Long.valueOf (productId)))) ;

21

22 HttpSession session = request.getSession();

23 session.setAttribute ("products", products);

24 }

25 }

25

1 public class VerifyCheckoutFormAction implements ControllerAction {

@Override

2 public void execute (HttpServletRequest request, HttpServletResponse response) {

3 List params = getRequestParameters (request);

4 Boolean emptyFields = false;

5 for (Object param : params) {

[if (param == null || param.equals("")) {

7 emptyFields = true;

8 }

9 }

10 if (emptyFields) {

11 request.setAttribute ("message", "Form with blank fields! Complete your
form first!");

12 GoToAction responseAction = new GoToAction ("response.jsp");

13 responseAction.execute (request, response);

14 } else {

15 ProcessCheckoutFormAction checkoutFormAction = new
ProcessCheckoutFormAction () ;

16 checkoutFormAction.execute (request, response);

17 }

18 }

19 private List getRequestParameters (HttpServletRequest request) {

20 List params = new ArrayList();

21 addParameters (request, params);

22 return params;

23 }

24 private void addParameters (HttpServletRequest request, List params) {

25 params.add (request.getParameter ("CustomerName")) ;

26 params.add (request.getParameter ("CustomerAddress")) ;

27 params.add (request.getParameter ("CustomerMail"™)) ;

28 params.add (request.getParameter ("paymentType")) ;

29 }

30 }

26

1 public class VerifySellerFormAction implements ControllerAction {
@Override
2 public void execute (HttpServletRequest request, HttpServletResponse response) {
3 List params = getRequestParameters (request);
4 Boolean emptyFields = false;
5 for (Object param : params) {
6 if (param == null || param.equals("")) {
7 emptyFields = true;
8 }
9 }
10 if (emptyFields) {
11 request.setAttribute ("message", "Form with blank fields! Complete your
form first!");
12 GoToAction responseAction = new GoToAction ("response.jsp");
13 responseAction.execute (request, response);
14 } else {
15 ProcessSellerFormAction sellerFormAction = new ProcessSellerFormAction();
16 sellerFormAction.execute (request, response);
17 }
18 }
19 private List getRequestParameters (HttpServletRequest request) {
20 List params = new ArrayList();
21 addParameters (request, params);
22 return params;
23 }
24 private void addParameters (HttpServletRequest request, List params) {
25 params.add (request.getParameter ("CategoryName")) ;
26 params.add (request.getParameter ("SellerName")) ;
27 params.add (request.getParameter ("SellerAddress")) ;
28 params.add (request.getParameter ("SellerMail"™));
29 params.add (request.getParameter ("ProductName")) ;
30 params.add (request.getParameter ("ProductDescription")) ;
31 params.add (request.getParameter ("ProductPrice")) ;
32 }
33 }

27

