1 @Entity

2 @Table (name = "categories")

3 | public class Category implements java.io.Serializable {
4

5 private static final long serialVersionUID = 1L;
6

7 @Id

8 @GeneratedValue

9 private Long id;

10

11 private String categoryName;

12

13 @OneToOne (mappedBy = "productCategory")

14 private Product categoryProduct;

15

16 public Category () {

17 // Used by JPA.

18 }

19

20 public void setId(Long id) {

21 this.id = id;

22 }

23

24 public Long getId() {

25 return id;

26 }

27

28 public String getCategoryName () {

29 return this.categoryName;

30 }

31

32 public void setCategoryName (String categoryName) {
33 this.categoryName = categoryName;

34 }

35

36 public Product getCategoryProduct () {

37 return this.categoryProduct;

38 }

39

40 public void setCategoryProduct (Product categoryProduct) {
41 this.categoryProduct = categoryProduct;
42 }

431}

1

44‘ public class CategoryRepository implements ServletContextListener

45

46 @PersistenceUnit (unitName = "store-pu")

47 private EntityManagerFactory emf;

48

49 private EntityManager em;

50

51 public CategoryRepository () {

52 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

53 System.out.println (" [SERVLET-TEST-INFO]: CategoryRepository Constructor");

54 }

55

56 @Override

57 public void contextDestroyed(ServletContextEvent sce) {

58 if (emf.isOpen()) {

59 emf.close();

60 }

61 }

62

63 @0Override

64 public void contextInitialized(ServletContextEvent sce) {

65 ServletContext context = sce.getServletContext();

66 context.setAttribute ("categoryRepository", this);

67 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado!
CategoryRepository");

68 }

69

70 public final EntityManager entityManager () {

71 if (em == null || !em.isOpen()) {

72 em = emf.createEntityManager () ;

73 }

74 return em;

75 }

76

77 public void persistOrMerge (Serializable entity, Serializable id) {

78 em = entityManager() ;

79

80 if (entity == null) {

81 throw new IllegalArgumentException ("entity");

82 }

83 try {

84 em.getTransaction () .begin();

85 if (id == null) {

86 em.persist (entity);

87 } else {

88 em.merge (entity) ;

89 }

90 em.getTransaction () .commit () ;

91 } finally {

92 em.close () ;

93 }

94 }

95

96 public Category findCategoryById(Long id) {

97 em = entityManager();

98 return em.find(Category.class, id);

99 }

10

101 public List findAllCategories () {

104 em = entityManager () ;

107 Query g = em.createQuery("select ¢ from Category c");

104 return g.getResultlList();

109 }

10

107 public List findAllDistinctCategories() {

104 em = entityManager () ;

104 Query g = em.createQuery("select DISTINCT (c.categoryName) from Category c");
11 return g.getResultlList();

111 }

112

113 public Category newCategory() {

114 Category c¢ = new Category();

1114 persistOrMerge (c, c.getId());

11 return c;

117 }

114 }

2

119 public interface ControllerAction ({

12

121 void execute (HttpServletRequest request, HttpServletResponse response);
1294}

3

123 public class ControllerServlet extends HttpServlet {

124

1275 private static final long serialVersionUID = 1L;

12 private Map<String, ControllerAction> actions = new HashMap<String, ControllerAction>();
127 private static final String ACTION IDENTIFIER = "action";

124

1294 public void init () {

13 actions.put ("goToHome", new GoToAction ("home.jsp"));

131 actions.put ("goToCatalog", new GoToAction ("catalog.jsp")):;
137 actions.put ("goToCheckout", new GoToAction ("checkout.jsp"));
137 //#1f defined(DisplayByCategory)

134 actions.put ("goToCatalogShowByCategory", new GoToAction ("catalogByCategory.jsp"));

139 //#endif

13 //#if defined (DisplayWhatIsNew)

137 actions.put ("goToCatalogShowByNearestDate", new
GoToAction ("catalogByNearestDate.jsp"))

139 //#endif

139 actions.put ("goToSeller", new GoToAction("seller.jsp"));

14 //#1f defined (Paypal)

141 actions.put ("goToPaypal", new GoToAction ("paypal.jsp"));

144 //#endif

143 actions.put ("goToPayment", new GoToAction ("payment.jsp"));

actions.put ("goToResponse", new GoToAction ("response.jsp"));

144

144 actions.put ("verifyCatalogForm", new VerifyCatalogFormAction());

15(actions.put ("verifySellerForm", new VerifySellerFormAction());

151 actions.put ("verifyCheckoutForm", new VerifyCheckoutFormAction());

152

153 actions.put ("processSellerForm", new ProcessSellerFormAction());

154 actions.put ("processCheckoutForm", new ProcessCheckoutFormAction());

159 }

15

157 public void processAction (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException ({

154

154 String actionRequestParameter = request.getParameter (ACTION IDENTIFIER);

16(

161 if (null == actionRequestParameter) {

167 actionRequestParameter = "goToHome";

163 }

164

164 ControllerAction command = (ControllerAction) actions.get (actionRequestParameter);

16

167 if (null == command) {

164 throw new IllegalArgumentException ("No command for form action: " +
actionRequestParameter) ;

169 }

17(command.execute (request, response);

171 }

172

173 public void doPost (HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

174 processAction (request, response);

179 }

17

177 public void doGet (HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

174 processAction (request, response);

179 }

184 }

187 @Entity

184 @Table (name = "customers")

183 public class Customer implements Serializable {
184

184 private static final long serialVersionUID = 1L;
18

187 @Id

18 @GeneratedValue

18 private Long id;

19¢

191 private String name;

192

197 public void setName (String name) {

194 this.name = name;

199 }

19

197 private String address;

194

199 private String email;

20(

201 @OneToMany (targetEntity = Order.class, mappedBy = "customer", fetch = FetchType.LAZY)
204 private List<Order> orders;

207

204 public Customer () {

2041 // JPA

20 }

207

204 public Long getId() {

2049 return id;

21 }

211

214 public String getName () {

2173 return name;

214 }

219

21 public void setAddress (String address) {
217 this.address = address;

214 }

219

22 public String getAddress () {

221 return address;

227 }

223

224 public void setOrders (List<Order> orders) {
221 this.orders = orders;

22 }

2217

224 public List<Order> getOrders () {

229 return orders;

23(}

23]

237 public void setEmail (String email) {

233 this.email = email;

234 }

237

23 public String getEmail () {

237 return email;

23§ }

239}

5

24(public class CustomerRepository implements ServletContextListener {
241

2473 @PersistenceUnit (unitName = "store-pu")

247 private EntityManagerFactory emf;

244

241 private EntityManager em;

24

247 public CustomerRepository () {

2449 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");
249 System.out.println (" [SERVLET-TEST-INFO]: CustomerRepository Constructor");
25(}

251

257 @Override

251 public void contextDestroyed(ServletContextEvent sce) {
254 if (emf.isOpen()) {

254 emf.close();

25 }

257 }

25¢

254 @Override

26 public void contextInitialized(ServletContextEvent sce) {
261 ServletContext context = sce.getServletContext () ;
264 context.setAttribute ("customerRepository", this);
267 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado! CustomerRepository");
264 }

267

26 public final EntityManager entityManager () {

267 if (em == null || !em.isOpen()) {

264 em = emf.createEntityManager () ;

264 }

27(return em;

271 }

274

277 public void persistOrMerge (Serializable entity, Serializable id) {
274 em = entityManager();

279

27 if (entity == null) {

277 throw new IllegalArgumentException ("entity");
274 }

274 try {

28 em.getTransaction () .begin() ;
281 if (id == null) {

284 em.persist (entity);

287 } else {

284 em.merge (entity) ;

287 }

28 em.getTransaction () .commit () ;
287 } finally {

284 em.close () ;

284 }

29(}

291

297 public Customer findCustomerById(Long id) {
2973 em = entityManager();

294 return em.find (Customer.class, id);
291 }

29

297 public List findAllCustomers () {

294 em = entityManager();

294 Query q = em.createQuery("select ¢ from Customer c");
30 return g.getResultlList();

301 }

302

3073 public Customer newCustomer () {

304 Customer ¢ = new Customer();

305 persistOrMerge (c, c.getId());

30 return c;

307 }

304

6

309 public class GoToAction implements ControllerAction {
31

311 private String JjspFileName;

312

313 public GoToAction (String JjspFileName) {

314 this.setJspFileName (jspFileName) ;

319 }

31

317 @Override

31 public void execute (HttpServletRequest request, HttpServletResponse response) {
319 ServletContext context = request.getSession().getServletContext();
32(

321 try {

322

323 context.getRequestDispatcher ("/" + jspFileName) .forward(request, response);
324 } catch (Exception e) {

3294 e.printStackTrace () ;

32 }

327 }

324

324 public void setJspFileName (String jspFileName) {

33 this.jspFileName = JjspFileName;

331 }

332

3373 public String getJspFileName () {

334 return jspFileName;

339 }

334 }

9

337 public abstract class ModelAction {

33§

339 public Object execute (HttpServletRequest request, HttpServletResponse response) {
34(setPersistenceRepository (request) ;

347 getRequestParameters (request) ;

347 return newEntity();

3473 }

344

344 Object newEntity() {

34 Object o = createEntity();

347 setEntityAssociations (o) ;

34¢

3494 return o;

35(}

351

357 abstract Object createEntity();

353

354 abstract void getRequestParameters (HttpServletRequest request);

357

35 abstract void setPersistenceRepository (HttpServletRequest request);
357

359 abstract void setEntityAssociations (Object o);

359 1}

36(public class NewCategoryAction extends ModelAction {

361

364 Object params|[];

363 private CategoryRepository categoryRepository;

364

364 @Override

36 public void setPersistenceRepository (HttpServletRequest request) {

367 ServletContext context = request.getSession().getServletContext () ;

3649 categoryRepository = (CategoryRepository) context.getAttribute ("categoryRepository");

364 }

37(

37] @Override

374 public Object createEntity () {

373 Category ¢ = categoryRepository.newCategory();

374 setEntityAssociations (c);

379 categoryRepository.persistOrMerge (c, c.getId()):;

37 return c;

377 }

37¢

374 @0Override

38(public void setEntityAssociations (Object o) {

381 ((Category) o) .setCategoryName ((String) params[0]);

387 }

387

384 @0Override

384 public void getRequestParameters (HttpServletRequest request) {

38 params = new Object[l];

387 params[0] = request.getParameter ("CategoryName") ;

38¢ }

389 }

9

39(public class NewCustomerAction extends ModelAction {

391

397 Object params|[];

393 private CustomerRepository customerRepository;

394

394 @Override

39 public void setPersistenceRepository (HttpServletRequest request) {

397 ServletContext context = request.getSession().getServletContext () ;

394 customerRepository = (CustomerRepository)
context.getAttribute ("customerRepository") ;

399 }

40(

401 @Override

4027 public Object createEntity() {

403 Customer c¢ = customerRepository.newCustomer () ;

404 setEntityAssociations(c);

4094 return c;

40 }

407

404 @Override

409 public void setEntityAssociations (Object o) {

41(((Customer) o) .setName ((String) params[0]);

417 ((Customer) o) .setAddress((String) params[1l]);

414 ((Customer) o) .setEmail ((String) params([2]);

413 }

414

4149 @Override

41 public void getRequestParameters (HttpServletRequest request) {
417 params = new Object[3];

419§ params[0] = request.getParameter ("CustomerName") ;

414 params[l] = request.getParameter ("CustomerAddress") ;
42(params[2] = request.getParameter ("CustomerMail") ;

421 }

427 1}

10

429 public class NewOrderAction extends ModelAction {

424

424 Object params|[];

42 private OrderRepository orderRepository;

427

424 @Override

429 public void setPersistenceRepository (HttpServletRequest request) {
43(ServletContext context = request.getSession().getServletContext ();
431 orderRepository = (OrderRepository) context.getAttribute ("orderRepository");
437 }

437

434 @Override

434 public Object createEntity () {

43 Order o = orderRepository.newOrder () ;

437 setEntityAssociations (o) ;

434 orderRepository.persistOrMerge (o, o.getId());

439 return o;

44(}

4417

447 @Override

44 public void setEntityAssociations (Object o) {

444 ((Order) o) .setCustomer ((Customer) params[0]);

449 ((Order) o) .setProducts((List<Product>) params[1l]);

44 }

447

444 @Override

444 public void getRequestParameters (HttpServletRequest request) {

45(params = new Object[2];

451 params[0] = request.getAttribute ("customer");

457 params[l] = request.getAttribute ("products");

453 }

454 1}

11

455 public class NewPaymentAction extends ModelAction {

45

457 Object params|[];

454 private PaymentRepository paymentRepository;

459

46(@Override

461 public void setPersistenceRepository (HttpServletRequest request) {
467 ServletContext context = request.getSession().getServletContext();
463 paymentRepository = (PaymentRepository) context.getAttribute ("paymentRepository");
464 }

464

46 @Override

467 public Object createEntity() {

464 Payment object = paymentRepository.newPayment () ;

4649 setEntityAssociations (object);

47(paymentRepository.persistOrMerge (object, object.getId());
471 return object;

472 }

473

474 @Override

474 public void setEntityAssociations (Object payment) {

47 ((Payment) payment) .setPaymentStatus ("NOT YET PAID");

477 ((Payment) payment) .setPaymentOrder ((Order) params[0]);
474 ((Payment) payment) .setPaymentType ((String) params[l]);
479 }

48

481 @Override

482 public void getRequestParameters (HttpServletRequest request) {
483 params = new Object[2];

484 params[0] = request.getAttribute ("order");

484 params[l] = request.getParameter ("paymentType");

48 }

481 }

12

48 public class NewProductAction extends ModelAction {

489

49 private ProductRepository productRepository;

4917 Object params|[];

492

493 @Override

494 public void setPersistenceRepository (HttpServletRequest request) {
495 ServletContext context = request.getSession().getServletContext();
49 productRepository = (ProductRepository) context.getAttribute ("productRepository");
497 }

494

499 @Override

50 public Object createEntity () {

501 Product p = productRepository.newProduct () ;

5049 setEntityAssociations (p) ;

507 productRepository.persistOrMerge (p, p.getId());

504 return p;

509 }

50

507 @Override

50 public void setEntityAssociations (Object product) {

509 ((Product) product) .setProductName ((String) params[0]);
51(((Product) product) .setProductDescription((String) params[1l]);
511

517 Double price;

517 if (params([2] == null) ({

514 price = Double.valueOf("0");

514§ } else {

51 price = Double.valueOf((String) params[2]);

517 }

514 ((Product) product) .setProductPrice (price);

514 //#1if defined(DisplayWhatIsNew)

52 ((Product) product) .setProductInsertDate (new Date());
521 //#endif

524 }

523

524 @Override

521 public void getRequestParameters (HttpServletRequest request) {
52 params = new Object[3];

527 params [0] = request.getParameter ("ProductName") ;

52§ params[l] = request.getParameter ("ProductDescription");
524 params[2] = request.getParameter ("ProductPrice");

53(}

5371 }

13

53] public class NewSellerAction extends ModelAction ({

533
534 SellerRepository sellerRepository;
537 Object params|[];

53

537 @Override

539 public Object createEntity() {

539 Seller s = sellerRepository.newSeller();

54(setEntityAssociations(s);

541 sellerRepository.persistOrMerge (s, s.getId());

547 return s;

547 }

544

544 @Override

54 public void setEntityAssociations (Object seller) {

547 ((Seller) seller) .setName ((String) params[0]);

549 ((Seller) seller) .setAddress((String) params[1l]);

544 ((Seller) seller).setEmail ((String) params[2]);

55(}

551

557 @Override

559 public void setPersistenceRepository (HttpServletRequest request) {
554 ServletContext context = request.getSession().getServletContext();
554 sellerRepository = (SellerRepository) context.getAttribute ("sellerRepository");
55 }

557

554 @Override

554 public void getRequestParameters (HttpServletRequest request) {
56(params = new Object[3];

561 params[0] = request.getParameter ("SellerName") ;

567 params[l] = request.getParameter ("SellerAddress");

563 params[2] = request.getParameter ("SellerMail");

564 }

569 }

14

564 @Entity

567 @Table (name = "orders")

56§ public class Order implements Serializable {

569

57(private static final long serialVersionUID = 1L;

571

572 @Id

573 @GeneratedvValue

574 private Long id;

579

57 @ManyToOne (targetEntity = Customer.class, fetch = FetchType.LAZY)
577 private Customer customer;

57¢

574 @OneToMany (targetEntity = Product.class, mappedBy = "productOrder", fetch FetchType.LAZY)
58(@Column (name = "orderProducts")

581 private List<Product> products;

587

5873 @OneToOne (mappedBy = "paymentOrder")
584 private Payment orderPayment;

589

58 public Order () {

587 // JPA

584 }

589

59(public Order (Customer c) {

591 customer = c;

597 }

593

594 public void setId(Long id) {

599 this.id = id;

59 }

597

599 public Long getId() {

5994 return id;

600 }

601

604 public void setCustomer (Customer client) {
603 this.customer = client;

604 }

604

60 public Customer getClient () {

607 return customer;

604 }

609

61(public void setProducts (List<Product> products) {
611 this.products = products;

614 }

613

614 public List<Product> getProducts () {
615 return products;

61 }

617

619 public Payment getOrderPayment () {
619 return this.orderPayment;

62(}

621

622 public void setOrderPayment (Payment orderPayment) {
627 this.orderPayment = orderPayment;
624 }

624 }

15

624 public class OrderRepository implements ServletContextListener ({

627

624 @PersistenceUnit (unitName = "store-pu")

624 private EntityManagerFactory emf;

63(

631 private EntityManager em;

632

637 public OrderRepository () {

634 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");
631 System.out.println (" [SERVLET-TEST-INFO]: OrderRepository Constructor");
63 }

637

634 @Override

639 public void contextDestroyed(ServletContextEvent sce) {

64 if (emf.isOpen()) {

641 emf.close();

647 }

643 }

644

644 @0Override

64 public void contextInitialized(ServletContextEvent sce) {
647 ServletContext context = sce.getServletContext();
644 context.setAttribute ("orderRepository", this);

644 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado! OrderRepository");
65(}

651

654 public final EntityManager entityManager () {

657 if (em == null || !em.isOpen()) {

654 em = emf.createEntityManager () ;

659 }

65 return em;

657 }

654

654 public void persistOrMerge (Serializable entity, Serializable id) {
66(em = entityManager () ;

661

664 if (entity == null) {

667 throw new IllegalArgumentException ("entity");
664 }

669 try {

66 em.getTransaction () .begin();

667 if (id == null) {

664 em.persist (entity);

664 } else {

67 em.merge (entity) ;

671 }

674 em.getTransaction () .commit () ;

677 } finally {

674 em.close () ;

671

67 }

677

674 public Order findOrderById(Long id) {
674 em = entityManager();

68(return em.find (Order.class, id);
681 }

682

681 public List<Order> findAllOrders() {
684 em = entityManager();

684 Query g = em.createQuery("select o from Order o");
68 return g.getResultlList();

687 }

684

684 public Order newOrder () {

69 Order o = new Order();

691 persistOrMerge (o, o.getId());
692

691 return o;

694 }

699 }

16

69¢ CEntity

6971 @Table (name = "payments")

694 public class Payment implements java.io.Serializable {
699

70(private static final long serialVersionUID = 1L;
701

702 @Id

707 @GeneratedvValue

704 private Long id;

709

70 private String paymentType;

707

704 @OneToOne

709 private Order paymentOrder;

71

711 private String paymentStatus;

712

7173 public Payment () {

714 // Used by JPA.

714 }

71

717 public void setId(Long id) {

714 this.id = id;

714 }

72(

721 public Long getId() {

724 return id;

723 }

724

728 public String getPaymentStatus () {

72 return this.paymentStatus;

727 }

724

724 public void setPaymentStatus (String paymentStatus) {
73 this.paymentStatus = paymentStatus;

73] }

734

737 public Order getPaymentOrder () {

734 return this.paymentOrder;

739 }

73

737 public void setPaymentOrder (Order paymentOrder) {
734 this.paymentOrder = paymentOrder;

739 }

74(

741 public void setPaymentType (String paymentType) {

742 this.paymentType = paymentType;

743 }

744

744 public String getPaymentType () {

74 return paymentType;

747 }

744 }

17

749 public class PaymentRepository implements ServletContextListener {
75(

751 @PersistenceUnit (unitName = "store-pu")

757 private EntityManagerFactory emf;

753

754 private EntityManager em;

758

75 public PaymentRepository() {

757 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");
754 System.out.println (" [SERVLET-TEST-INFO]: PaymentRepository Constructor");
759 }

76(

761 @Override

762 public void contextDestroyed(ServletContextEvent sce) {
7673 if (emf.isOpen()) {

764 emf.close();

764

76

767

764 @Override

769 public void contextInitialized(ServletContextEvent sce) {
77(ServletContext context = sce.getServletContext();
771 context.setAttribute ("paymentRepository", this);
774 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado! PaymentRepository");
773 }

774

778 public final EntityManager entityManager () {

77 if (em == null || !em.isOpen()) {

777 em = emf.createEntityManager();

774 }

779 return em;

78(}

781

784 public void persistOrMerge (Serializable entity, Serializable id) {
7873 em = entityManager();

784

784 if (entity == null) {

78 throw new IllegalArgumentException ("entity");
787 }

789 try {

789 em.getTransaction () .begin () ;

79(if (id == null) {

791 em.persist (entity);

792 } else {

793 em.merge (entity) ;

794 }

794 em.getTransaction () .commit () ;

79 } finally {

797 em.close () ;

794 }

799 }

80(

801 public Payment findPaymentById(Long id) {

807 em = entityManager () ;

807 return em.find(Payment.class, id);

804 }

801

80 public List findAllPayments () {

807 em = entityManager () ;

80§ Query g = em.createQuery("select obj from Payment obj");
809 return g.getResultlList();

81(}

811

814 public Payment newPayment () {

817 Payment object = new Payment () ;

814

815 persistOrMerge (object, object.getId());

814 return object;

817 }

81§ }

18

819 public class ProcessCheckoutFormAction implements ControllerAction {

82(

821 @Override

822 public void execute (HttpServletRequest request, HttpServletResponse response) {

823 ControllerAction paymentAction = null;

824 createEntities (request, response);

824

82 String paymentType = request.getParameter ("PaymentType") ;

827

824 paymentAction = selectPaymentMethod (paymentAction, paymentType) ;

829

83(paymentAction.execute (request, response);

831 }

832

833 private ControllerAction selectPaymentMethod(ControllerAction paymentAction, String
paymentType) {

834 if (paymentType.equals ("Default")) {

834 paymentAction = new GoToAction ("payment.jsp");

83 }

//#1if defined (Paypal)
847 if (paymentType.equals ("Paypal"”)) {
844 paymentAction = new GoToAction ("paypal.jsp");
8419 }
84 //#endif
847 return paymentAction;
844 }
849
85 private void createEntities (HttpServletRequest request, HttpServletResponse response) {
851 NewCustomerAction newCustomerAction = new NewCustomerAction();
857 Customer c¢ = (Customer) newCustomerAction.execute (request, response);
853
854 request.setAttribute ("customer", c);
855 request.setAttribute ("products", request.getSession().getAttribute ("products"));
85
857 NewOrderAction newOrderAction = new NewOrderAction () ;
85§ Order o = (Order) newOrderAction.execute (request, response);
859 request.setAttribute ("order", o);

86(

861 NewPaymentAction newPaymentAction = new NewPaymentAction() ;

862 newPaymentAction.execute (request, response);

863 }

864 }

19

864 pPublic class ProcessSellerFormAction implements ControllerAction {

86

867 @Override

864 public void execute (HttpServletRequest request, HttpServletResponse response) {

864 try {

87(

871 Product p = createProduct (request, response);

877 setProductAssociations (request, response, p);

873 updateEntity (request, p);

874 forward (request, response);

871

87 } catch (Exception e) {

877 e.printStackTrace () ;

87¢ }

879 }

88(

881 private Product createProduct (HttpServletRequest request, HttpServletResponse response) {

887 NewProductAction newProductAction = new NewProductAction () ;

8873 Product p = (Product) newProductAction.execute (request, response);

884 return p;

881 }

88

887 private void forward(HttpServletRequest request, HttpServletResponse response) {

884 try {

889 request.setAttribute ("message", "
 Product inserted with success");

89(

891 GoToAction responseAction = new GoToAction ("response.jsp");

897 responseAction.execute (request, response);

891 } catch (Exception e) {

894 e.printStackTrace() ;

897 }

89 }

897

894 private void updateEntity (HttpServletRequest request, Product p) {

899 ServletContext context = request.getSession().getServletContext();

90d ProductRepository productRepository = (ProductRepository)
context.getAttribute ("productRepository");

901 productRepository.persistOrMerge (p, p.getId());

902 }

903

904 private void setProductAssociations (HttpServletRequest request, HttpServletResponse

response, Product p) {

904 setProductSeller (request, response, p);

90 setProductCategory (request, response, p);

907 }

904

9049 private void setProductCategory (HttpServletRequest request, HttpServletResponse response,
Product p) {

91d NewCategoryAction newCategoryAction = new NewCategoryAction();

911 Category c¢ = (Category) newCategoryAction.execute (request, response);

917 p.setProductCategory(c);

913 }

914

914 private void setProductSeller (HttpServletRequest request, HttpServletResponse response,
Product p) {

91 NewSellerAction newSellerAction = new NewSellerAction();

917 Seller s = (Seller) newSellerAction.execute (request, response);

914§ p.setProductSeller(s);

919 }

92(}

20

921 CEntity

927 @Table (name = "products")

923 public class Product implements Serializable {

924

927 private static final long serialVersionUID = 1L;

92

927 @Id

924 @GeneratedValue

9249 private Long id;

93(

931 private String productName;

932

933 private String productDescription;

934

934§ private Double productPrice;

93

937 @ManyToOne (targetEntity = Order.class, fetch = FetchType.LAZY)

93¢ private Order productOrder;

939

94(@OneToOne

947 private Seller productSeller;

947

943 @OneToOne

944 private Category productCategory;

944 //#if defined(DisplayWhatIsNew)

94 private Date productlInsertDate;

947

944 //#endif

944

95(public Product () {

951 // JPA

954 }

953

954 public Long getId() {

957 return id;

95 }

957

959 public void setId(Long id) {

959 this.id = id;

96(}

961

964 public void setProductName (String productName) {
963 this.productName = productName;

964 }

964

96 public String getProductName () {

967 return productName;

964 }

969

97d public void setProductDescription (String productDescription) {
971 this.productDescription = productDescription;
972 }

973

974 public String getProductDescription() {

974 return productDescription;

97 }

977

9794 public void setProductPrice (Double productPrice) {
974 this.productPrice = productPrice;

98(}

981

987 public Double getProductPrice() {

987 return productPrice;

984 }

984

98 public void setProductOrder (Order productOrder) {
987 this.productOrder = productOrder;

984 }

989

99(public Order getProductOrder () {

9917 return productOrder;

992 }

993

994 public void setProductSeller (Seller productSeller) {
994 this.productSeller = productSeller;

99 }

997

994 public Seller getProductSeller () {

994 return productSeller;

10(}

10(

104 //#if defined (DisplayWhatIsNew)

10 public void setProductlInsertDate (Date productInsertDate) {

104 this.productInsertDate = productInsertDate;

10(}

10(

104 public Date getProductInsertDate() {

104 return productInsertDate;

10(}

101

101 //#endif

101 public void setProductCategory (Category productCategory) {

101 this.productCategory = productCategory;

101 }

101

101 public Category getProductCategory () {

101 return productCategory;

101 }

107 1}

21

10] public class ProductRepository implements ServletContextListener {

104

104 @PersistenceUnit (unitName = "store-pu")

104 private EntityManagerFactory emf;

104

104 private EntityManager em;

107

104 public ProductRepository () {

104 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

103 System.out.println (" [SERVLET-TEST-INFO]: ProductRepository Constructor");

103 }

103

1043 @Override

1073 public void contextDestroyed(ServletContextEvent sce) {

103 if (emf.isOpen()) {

103 emf.close();

103 }

103 }

103

103 @Override

104 public void contextInitialized(ServletContextEvent sce) {

104 ServletContext context = sce.getServletContext();

104 context.setAttribute ("productRepository", this);

104 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado!
ProductRepository");

104 }

104

104 public final EntityManager entityManager () {
104 if (em == null || !em.isOpen()) {

104 em = emf.createEntityManager () ;
104 }

104 return em;

109 }

109

104 public void persistOrMerge (Serializable entity, Serializable id) {
104 em = entityManager () ;

109

104 if (entity == null) {

109 throw new IllegalArgumentException ("entity");
109 }

109 try {

10 em.getTransaction () .begin() ;

10 if (id == null) {

10 em.persist (entity);

10 } else {

10 em.merge (entity) ;

10 }

10 em.getTransaction () .commit () ;
10 } finally {

10 em.close () ;

10 }

107 }

107

107 public Product newProduct () {

107 Product p = new Product();

107 persistOrMerge (p, p.getId());

107 return p;

107 }

107

107 public Product findProductById(Long id) {
107 em = entityManager () ;

104 return em.find(Product.class, id);

10§ }

10§

104 public List findAllProducts() {

104 em = entityManager () ;

1094 Query g = em.createQuery("select p from Product p");
104 return g.getResultList();

10§ }

10§

104 public List findAllProductsAvailable () {

104 em = entityManager();

109 Query g = em.createQuery("select p from Product p where p.productOrder = NULL");
104 return g.getResultlList();

109 }

104

109 //#1if defined (DisplayWhatIsNew)

109 public List findAllProductsAvailableByNearestDate () {

1094 em = entityManager();

104 Query g = em.createQuery("select p from Product p where p.productOrder = NULL
ORDER BY p.productInsertDate DESC");

104 return g.getResultlList();

11d }

114 //#endif

11(

11€ //#1if defined(DisplayByCategory)

11 public List findAllProductsByCategory(String category) {

114 em = entityManager () ;

114 Query g = em.createQuery("select p from Product p where p.productOrder = NULL AND
p.productCategory.categoryName=:cat") ;

114 g.setParameter ("cat", category);

11 return g.getResultlList();

11d }

111 //#endif

117 3}

22

111 CEntity

111 @Table (name = "sellers")

11] public class Seller implements Serializable ({

111

111 private static final long serialVersionUID = 1L;

1117

1117 @Id

117 @GeneratedvValue

114 private Long id;

117

113 private String name;

117

113 private String address;

117

113 private String email;

117

114 @OneToOne (mappedBy = "productSeller")

114 private Product product;

113

113 public Seller () {

117 // JPA

11 }

113

113 public Long getId() {

113 return id;

113 }

113

113 public void setId(Long id) {

114 this.id = id;

114 }

114

114 public String getName () {

114 return name;

114 }

114

114 public void setName (String name) {

114 this.name = name;

114 }

1149

1149 public void setEmail (String email) {

114 this.email = email;

114 }

1149

114 public String getEmail () {

119 return email;

1179 }

1179

119§ public void setAddress (String address) {
11 this.address = address;

11 }

11

11 public String getAddress () {

11 return address;

11 }

11

11 public void setProduct (Product product) {
11 this.product = product;

11 }

117

117 public Product getProduct() {

117 return product;

117 }

117 3

23

117 public class SellerRepository implements ServletContextListener {
117

117 @PersistenceUnit (unitName = "store-pu")
117 private EntityManagerFactory emf;

117

114 private EntityManager em;

114

114 public SellerRepository() {

114 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");
114 System.out.println (" [SERVLET-TEST-INFO]: SellerRepository Constructor");

11¢

11¢

11¢ @Override

114 public void contextDestroyed(ServletContextEvent sce) {
119 if (emf.isOpen()) {

1194 emf.close();

114 }

114 }

114

114 @Override

114 public void contextInitialized(ServletContextEvent sce) {
114 ServletContext context = sce.getServletContext();
119 context.setAttribute ("sellerRepository", this);
114 System.out.println (" [SERVLET-TEST-INFO]: Contexto inicializado! SellerRepository");
114 }

12(

12d public final EntityManager entityManager () {

120 if (em == null || !em.isOpen()) {

120 em = emf.createEntityManager () ;

12(}

120 return em;

12(}

12(

12(public void persistOrMerge (Serializable entity, Serializable id) {
120 em = entityManager();

121

121 if (entity == null) {

121 throw new IllegalArgumentException ("entity");
121 }

1217 try {

121 em.getTransaction () .begin() ;

1217 if (id == null) {

121 em.persist (entity);

121 } else {

121 em.merge (entity) ;

127 }

124 em.getTransaction () .commit () ;

127 } finally {

123 em.close () ;

127 }

127 }

127

124 public Seller findSellerById(Long id) {

124 em = entityManager();

123 return em.find (Seller.class, id):;

123 }

123

123 public Seller findSellerByEmail (String sellerEmail) {
123 em = entityManager () ;

123 return (Seller) em.createQuery("select s from Seller s where s.email = '" +
sellerEmail + "'").getSingleResult () ;

123 }

123

123 public List<Seller> findAllSellers() {

123 em = entityManager () ;

123 Query g = em.createQuery("select s from Seller s");

124 return g.getResultlList();

124 }

124

124 public Seller newSeller() {

124 Seller s = new Seller();

124 persistOrMerge (s, s.getId());

124 return s;

124 }

124}

24

124 public class VerifyCatalogFormAction implements ControllerAction {

124

124 @Override

129 public void execute (HttpServletRequest request, HttpServletResponse response) {

129 String[] productsIds = request.getParameterValues ("productsIds");

124

1295 if (productsIds == null) {

129 request.setAttribute ("message", "<br/ > ERROR: You must select at least a
product!");

124

129 GoToAction responseAction = new GoToAction ("response.jsp");

129 responseAction.execute (request, response);

12 }

12

12 else {

12 getProductlList (request, productsIds);

12

12 GoToAction checkoutAction = new GoToAction ("checkout.jsp");

12 checkoutAction.execute (request, response);

12 }

12 }

12

127 private void getProductList (HttpServletRequest request, String[] productsIds) {

127 ServletContext context = request.getSession().getServletContext () ;

127 ProductRepository productRepository = (ProductRepository)
context.getAttribute ("productRepository");

127

127 List<Product> products = new ArrayList();

127

127 for (String productId : productsIds) {

127 products.add (productRepository.findProductById((Long.valueOf (productlId))))

127 }

127

124 HttpSession session = request.getSession();

124 session.setAttribute ("products", products);

124 }

12§ }

25

129 public class VerifyCheckoutFormAction implements ControllerAction {

124

124 @Override

124 public void execute (HttpServletRequest request, HttpServletResponse response) {

124 List params = getRequestParameters (request);

124 Boolean emptyFields = false;

124

124 for (Object param params) {

1294 if (param == null || param.equals("")) {

124 emptyFields = true;

129 }

129 }

129

124 if (emptyFields) {

129 request.setAttribute ("message", "Form with blank fields! Complete your
form first!");

129 GoToAction responseAction = new GoToAction ("response.jsp");

134 responseAction.execute (request, response);

13d } else {

13(ProcessCheckoutFormAction checkoutFormAction = new
ProcessCheckoutFormAction () ;

134 checkoutFormAction.execute (request, response);

13(}

13(}

13(

13(private List getRequestParameters (HttpServletRequest request) {

130 List params = new ArraylList();

13(addParameters (request, params);

131 return params;

131 }

131

1317 private void addParameters (HttpServletRequest request, List params) {

131 params.add (request.getParameter ("CustomerName")) ;

131 params.add (request.getParameter ("CustomerAddress")) ;

1317 params.add (request.getParameter ("CustomerMail")) ;

1317 params.add (request.getParameter ("paymentType")) ;

131 }

131}

26

137 public class VerifySellerFormAction implements ControllerAction {

137

137 @Override

134 public void execute (HttpServletRequest request, HttpServletResponse response) {

137 List params = getRequestParameters (request);

137 Boolean emptyFields = false;

132

134 for (Object param : params) {

134 if (param == null || param.equals("")) {

137 emptyFields = true;

133 }

133 }

133

133 if (emptyFields) {

133 request.setAttribute ("message", "Form with blank fields! Complete your form
first!");

133 GoToAction responseAction = new GoToAction ("response.jsp");

133 responseAction.execute (request, response);

133 } else {

133 ProcessSellerFormAction sellerFormAction = new ProcessSellerFormAction();

133 sellerFormAction.execute (request, response);

134 }

134 }

134

134 private List getRequestParameters (HttpServletRequest request) {

134 List params = new ArraylList();

134 addParameters (request, params);

134 return params;

134 }

134

134 private void addParameters (HttpServletRequest request, List params) {

139 params.add (request.getParameter ("CategoryName")) ;

135 params.add (request.getParameter ("SellerName")) ;

135 params.add (request.getParameter ("SellerAddress"));

135 params.add (request.getParameter ("SellerMail")) ;

135 params.add (request.getParameter ("ProductName")) ;

135 params.add (request.getParameter ("ProductDescription")) ;

135 params.add (request.getParameter ("ProductPrice"));

139 }

139 }

27

