
1 @Entity

2 @Table(name = "categories")

3 public class Category implements java.io.Serializable {

4

5 private static final long serialVersionUID = 1L;

6

7 @Id

8 @GeneratedValue

9 private Long id;

10

11 private String categoryName;

12

13 @OneToOne(mappedBy = "productCategory")

14 private Product categoryProduct;

15

16 public Category() {

17 // Used by JPA.

18 }

19

20 public void setId(Long id) {

21 this.id = id;

22 }

23

24 public Long getId() {

25 return id;

26 }

27

28 public String getCategoryName() {

29 return this.categoryName;

30 }

31

32 public void setCategoryName(String categoryName) {

33 this.categoryName = categoryName;

34 }

35

36 public Product getCategoryProduct() {

37 return this.categoryProduct;

38 }

39

40 public void setCategoryProduct(Product categoryProduct) {

41 this.categoryProduct = categoryProduct;

42 }

43 }

1

44 public class CategoryRepository implements ServletContextListener {

45

46 @PersistenceUnit(unitName = "store-pu")

47 private EntityManagerFactory emf;

48

49 private EntityManager em;

50

51 public CategoryRepository() {

52 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

53 System.out.println("[SERVLET-TEST-INFO]: CategoryRepository Constructor");

54 }

55

56 @Override

57 public void contextDestroyed(ServletContextEvent sce) {

58 if (emf.isOpen()) {

59 emf.close();

60 }

61 }

62

63 @Override

64 public void contextInitialized(ServletContextEvent sce) {

65 ServletContext context = sce.getServletContext();

66 context.setAttribute("categoryRepository", this);

67 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado!

CategoryRepository");

68 }

69

70 public final EntityManager entityManager() {

71 if (em == null || !em.isOpen()) {

72 em = emf.createEntityManager();

73 }

74 return em;

75 }

76

77 public void persistOrMerge(Serializable entity, Serializable id) {

78 em = entityManager();

79

80 if (entity == null) {

81 throw new IllegalArgumentException("entity");

82 }

83 try {

84 em.getTransaction().begin();

85 if (id == null) {

86 em.persist(entity);

87 } else {

88 em.merge(entity);

89 }

90 em.getTransaction().commit();

91 } finally {

92 em.close();

93 }

94 }

95

96 public Category findCategoryById(Long id) {

97 em = entityManager();

98 return em.find(Category.class, id);

99 }

100

101 public List findAllCategories() {

102 em = entityManager();

103 Query q = em.createQuery("select c from Category c");

104 return q.getResultList();

105 }

106

107 public List findAllDistinctCategories() {

108 em = entityManager();

109 Query q = em.createQuery("select DISTINCT (c.categoryName) from Category c");

110 return q.getResultList();

111 }

112

113 public Category newCategory() {

114 Category c = new Category();

115 persistOrMerge(c, c.getId());

116 return c;

117 }

118 }

2

119 public interface ControllerAction {

120

121 void execute(HttpServletRequest request, HttpServletResponse response);

122 }

3

123 public class ControllerServlet extends HttpServlet {

124

125 private static final long serialVersionUID = 1L;

126 private Map<String, ControllerAction> actions = new HashMap<String, ControllerAction>();

127 private static final String ACTION_IDENTIFIER = "action";

128

129 public void init() {

130 actions.put("goToHome", new GoToAction("home.jsp"));

131 actions.put("goToCatalog", new GoToAction("catalog.jsp"));

132 actions.put("goToCheckout", new GoToAction("checkout.jsp"));

133 //#if defined(DisplayByCategory)

134 actions.put("goToCatalogShowByCategory", new GoToAction("catalogByCategory.jsp"));

135 //#endif

136 //#if defined(DisplayWhatIsNew)

137 actions.put("goToCatalogShowByNearestDate", new

GoToAction("catalogByNearestDate.jsp"));

138 //#endif

139 actions.put("goToSeller", new GoToAction("seller.jsp"));

140 //#if defined(Paypal)

141 actions.put("goToPaypal", new GoToAction("paypal.jsp"));

142 //#endif

143 actions.put("goToPayment", new GoToAction("payment.jsp"));

144 //#if defined(Bankslip)

145 actions.put("goToBankSlip", new GoToAction("bankslip.jsp"));

146 //#endif

147 actions.put("goToResponse", new GoToAction("response.jsp"));

148

149 actions.put("verifyCatalogForm", new VerifyCatalogFormAction());

150 actions.put("verifySellerForm", new VerifySellerFormAction());

151 actions.put("verifyCheckoutForm", new VerifyCheckoutFormAction());

152

153 actions.put("processSellerForm", new ProcessSellerFormAction());

154 actions.put("processCheckoutForm", new ProcessCheckoutFormAction());

155 }

156

157 public void processAction(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

158

159 String actionRequestParameter = request.getParameter(ACTION_IDENTIFIER);

160

161 if (null == actionRequestParameter) {

162 actionRequestParameter = "goToHome";

163 }

164

165 ControllerAction command = (ControllerAction) actions.get(actionRequestParameter);

166

167 if (null == command) {

168 throw new IllegalArgumentException("No command for form action: " +

actionRequestParameter);

169 }

170 command.execute(request, response);

171 }

172

173 public void doPost(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {

174 processAction(request, response);

175 }

176

177 public void doGet(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {

178 processAction(request, response);

179 }

180 }

4

181 @Entity

182 @Table(name = "customers")

183 public class Customer implements Serializable {

184

185 private static final long serialVersionUID = 1L;

186

187 @Id

188 @GeneratedValue

189 private Long id;

190

191 private String name;

192

193 public void setName(String name) {

194 this.name = name;

195 }

196

197 private String address;

198

199 private String email;

200

201 @OneToMany(targetEntity = Order.class, mappedBy = "customer", fetch = FetchType.LAZY)

202 private List<Order> orders;

203

204 public Customer() {

205 // JPA

206 }

207

208 public Long getId() {

209 return id;

210 }

211

212 public String getName() {

213 return name;

214 }

215

216 public void setAddress(String address) {

217 this.address = address;

218 }

219

220 public String getAddress() {

221 return address;

222 }

223

224 public void setOrders(List<Order> orders) {

225 this.orders = orders;

226 }

227

228 public List<Order> getOrders() {

229 return orders;

230 }

231

232 public void setEmail(String email) {

233 this.email = email;

234 }

235

236 public String getEmail() {

237 return email;

238 }

239 }

5

240 public class CustomerRepository implements ServletContextListener {

241

242 @PersistenceUnit(unitName = "store-pu")

243 private EntityManagerFactory emf;

244

245 private EntityManager em;

246

247 public CustomerRepository() {

248 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

249 System.out.println("[SERVLET-TEST-INFO]: CustomerRepository Constructor");

250 }

251

252 @Override

253 public void contextDestroyed(ServletContextEvent sce) {

254 if (emf.isOpen()) {

255 emf.close();

256 }

257 }

258

259 @Override

260 public void contextInitialized(ServletContextEvent sce) {

261 ServletContext context = sce.getServletContext();

262 context.setAttribute("customerRepository", this);

263 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado! CustomerRepository");

264 }

265

266 public final EntityManager entityManager() {

267 if (em == null || !em.isOpen()) {

268 em = emf.createEntityManager();

269 }

270 return em;

271 }

272

273 public void persistOrMerge(Serializable entity, Serializable id) {

274 em = entityManager();

275

276 if (entity == null) {

277 throw new IllegalArgumentException("entity");

278 }

279 try {

280 em.getTransaction().begin();

281 if (id == null) {

282 em.persist(entity);

283 } else {

284 em.merge(entity);

285 }

286 em.getTransaction().commit();

287 } finally {

288 em.close();

289 }

290 }

291

292 public Customer findCustomerById(Long id) {

293 em = entityManager();

294 return em.find(Customer.class, id);

295 }

296

297 public List findAllCustomers() {

298 em = entityManager();

299 Query q = em.createQuery("select c from Customer c");

300 return q.getResultList();

301 }

302

303 public Customer newCustomer() {

304 Customer c = new Customer();

305 persistOrMerge(c, c.getId());

306 return c;

307 }

308 }

6

309 public class GoToAction implements ControllerAction {

310

311 private String jspFileName;

312

313 public GoToAction(String jspFileName) {

314 this.setJspFileName(jspFileName);

315 }

316

317 @Override

318 public void execute(HttpServletRequest request, HttpServletResponse response) {

319 ServletContext context = request.getSession().getServletContext();

320

321 try {

322

323 context.getRequestDispatcher("/" + jspFileName).forward(request, response);

324 } catch (Exception e) {

325 e.printStackTrace();

326 }

327 }

328

329 public void setJspFileName(String jspFileName) {

330 this.jspFileName = jspFileName;

331 }

332

333 public String getJspFileName() {

334 return jspFileName;

335 }

336 }

7

337 public abstract class ModelAction {

338

339 public Object execute(HttpServletRequest request, HttpServletResponse response) {

340 setPersistenceRepository(request);

341 getRequestParameters(request);

342 return newEntity();

343 }

344

345 Object newEntity() {

346 Object o = createEntity();

347 setEntityAssociations(o);

348

349 return o;

350 }

351

352 abstract Object createEntity();

353

354 abstract void getRequestParameters(HttpServletRequest request);

355

356 abstract void setPersistenceRepository(HttpServletRequest request);

357

358 abstract void setEntityAssociations(Object o);

359 }

8

360 public class NewCategoryAction extends ModelAction {

361

362 Object params[];

363 private CategoryRepository categoryRepository;

364

365 @Override

366 public void setPersistenceRepository(HttpServletRequest request) {

367 ServletContext context = request.getSession().getServletContext();

368 categoryRepository = (CategoryRepository) context.getAttribute("categoryRepository");

369 }

370

371 @Override

372 public Object createEntity() {

373 Category c = categoryRepository.newCategory();

374 setEntityAssociations(c);

375 categoryRepository.persistOrMerge(c, c.getId());

376 return c;

377 }

378

379 @Override

380 public void setEntityAssociations(Object o) {

381 ((Category) o).setCategoryName((String) params[0]);

382 }

383

384 @Override

385 public void getRequestParameters(HttpServletRequest request) {

386 params = new Object[1];

387 params[0] = request.getParameter("CategoryName");

388 }

389 }

9

390 public class NewCustomerAction extends ModelAction {

391

392 Object params[];

393 private CustomerRepository customerRepository;

394

395 @Override

396 public void setPersistenceRepository(HttpServletRequest request) {

397 ServletContext context = request.getSession().getServletContext();

398 customerRepository = (CustomerRepository)

context.getAttribute("customerRepository");

399 }

400

401 @Override

402 public Object createEntity() {

403 Customer c = customerRepository.newCustomer();

404 setEntityAssociations(c);

405 return c;

406 }

407

408 @Override

409 public void setEntityAssociations(Object o) {

410 ((Customer) o).setName((String) params[0]);

411 ((Customer) o).setAddress((String) params[1]);

412 ((Customer) o).setEmail((String) params[2]);

413 }

414

415 @Override

416 public void getRequestParameters(HttpServletRequest request) {

417 params = new Object[3];

418 params[0] = request.getParameter("CustomerName");

419 params[1] = request.getParameter("CustomerAddress");

420 params[2] = request.getParameter("CustomerMail");

421 }

422 }

10

423 public class NewOrderAction extends ModelAction {

424

425 Object params[];

426 private OrderRepository orderRepository;

427

428 @Override

429 public void setPersistenceRepository(HttpServletRequest request) {

430 ServletContext context = request.getSession().getServletContext();

431 orderRepository = (OrderRepository) context.getAttribute("orderRepository");

432 }

433

434 @Override

435 public Object createEntity() {

436 Order o = orderRepository.newOrder();

437 setEntityAssociations(o);

438 orderRepository.persistOrMerge(o, o.getId());

439 return o;

440 }

441

442 @Override

443 public void setEntityAssociations(Object o) {

444 ((Order) o).setCustomer((Customer) params[0]);

445 ((Order) o).setProducts((List<Product>) params[1]);

446 }

447

448 @Override

449 public void getRequestParameters(HttpServletRequest request) {

450 params = new Object[2];

451 params[0] = request.getAttribute("customer");

452 params[1] = request.getAttribute("products");

453 }

454 }

11

455 public class NewPaymentAction extends ModelAction {

456

457 Object params[];

458 private PaymentRepository paymentRepository;

459

460 @Override

461 public void setPersistenceRepository(HttpServletRequest request) {

462 ServletContext context = request.getSession().getServletContext();

463 paymentRepository = (PaymentRepository) context.getAttribute("paymentRepository");

464 }

465

466 @Override

467 public Object createEntity() {

468 Payment object = paymentRepository.newPayment();

469 setEntityAssociations(object);

470 paymentRepository.persistOrMerge(object, object.getId());

471 return object;

472 }

473

474 @Override

475 public void setEntityAssociations(Object payment) {

476 ((Payment) payment).setPaymentStatus("NOT YET PAID");

477 ((Payment) payment).setPaymentOrder((Order) params[0]);

478 ((Payment) payment).setPaymentType((String) params[1]);

479 }

480

481 @Override

482 public void getRequestParameters(HttpServletRequest request) {

483 params = new Object[2];

484 params[0] = request.getAttribute("order");

485 params[1] = request.getParameter("paymentType");

486 }

487 }

12

488 public class NewProductAction extends ModelAction {

489

490 private ProductRepository productRepository;

491 Object params[];

492

493 @Override

494 public void setPersistenceRepository(HttpServletRequest request) {

495 ServletContext context = request.getSession().getServletContext();

496 productRepository = (ProductRepository) context.getAttribute("productRepository");

497 }

498

499 @Override

500 public Object createEntity() {

501 Product p = productRepository.newProduct();

502 setEntityAssociations(p);

503 productRepository.persistOrMerge(p, p.getId());

504 return p;

505 }

506

507 @Override

508 public void setEntityAssociations(Object product) {

509 ((Product) product).setProductName((String) params[0]);

510 ((Product) product).setProductDescription((String) params[1]);

511

512 Double price;

513 if (params[2] == null) {

514 price = Double.valueOf("0");

515 } else {

516 price = Double.valueOf((String) params[2]);

517 }

518 ((Product) product).setProductPrice(price);

519 //#if defined(DisplayWhatIsNew)

520 ((Product) product).setProductInsertDate(new Date());

521 //#endif

522 }

523

524 @Override

525 public void getRequestParameters(HttpServletRequest request) {

526 params = new Object[3];

527 params[0] = request.getParameter("ProductName");

528 params[1] = request.getParameter("ProductDescription");

529 params[2] = request.getParameter("ProductPrice");

530 }

531 }

13

532 public class NewSellerAction extends ModelAction {

533

534 SellerRepository sellerRepository;

535 Object params[];

536

537 @Override

538 public Object createEntity() {

539 Seller s = sellerRepository.newSeller();

540 setEntityAssociations(s);

541 sellerRepository.persistOrMerge(s, s.getId());

542 return s;

543 }

544

545 @Override

546 public void setEntityAssociations(Object seller) {

547 ((Seller) seller).setName((String) params[0]);

548 ((Seller) seller).setAddress((String) params[1]);

549 ((Seller) seller).setEmail((String) params[2]);

550 }

551

552 @Override

553 public void setPersistenceRepository(HttpServletRequest request) {

554 ServletContext context = request.getSession().getServletContext();

555 sellerRepository = (SellerRepository) context.getAttribute("sellerRepository");

556 }

557

558 @Override

559 public void getRequestParameters(HttpServletRequest request) {

560 params = new Object[3];

561 params[0] = request.getParameter("SellerName");

562 params[1] = request.getParameter("SellerAddress");

563 params[2] = request.getParameter("SellerMail");

564 }

565 }

14

566 @Entity

567 @Table(name = "orders")

568 public class Order implements Serializable {

569

570 private static final long serialVersionUID = 1L;

571

572 @Id

573 @GeneratedValue

574 private Long id;

575

576 @ManyToOne(targetEntity = Customer.class, fetch = FetchType.LAZY)

577 private Customer customer;

578

579 @OneToMany(targetEntity = Product.class, mappedBy = "productOrder", fetch = FetchType.LAZY)

580 @Column(name = "orderProducts")

581 private List<Product> products;

582

583 @OneToOne(mappedBy = "paymentOrder")

584 private Payment orderPayment;

585

586 public Order() {

587 // JPA

588 }

589

590 public Order(Customer c) {

591 customer = c;

592 }

593

594 public void setId(Long id) {

595 this.id = id;

596 }

597

598 public Long getId() {

599 return id;

600 }

601

602 public void setCustomer(Customer client) {

603 this.customer = client;

604 }

605

606 public Customer getClient() {

607 return customer;

608 }

609

610 public void setProducts(List<Product> products) {

611 this.products = products;

612 }

613

614 public List<Product> getProducts() {

615 return products;

616 }

617

618 public Payment getOrderPayment() {

619 return this.orderPayment;

620 }

621

622 public void setOrderPayment(Payment orderPayment) {

623 this.orderPayment = orderPayment;

624 }

625 }

15

626 public class OrderRepository implements ServletContextListener {

627

628 @PersistenceUnit(unitName = "store-pu")

629 private EntityManagerFactory emf;

630

631 private EntityManager em;

632

633 public OrderRepository() {

634 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

635 System.out.println("[SERVLET-TEST-INFO]: OrderRepository Constructor");

636 }

637

638 @Override

639 public void contextDestroyed(ServletContextEvent sce) {

640 if (emf.isOpen()) {

641 emf.close();

642 }

643 }

644

645 @Override

646 public void contextInitialized(ServletContextEvent sce) {

647 ServletContext context = sce.getServletContext();

648 context.setAttribute("orderRepository", this);

649 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado! OrderRepository");

650 }

651

652 public final EntityManager entityManager() {

653 if (em == null || !em.isOpen()) {

654 em = emf.createEntityManager();

655 }

656 return em;

657 }

658

659 public void persistOrMerge(Serializable entity, Serializable id) {

660 em = entityManager();

661

662 if (entity == null) {

663 throw new IllegalArgumentException("entity");

664 }

665 try {

666 em.getTransaction().begin();

667 if (id == null) {

668 em.persist(entity);

669 } else {

670 em.merge(entity);

671 }

672 em.getTransaction().commit();

673 } finally {

674 em.close();

675 }

676 }

677

678 public Order findOrderById(Long id) {

679 em = entityManager();

680 return em.find(Order.class, id);

681 }

682

683 public List<Order> findAllOrders() {

684 em = entityManager();

685 Query q = em.createQuery("select o from Order o");

686 return q.getResultList();

687 }

688

689 public Order newOrder() {

690 Order o = new Order();

691 persistOrMerge(o, o.getId());

692

693 return o;

694 }

695 }

16

696 @Entity

697 @Table(name = "payments")

698 public class Payment implements java.io.Serializable {

699

700 private static final long serialVersionUID = 1L;

701

702 @Id

703 @GeneratedValue

704 private Long id;

705

706 private String paymentType;

707

708 @OneToOne

709 private Order paymentOrder;

710

711 private String paymentStatus;

712

713 public Payment() {

714 // Used by JPA.

715 }

716

717 public void setId(Long id) {

718 this.id = id;

719 }

720

721 public Long getId() {

722 return id;

723 }

724

725 public String getPaymentStatus() {

726 return this.paymentStatus;

727 }

728

729 public void setPaymentStatus(String paymentStatus) {

730 this.paymentStatus = paymentStatus;

731 }

732

733 public Order getPaymentOrder() {

734 return this.paymentOrder;

735 }

736

737 public void setPaymentOrder(Order paymentOrder) {

738 this.paymentOrder = paymentOrder;

739 }

740

741 public void setPaymentType(String paymentType) {

742 this.paymentType = paymentType;

743 }

744

745 public String getPaymentType() {

746 return paymentType;

747 }

748 }

17

749 public class PaymentRepository implements ServletContextListener {

750

751 @PersistenceUnit(unitName = "store-pu")

752 private EntityManagerFactory emf;

753

754 private EntityManager em;

755

756 public PaymentRepository() {

757 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

758 System.out.println("[SERVLET-TEST-INFO]: PaymentRepository Constructor");

759 }

760

761 @Override

762 public void contextDestroyed(ServletContextEvent sce) {

763 if (emf.isOpen()) {

764 emf.close();

765 }

766 }

767

768 @Override

769 public void contextInitialized(ServletContextEvent sce) {

770 ServletContext context = sce.getServletContext();

771 context.setAttribute("paymentRepository", this);

772 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado! PaymentRepository");

773 }

774

775 public final EntityManager entityManager() {

776 if (em == null || !em.isOpen()) {

777 em = emf.createEntityManager();

778 }

779 return em;

780 }

781

782 public void persistOrMerge(Serializable entity, Serializable id) {

783 em = entityManager();

784

785 if (entity == null) {

786 throw new IllegalArgumentException("entity");

787 }

788 try {

789 em.getTransaction().begin();

790 if (id == null) {

791 em.persist(entity);

792 } else {

793 em.merge(entity);

794 }

795 em.getTransaction().commit();

796 } finally {

797 em.close();

798 }

799 }

800

801 public Payment findPaymentById(Long id) {

802 em = entityManager();

803 return em.find(Payment.class, id);

804 }

805

806 public List findAllPayments() {

807 em = entityManager();

808 Query q = em.createQuery("select obj from Payment obj");

809 return q.getResultList();

810 }

811

812 public Payment newPayment() {

813 Payment object = new Payment();

814

815 persistOrMerge(object, object.getId());

816 return object;

817 }

818 }

18

819 public class ProcessCheckoutFormAction implements ControllerAction {

820

821 @Override

822 public void execute(HttpServletRequest request, HttpServletResponse response) {

823 ControllerAction paymentAction = null;

824 createEntities(request, response);

825

826 String paymentType = request.getParameter("PaymentType");

827

828 paymentAction = selectPaymentMethod(paymentAction, paymentType);

829

830 paymentAction.execute(request, response);

831 }

832

833 private ControllerAction selectPaymentMethod(ControllerAction paymentAction, String

paymentType) {

834 if (paymentType.equals("Default")) {

835 paymentAction = new GoToAction("payment.jsp");

836 }

837 //#if defined(Bankslip)

838 if (paymentType.equals("Bankslip")) {

839 paymentAction = new GoToAction("bankslip.jsp");

840 }

841 //#endif

842 //#if defined(Paypal)

843 if (paymentType.equals("Paypal")) {

844 paymentAction = new GoToAction("paypal.jsp");

845 }

846 //#endif

847 return paymentAction;

848 }

849

850 private void createEntities(HttpServletRequest request, HttpServletResponse response) {

851 NewCustomerAction newCustomerAction = new NewCustomerAction();

852 Customer c = (Customer) newCustomerAction.execute(request, response);

853

854 request.setAttribute("customer", c);

855 request.setAttribute("products", request.getSession().getAttribute("products"));

856

857 NewOrderAction newOrderAction = new NewOrderAction();

858 Order o = (Order) newOrderAction.execute(request, response);

859 request.setAttribute("order", o);

860

861 NewPaymentAction newPaymentAction = new NewPaymentAction();

862 newPaymentAction.execute(request, response);

863 }

864 }

19

865 public class ProcessSellerFormAction implements ControllerAction {

866

867 @Override

868 public void execute(HttpServletRequest request, HttpServletResponse response) {

869 try {

870

871 Product p = createProduct(request, response);

872 setProductAssociations(request, response, p);

873 updateEntity(request, p);

874 forward(request, response);

875

876 } catch (Exception e) {

877 e.printStackTrace();

878 }

879 }

880

881 private Product createProduct(HttpServletRequest request, HttpServletResponse response) {

882 NewProductAction newProductAction = new NewProductAction();

883 Product p = (Product) newProductAction.execute(request, response);

884 return p;

885 }

886

887 private void forward(HttpServletRequest request, HttpServletResponse response) {

888 try {

889 request.setAttribute("message", "
 Product inserted with success");

890

891 GoToAction responseAction = new GoToAction("response.jsp");

892 responseAction.execute(request, response);

893 } catch (Exception e) {

894 e.printStackTrace();

895 }

896 }

897

898 private void updateEntity(HttpServletRequest request, Product p) {

899 ServletContext context = request.getSession().getServletContext();

900 ProductRepository productRepository = (ProductRepository)

context.getAttribute("productRepository");

901 productRepository.persistOrMerge(p, p.getId());

902 }

903

904 private void setProductAssociations(HttpServletRequest request, HttpServletResponse

response, Product p) {

905 setProductSeller(request, response, p);

906 setProductCategory(request, response, p);

907 }

908

909 private void setProductCategory(HttpServletRequest request, HttpServletResponse response,

Product p) {

910 NewCategoryAction newCategoryAction = new NewCategoryAction();

911 Category c = (Category) newCategoryAction.execute(request, response);

912 p.setProductCategory(c);

913 }

914

915 private void setProductSeller(HttpServletRequest request, HttpServletResponse response,

Product p) {

916 NewSellerAction newSellerAction = new NewSellerAction();

917 Seller s = (Seller) newSellerAction.execute(request, response);

918 p.setProductSeller(s);

919 }

920 }

20

921 @Entity

922 @Table(name = "products")

923 public class Product implements Serializable {

924

925 private static final long serialVersionUID = 1L;

926

927 @Id

928 @GeneratedValue

929 private Long id;

930

931 private String productName;

932

933 private String productDescription;

934

935 private Double productPrice;

936

937 @ManyToOne(targetEntity = Order.class, fetch = FetchType.LAZY)

938 private Order productOrder;

939

940 @OneToOne

941 private Seller productSeller;

942

943 @OneToOne

944 private Category productCategory;

945 //#if defined(DisplayWhatIsNew)

946 private Date productInsertDate;

947

948 //#endif

949

950 public Product() {

951 // JPA

952 }

953

954 public Long getId() {

955 return id;

956 }

957

958 public void setId(Long id) {

959 this.id = id;

960 }

961

962 public void setProductName(String productName) {

963 this.productName = productName;

964 }

965

966 public String getProductName() {

967 return productName;

968 }

969

970 public void setProductDescription(String productDescription) {

971 this.productDescription = productDescription;

972 }

973

974 public String getProductDescription() {

975 return productDescription;

976 }

977

978 public void setProductPrice(Double productPrice) {

979 this.productPrice = productPrice;

980 }

981

982 public Double getProductPrice() {

983 return productPrice;

984 }

985

986 public void setProductOrder(Order productOrder) {

987 this.productOrder = productOrder;

988 }

989

990 public Order getProductOrder() {

991 return productOrder;

992 }

993

994 public void setProductSeller(Seller productSeller) {

995 this.productSeller = productSeller;

996 }

997

998 public Seller getProductSeller() {

999 return productSeller;

1000 }

1001

1002 //#if defined(DisplayWhatIsNew)

1003 public void setProductInsertDate(Date productInsertDate) {

1004 this.productInsertDate = productInsertDate;

1005 }

1006

1007 public Date getProductInsertDate() {

1008 return productInsertDate;

1009 }

1010

1011 //#endif

1012 public void setProductCategory(Category productCategory) {

1013 this.productCategory = productCategory;

1014 }

1015

1016 public Category getProductCategory() {

1017 return productCategory;

1018 }

1019 }

21

1020 public class ProductRepository implements ServletContextListener {

1021

1022 @PersistenceUnit(unitName = "store-pu")

1023 private EntityManagerFactory emf;

1024

1025 private EntityManager em;

1026

1027 public ProductRepository() {

1028 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

1029 System.out.println("[SERVLET-TEST-INFO]: ProductRepository Constructor");

1030 }

1031

1032 @Override

1033 public void contextDestroyed(ServletContextEvent sce) {

1034 if (emf.isOpen()) {

1035 emf.close();

1036 }

1037 }

1038

1039 @Override

1040 public void contextInitialized(ServletContextEvent sce) {

1041 ServletContext context = sce.getServletContext();

1042 context.setAttribute("productRepository", this);

1043 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado!

ProductRepository");

1044 }

1045

1046 public final EntityManager entityManager() {

1047 if (em == null || !em.isOpen()) {

1048 em = emf.createEntityManager();

1049 }

1050 return em;

1051 }

1052

1053 public void persistOrMerge(Serializable entity, Serializable id) {

1054 em = entityManager();

1055

1056 if (entity == null) {

1057 throw new IllegalArgumentException("entity");

1058 }

1059 try {

1060 em.getTransaction().begin();

1061 if (id == null) {

1062 em.persist(entity);

1063 } else {

1064 em.merge(entity);

1065 }

1066 em.getTransaction().commit();

1067 } finally {

1068 em.close();

1069 }

1070 }

1071

1072 public Product newProduct() {

1073 Product p = new Product();

1074 persistOrMerge(p, p.getId());

1075 return p;

1076 }

1077

1078 public Product findProductById(Long id) {

1079 em = entityManager();

1080 return em.find(Product.class, id);

1081 }

1082

1083 public List findAllProducts() {

1084 em = entityManager();

1085 Query q = em.createQuery("select p from Product p");

1086 return q.getResultList();

1087 }

1088

1089 public List findAllProductsAvailable() {

1090 em = entityManager();

1091 Query q = em.createQuery("select p from Product p where p.productOrder = NULL");

1092 return q.getResultList();

1093 }

1094

1095 //#if defined(DisplayWhatIsNew)

1096 public List findAllProductsAvailableByNearestDate() {

1097 em = entityManager();

1098 Query q = em.createQuery("select p from Product p where p.productOrder = NULL

ORDER BY p.productInsertDate DESC");

1099 return q.getResultList();

1100 }

1101 //#endif

1102

1103 //#if defined(DisplayByCategory)

1104 public List findAllProductsByCategory(String category) {

1105 em = entityManager();

1106 Query q = em.createQuery("select p from Product p where p.productOrder = NULL AND

p.productCategory.categoryName=:cat");

1107 q.setParameter("cat", category);

1108 return q.getResultList();

1109 }

1110 //#endif

1111 }

22

1112 @Entity

1113 @Table(name = "sellers")

1114 public class Seller implements Serializable {

1115

1116 private static final long serialVersionUID = 1L;

1117

1118 @Id

1119 @GeneratedValue

1120 private Long id;

1121

1122 private String name;

1123

1124 private String address;

1125

1126 private String email;

1127

1128 @OneToOne(mappedBy = "productSeller")

1129 private Product product;

1130

1131 public Seller() {

1132 // JPA

1133 }

1134

1135 public Long getId() {

1136 return id;

1137 }

1138

1139 public void setId(Long id) {

1140 this.id = id;

1141 }

1142

1143 public String getName() {

1144 return name;

1145 }

1146

1147 public void setName(String name) {

1148 this.name = name;

1149 }

1150

1151 public void setEmail(String email) {

1152 this.email = email;

1153 }

1154

1155 public String getEmail() {

1156 return email;

1157 }

1158

1159 public void setAddress(String address) {

1160 this.address = address;

1161 }

1162

1163 public String getAddress() {

1164 return address;

1165 }

1166

1167 public void setProduct(Product product) {

1168 this.product = product;

1169 }

1170

1171 public Product getProduct() {

1172 return product;

1173 }

1174 }

23

1175 public class SellerRepository implements ServletContextListener {

1176

1177 @PersistenceUnit(unitName = "store-pu")

1178 private EntityManagerFactory emf;

1179

1180 private EntityManager em;

1181

1182 public SellerRepository() {

1183 emf = (EntityManagerFactory) Persistence.createEntityManagerFactory("store-pu");

1184 System.out.println("[SERVLET-TEST-INFO]: SellerRepository Constructor");

1185 }

1186

1187 @Override

1188 public void contextDestroyed(ServletContextEvent sce) {

1189 if (emf.isOpen()) {

1190 emf.close();

1191 }

1192 }

1193

1194 @Override

1195 public void contextInitialized(ServletContextEvent sce) {

1196 ServletContext context = sce.getServletContext();

1197 context.setAttribute("sellerRepository", this);

1198 System.out.println("[SERVLET-TEST-INFO]: Contexto inicializado! SellerRepository");

1199 }

1200

1201 public final EntityManager entityManager() {

1202 if (em == null || !em.isOpen()) {

1203 em = emf.createEntityManager();

1204 }

1205 return em;

1206 }

1207

1208 public void persistOrMerge(Serializable entity, Serializable id) {

1209 em = entityManager();

1210

1211 if (entity == null) {

1212 throw new IllegalArgumentException("entity");

1213 }

1214 try {

1215 em.getTransaction().begin();

1216 if (id == null) {

1217 em.persist(entity);

1218 } else {

1219 em.merge(entity);

1220 }

1221 em.getTransaction().commit();

1222 } finally {

1223 em.close();

1224 }

1225 }

1226

1227 public Seller findSellerById(Long id) {

1228 em = entityManager();

1229 return em.find(Seller.class, id);

1230 }

1231

1232 public Seller findSellerByEmail(String sellerEmail) {

1233 em = entityManager();

1234 return (Seller) em.createQuery("select s from Seller s where s.email = '" +

sellerEmail + "'").getSingleResult();

1235 }

1236

1237 public List<Seller> findAllSellers() {

1238 em = entityManager();

1239 Query q = em.createQuery("select s from Seller s");

1240 return q.getResultList();

1241 }

1242

1243 public Seller newSeller() {

1244 Seller s = new Seller();

1245 persistOrMerge(s, s.getId());

1246 return s;

1247 }

1248 }

24

1249 public class VerifyCatalogFormAction implements ControllerAction {

1250

1251 @Override

1252 public void execute(HttpServletRequest request, HttpServletResponse response) {

1253 String[] productsIds = request.getParameterValues("productsIds");

1254

1255 if (productsIds == null) {

1256 request.setAttribute("message", "<br/ > ERROR: You must select at least a

product!");

1257

1258 GoToAction responseAction = new GoToAction("response.jsp");

1259 responseAction.execute(request, response);

1260 }

1261

1262 else {

1263 getProductList(request, productsIds);

1264

1265 GoToAction checkoutAction = new GoToAction("checkout.jsp");

1266 checkoutAction.execute(request, response);

1267 }

1268 }

1269

1270 private void getProductList(HttpServletRequest request, String[] productsIds) {

1271 ServletContext context = request.getSession().getServletContext();

1272 ProductRepository productRepository = (ProductRepository)

context.getAttribute("productRepository");

1273

1274 List<Product> products = new ArrayList();

1275

1276 for (String productId : productsIds) {

1277 products.add(productRepository.findProductById((Long.valueOf(productId))));

1278 }

1279

1280 HttpSession session = request.getSession();

1281 session.setAttribute("products", products);

1282 }

1283 }

25

1284 public class VerifyCheckoutFormAction implements ControllerAction {

1285

1286 @Override

1287 public void execute(HttpServletRequest request, HttpServletResponse response) {

1288 List params = getRequestParameters(request);

1289 Boolean emptyFields = false;

1290

1291 for (Object param : params) {

1292 if (param == null || param.equals("")) {

1293 emptyFields = true;

1294 }

1295 }

1296

1297 if (emptyFields) {

1298 request.setAttribute("message", "Form with blank fields! Complete your

form first!");

1299 GoToAction responseAction = new GoToAction("response.jsp");

1300 responseAction.execute(request, response);

1301 } else {

1302 ProcessCheckoutFormAction checkoutFormAction = new

ProcessCheckoutFormAction();

1303 checkoutFormAction.execute(request, response);

1304 }

1305 }

1306

1307 private List getRequestParameters(HttpServletRequest request) {

1308 List params = new ArrayList();

1309 addParameters(request, params);

1310 return params;

1311 }

1312

1313 private void addParameters(HttpServletRequest request, List params) {

1314 params.add(request.getParameter("CustomerName"));

1315 params.add(request.getParameter("CustomerAddress"));

1316 params.add(request.getParameter("CustomerMail"));

1317 params.add(request.getParameter("paymentType"));

1318 }

1319 }

26

1320 public class VerifySellerFormAction implements ControllerAction {

1321

1322 @Override

1323 public void execute(HttpServletRequest request, HttpServletResponse response) {

1324 List params = getRequestParameters(request);

1325 Boolean emptyFields = false;

1326

1327 for (Object param : params) {

1328 if (param == null || param.equals("")) {

1329 emptyFields = true;

1330 }

1331 }

1332

1333 if (emptyFields) {

1334 request.setAttribute("message", "Form with blank fields! Complete your form

first!");

1335 GoToAction responseAction = new GoToAction("response.jsp");

1336 responseAction.execute(request, response);

1337 } else {

1338 ProcessSellerFormAction sellerFormAction = new ProcessSellerFormAction();

1339 sellerFormAction.execute(request, response);

1340 }

1341 }

1342

1343 private List getRequestParameters(HttpServletRequest request) {

1344 List params = new ArrayList();

1345 addParameters(request, params);

1346 return params;

1347 }

1348

1349 private void addParameters(HttpServletRequest request, List params) {

1350 params.add(request.getParameter("CategoryName"));

1351 params.add(request.getParameter("SellerName"));

1352 params.add(request.getParameter("SellerAddress"));

1353 params.add(request.getParameter("SellerMail"));

1354 params.add(request.getParameter("ProductName"));

1355 params.add(request.getParameter("ProductDescription"));

1356 params.add(request.getParameter("ProductPrice"));

1357 }

1358 }

27

