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Processos

* Processos e Programas

- Um programa é uma entidade estatica
* Fornece as instrucdes necessarias para realizar tarefas
* Nao concorre por recursos do sistema

- Um processo é um programa em execucao

* Caracteriza-se por uma entidade dinamica, que muda
de estados e concorre por recursos do sistema

* Cada processo esta associado a um Bloco de Controle
de Processo (PCB), composto por informacoes como:
contador de programa (PC), descritores de arquivo e
enderecos de memoria



Processos

* Os processos executando no Sistema
Operacional podem ser independentes ou
cooperativos

- Processos independentes nao compartilham
dados com outros processos, 0s cooperativos sim.

* Principais motivos para cooperacao entre
processos
- Compartilhamento de informacoes

- Velocidade de computacao
- Modularidade



Processos

* A cooperacao requer gue 0S processos
comuniquem entre si e sincronizem suas

acoes

* Existem diferentes estratégias de
comunicacao entre processos - IPC (Inter-
Process Communication)

- A maneira mais comum para a comunicacao
entre processos € a troca de mensagens



Comunicacao entre processos

* O mecanismo de troca de mensagens
permite a processos locais ou remotos
comunicarem

- Para a comunicacao existir deve haver entre
eles um canal de comunicacao

- A implementacao da maioria destes canais se
baseia nas primitivas de mensagens send(msg)
e receive(msg)



Comunicacao entre processos

* Diferentes implementacdes sao possiveis
para a definicao de canais de comunicacao

- Comunicacao sincrona/assincrona
- Comunicacao confiavel/nao-confiavel

- Comunicacao orientada/nao-orientada a
conexao



Comunicacao entre processos

* Diferentes implementacoes sao possiveis
para a definicao de canais de comunicacao

- Comunicacao sincrona/assincrona
- Comunicacao confiavel/nao-confiavel
- Comunicacao orientada/nao-orientada a conexao

* Suponha que existam processos P e Q que
desejam comunicar

- P deseja enviar uma mensagem a Q



Comunicacao entre processos
Comunicacao sincrona/assincrona

* Troca de mensagens sincrona

- send(msg, Q): P bloqueia até Q receber a
mensagem

- receive(msg, P): Q bloqueia até receber a
mensagem de P

- Conhecida como comunicacao rendezvous

* Troca de mensagens assincrona

- send(msg, Q): P envia e continua sua execucao,
independente se Q recebeu ou nao a mensagem

- receive(msg, P): Q recebe a mensagem de P ou
nada, e continua sua execucao



Comunicacao entre processos
Comunicacao confiavel/nao-confiavel

e Canal Confidvel

- Estabelecido um canal de comunicacao
[send(msg,Q), receive(msg,P)], garante-se que
Q recebera msg de P

- Existe um overhead para assegurar a
confiabilidade
* Canal Nao-Confiavel

- Ao enviar uma mensagem entre dois processos,
nao ha garantia que esta mensagem sera
entregue

- Sem overhead de confiabilidade



Comunicacao entre processos
Comunicacao orientada/nao-orientada a

conexao )
* Canal orientado a conexao

- Antes de dois processos comunicarem, o canal é
estabelecido e s6 deixa de existir quando
finalizado por algum dos processos

- Mesmo se 0cioso, 0 canal continua ativo

e Canal nao-orientado a conexao

- O canal entre dois processos é estabelecido
apenas no envio/recebimento de uma
mensagem

- Ao concluir o envio/recebimento, o canal deixa
de existir



Sockets

* Um socket representa a extremidade de
um canal de comunicacao

- Tendo-se dois ou mais sockets corretamente
‘conectados’ é possivel estabelecer um canal
de comunicacao

* Na comunicacado entre processos

- E possivel vincular processos a sockets e
estabelecer um canal de comunicacao

- Deve haver um suporte da linguagem de
programacao para utilizar tal estratégia



Sockets TCP

* Aplica-se especificamente para estabelecer
um canal de comunicacao em redes TCP/IP

e Utiliza o conceito de portas
- Cada endereco IP tem 65536 portas

- Um socket TCP vincula o processo a uma porta,
permitindo a comunicacao entre processos

* O termo TCP (Transmission Control
Protocol) vem devido a implementacao de
um canal confiavel e orientado a conexao

- A comunicacao é feita por fluxos de dados



Sockets TCP

Exemplo de aplicacao

* Uma empresa lida com problemas de elevada
complexidade computacional

* ApOSs uma pesquisa resolveu implantar um
servidor de processamento, ao invés de
aumentar a capacidade das estacoes

* Um processo no servidor recebe requisicoes,
as processa e retorna o resultado a estacao
cliente

* A comunicacao é realizada utilizando sockets
TCP

* Implementacao em Java



Sockets TCP

Exemplo de aplicacao

* Classes/Interfaces envolvidas na implementacao

classe: AppCliente

*Problema prob;

mterface: Processa classe: Servidor

*solucionaProblemal); *Processa objProc;

classe: Problema
implementa Processa,
Serializable
*solucionaProblemal)




Sockets TCP

Exemplo de aplicacao

* Classes/Interfaces envolvidas na implementacao

A interface deve ser
classe- AppChente implementada pela classe

classe Servidor

Problema prob: % Problema e visualizada pela

mterface: Processa classe: Servidor

*solucionaProblemal); *Processa objProc;

classe: Problema
implementa Processa,
Serializable
*solucionaProblemal)




Sockets TCP

Exemplo de aplicacao

* Classes/Interfaces envolvidas na implementacao

classe: AppCliente

*Problema prob;

imterface: Processa classe: Servidor
*solucionaProblemal); *Processa objProc;
classe: Problema
implementa Processa,
Serializable
*solucionaProblemal) —

A classe Problema deve implementar
Serializable, para que os objetos
desta classe sejam enviados pela
rede do cliente ao servidor




Sockets TCP

Exemplo de aplicacao

* Classes/Interfaces envolvidas na implementacao

A classe cliente deve ter
como atributo um
problema a ser solucionado

classe: AppCliente

*Problema prob;

mterface: Processa classe: Servidor

*solucionaProblemal); *Processa objProc;

classe: Problema
implementa Processa,
Serializable
*solucionaProblemal)




Sockets TCP

Exemplo de aplicacao

 Classes/Interfaces envolvidas na implementacao

A classe servidor tem como atributo um
elemento da interface Processa, que permitira

invocar o método processaObjeto(), mesmo
sem saber qual é este objeto

classe: AppCliente

*Problema prob;

mterface: Processa classe: Servidor

*solucionaProblemal); *Processa objProc;

classe: Problema
implementa Processa,
Serializable
*solucionaProblemal)




Sockets TCP
Exemplo de aplicacao

public class Servidor {

private ServerSocket servidor;
private Socket conexao;

private ObjectInputStream input;
private ObjectOutputStream output;
private Processa objProc;

public void ativaServer(){
servidor = new ServerSocket (56789, 10);

while(true)
conexao = servidor.accept();

output = new ObjectOutputStream(conexao.getOutputStream());
input = new ObjectInputStream(conexao.getInputStream());

objProc = (Processa) input.readObject();
objProc.processaoObjeto(),
output.writeObject(objProc);



Sockets TCP
Exemplo de aplicacao

public class Servidor {

private ServerSocket servidor;
private Socket conexao;

private ObjectInputStream input;
private ObjectOutputStream output;
private Processa objProc;

public void ativaServer(){

servidor = new ServerSocket (56789, 10);

while(true)
conexao = servidor.accept();

Vincula-se o processo
servidor a porta 56789. As
requisicoes enviadas ao
endereco

“IP servidor : 56789” serao
atendidas por este processo

output = new ObjectOutputStream(conexao.getOutputStream());
input = new ObjectInputStream(conexao.getInputStream());

objProc = (Processa) input.readObject();

objProc.processaoObjeto(),
output.writeObject(objProc);



Sockets TCP
Exemplo de aplicacao
public class Servidor {

private ServerSocket servidor;
private Socket conexao;

private ObjectInputStream input; :
private ObjectOutputStream output; O servidor entra em

private Processa objProc; espera, até que existam
public void ativaServer(){ reqU|S|~goes pEliE novas
servidor = new ServerSocket (56789, 10); |conexoes. Ao aceitar uma
conexao, esta permanece
ativa até que um dos
lados a interrompa

while(true)
conexao = servidor.accept();

output = new ObjectOutputStream(conexao.getOutputStream());
input = new ObjectInputStream(conexao.getInputStream());

objProc = (Processa) input.readObject();
objProc.processaoObjeto(),
output.writeObject(objProc);



Sockets TCP
Exemplo de aplicacao

public class Servidor {

private ServerSocket servidor;
private Socket conexao;

private ObjectInputStream input;
private ObjectOutputStream output;
private Processa objProc;

public void ativaServer(){
servidor = new ServerSocket (56789, 10);

while(true)
conexao = servidor.accept();

output = new ObjectOutputStream(conexao.getOutputStream());
input = new ObjectInputStream(conexao.getInputStream());

objProc = (Processa) input.readObject():

objProc.processaObjeto(); Apc')s conectar, cria-se
output.writeObject(objProc); : .
) objetos para gerenciar o
} fluxo de dados entre
} cliente e servidor




Sockets TCP
Exemplo de aplicacao

public class Servidor {

private ServerSocket servidor;
private Socket conexao;

private ObjectInputStream input;
private ObjectOutputStream output;
private Processa objProc;

public void ativaServer(){
servidor = new ServerSocket (56789, 10);

while(true)
conexao = servidor.accept();

output = new ObjectOutputStream(conexao.getOutputStream());
input = new ObjectInputStream(conexao.getInputStream());

objProc = (Processa) input.readObject();
objProc.processaoObjeto(),
output.writeObject(objProc);

O servidor aguarda do
cliente o objeto a ser
processado, o0 processa e
retorna o resultado




Sockets TCP

Exemplo de aplicacao

public class Cliente {

private Socket client;

private ObjectInputStream input;
private ObjectOutputStream output;
private Imagem3D objImagem;

public void appCliente()({
client new Socket(InetAddress.getLocalHost(), 56789);

output new ObjectOutputStream(client.getOutputStream());
input = new ObjectInputStream(client.getInputStream());

objImagem = new Imagem3D();
output.writeObject(objImagem);
objImagem = (Imagem3D) input.readObject();



Sockets TCP

Exemplo de aplicacao

public class Cliente {

private Socket client;

private ObjectInputStream input;
private ObjectOutputStream output;
private Imagem3D objImagem;

public void appCliente(){

client
output

Envia uma mensagem de
conexao ao servidor, e
aguarda a aceitacao

new Socket(InetAddress.getLocalHost(), 56789);
new ObjectOutputStream(client.getOutputStream());

input = new ObjectInputStream(client.getInputStream());

objImagem = new Imagem3D();
output.writeObject(objImagem);

objImagem = (Imagem3D) input.readObject();



Sockets TCP

Exemplo de aplicacao

public class Cliente {

Analogamente ao
private Socket client;

private ObjectInputStream input; serwdor, Clia-se 05 i
private ObjectOutputStream output; objetos para gerenciar o

private Imagem3D objImagem; fluxo de dados

public void appCliente(){

client new Socket(InetAddress.getLocalHost(), 56789);
output new ObjectOutputStream(client.getOutputStream());
input = new ObjectInputStream(client.getInputStream());

objImagem = new Imagem3D();
output.writeObject(objImagem);
objImagem = (Imagem3D) input.readObject();



Sockets TCP

Exemplo de aplicacao

public class Cliente {

private Socket client;

private ObjectInputStream input;
private ObjectOutputStream output;
private Imagem3D objImagem;

public void appCliente(){

client = new Socket(InetAddress.getLocalHost(), 56789);
output = new ObjectOutputStream(client.getOutputStream());
input = new ObjectInputStream(client.getInputStream());
objImagem = new Imagem3D(); Cria o ObJetO a Ser_
output.writeObject(objImagem); processado, O envia
objImagem = (Imagem3D)input.readObject(); ao servidor e

3 aguarda o objeto

de resposta
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