Comunicacao entre processos

Fernando Afonso Santos

UNIFEI
Campus Itabira

Processos

* Processos e Programas

- Um programa é uma entidade estatica
* Fornece as instrucdes necessarias para realizar tarefas
* Nao concorre por recursos do sistema

- Um processo é um programa em execucao

* Caracteriza-se por uma entidade dinamica, que muda
de estados e concorre por recursos do sistema

* Cada processo esta associado a um Bloco de Controle
de Processo (PCB), composto por informacoes como:
contador de programa (PC), descritores de arquivo e
enderecos de memoria

Processos

* Os processos executando no Sistema
Operacional podem ser independentes ou
cooperativos

- Processos independentes nao compartilham
dados com outros processos, 0s cooperativos sim.

* Principais motivos para cooperacao entre
processos
- Compartilhamento de informacoes

- Velocidade de computacao
- Modularidade

Processos

* A cooperacao requer gue 0S processos
comuniquem entre si e sincronizem suas

acoes

* Existem diferentes estratégias de
comunicacao entre processos - IPC (Inter-
Process Communication)

- A maneira mais comum para a comunicacao
entre processos € a troca de mensagens

Comunicacao entre processos

* O mecanismo de troca de mensagens
permite a processos locais ou remotos
comunicarem

- Para a comunicacao existir deve haver entre
eles um canal de comunicacao

- A implementacao da maioria destes canais se
baseia nas primitivas de mensagens send(msg)
e receive(msg)

Comunicacao entre processos

* Diferentes implementacdes sao possiveis
para a definicao de canais de comunicacao

- Comunicacao sincrona/assincrona
- Comunicacao confiavel/nao-confiavel

- Comunicacao orientada/nao-orientada a
conexao

Comunicacao entre processos

* Diferentes implementacoes sao possiveis
para a definicao de canais de comunicacao

- Comunicacao sincrona/assincrona
- Comunicacao confiavel/nao-confiavel
- Comunicacao orientada/nao-orientada a conexao

* Suponha que existam processos P e Q que
desejam comunicar

- P deseja enviar uma mensagem a Q

Comunicacao entre processos
Comunicacao sincrona/assincrona

* Troca de mensagens sincrona

- send(msg, Q): P bloqueia até Q receber a
mensagem

- receive(msg, P): Q bloqueia até receber a
mensagem de P

- Conhecida como comunicacao rendezvous

* Troca de mensagens assincrona

- send(msg, Q): P envia e continua sua execucao,
independente se Q recebeu ou nao a mensagem

- receive(msg, P): Q recebe a mensagem de P ou
nada, e continua sua execucao

Comunicacao entre processos
Comunicacao confiavel/nao-confiavel

e Canal Confidvel

- Estabelecido um canal de comunicacao
[send(msg,Q), receive(msg,P)], garante-se que
Q recebera msg de P

- Existe um overhead para assegurar a
confiabilidade
* Canal Nao-Confiavel

- Ao enviar uma mensagem entre dois processos,
nao ha garantia que esta mensagem sera
entregue

- Sem overhead de confiabilidade

Comunicacao entre processos
Comunicacao orientada/nao-orientada a

conexao)
* Canal orientado a conexao

- Antes de dois processos comunicarem, o canal é
estabelecido e s6 deixa de existir quando
finalizado por algum dos processos

- Mesmo se 0cioso, 0 canal continua ativo

e Canal nao-orientado a conexao

- O canal entre dois processos é estabelecido
apenas no envio/recebimento de uma
mensagem

- Ao concluir o envio/recebimento, o canal deixa
de existir

Sockets

* Um socket representa a extremidade de
um canal de comunicacao

- Tendo-se dois ou mais sockets corretamente
‘conectados’ é possivel estabelecer um canal
de comunicacao

* Na comunicacado entre processos

- E possivel vincular processos a sockets e
estabelecer um canal de comunicacao

- Deve haver um suporte da linguagem de
programacao para utilizar tal estratégia

Sockets TCP

* Aplica-se especificamente para estabelecer
um canal de comunicacao em redes TCP/IP

e Utiliza o conceito de portas
- Cada endereco IP tem 65536 portas

- Um socket TCP vincula o processo a uma porta,
permitindo a comunicacao entre processos

* O termo TCP (Transmission Control
Protocol) vem devido a implementacao de
um canal confiavel e orientado a conexao

- A comunicacao é feita por fluxos de dados

Sockets TCP

Exemplo de aplicacao

* Uma empresa lida com problemas de elevada
complexidade computacional

* ApOSs uma pesquisa resolveu implantar um
servidor de processamento, ao invés de
aumentar a capacidade das estacoes

* Um processo no servidor recebe requisicoes,
as processa e retorna o resultado a estacao
cliente

* A comunicacao é realizada utilizando sockets
TCP

* Implementacao em Java

Sockets TCP

Exemplo de aplicacao

* Classes/Interfaces envolvidas na implementacao

classe: AppCliente

*Problema prob;

mterface: Processa classe: Servidor

*solucionaProblemal); *Processa objProc;

classe: Problema
implementa Processa,
Serializable
*solucionaProblemal)

Sockets TCP

Exemplo de aplicacao

* Classes/Interfaces envolvidas na implementacao

A interface deve ser
classe- AppChente implementada pela classe

classe Servidor

Problema prob: % Problema e visualizada pela

mterface: Processa classe: Servidor

*solucionaProblemal); *Processa objProc;

classe: Problema
implementa Processa,
Serializable
*solucionaProblemal)

Sockets TCP

Exemplo de aplicacao

* Classes/Interfaces envolvidas na implementacao

classe: AppCliente

*Problema prob;

imterface: Processa classe: Servidor
*solucionaProblemal); *Processa objProc;
classe: Problema
implementa Processa,
Serializable
*solucionaProblemal) —

A classe Problema deve implementar
Serializable, para que os objetos
desta classe sejam enviados pela
rede do cliente ao servidor

Sockets TCP

Exemplo de aplicacao

* Classes/Interfaces envolvidas na implementacao

A classe cliente deve ter
como atributo um
problema a ser solucionado

classe: AppCliente

*Problema prob;

mterface: Processa classe: Servidor

*solucionaProblemal); *Processa objProc;

classe: Problema
implementa Processa,
Serializable
*solucionaProblemal)

Sockets TCP

Exemplo de aplicacao

 Classes/Interfaces envolvidas na implementacao

A classe servidor tem como atributo um
elemento da interface Processa, que permitira

invocar o método processaObjeto(), mesmo
sem saber qual é este objeto

classe: AppCliente

*Problema prob;

mterface: Processa classe: Servidor

*solucionaProblemal); *Processa objProc;

classe: Problema
implementa Processa,
Serializable
*solucionaProblemal)

Sockets TCP
Exemplo de aplicacao

public class Servidor {

private ServerSocket servidor;
private Socket conexao;

private ObjectInputStream input;
private ObjectOutputStream output;
private Processa objProc;

public void ativaServer(){
servidor = new ServerSocket (56789, 10);

while(true)
conexao = servidor.accept();

output = new ObjectOutputStream(conexao.getOutputStream());
input = new ObjectInputStream(conexao.getInputStream());

objProc = (Processa) input.readObject();
objProc.processaoObjeto(),
output.writeObject(objProc);

Sockets TCP
Exemplo de aplicacao

public class Servidor {

private ServerSocket servidor;
private Socket conexao;

private ObjectInputStream input;
private ObjectOutputStream output;
private Processa objProc;

public void ativaServer(){

servidor = new ServerSocket (56789, 10);

while(true)
conexao = servidor.accept();

Vincula-se o processo
servidor a porta 56789. As
requisicoes enviadas ao
endereco

“IP servidor : 56789” serao
atendidas por este processo

output = new ObjectOutputStream(conexao.getOutputStream());
input = new ObjectInputStream(conexao.getInputStream());

objProc = (Processa) input.readObject();

objProc.processaoObjeto(),
output.writeObject(objProc);

Sockets TCP
Exemplo de aplicacao
public class Servidor {

private ServerSocket servidor;
private Socket conexao;

private ObjectInputStream input; :
private ObjectOutputStream output; O servidor entra em

private Processa objProc; espera, até que existam
public void ativaServer(){ reqU|S|~goes pEliE novas
servidor = new ServerSocket (56789, 10); |conexoes. Ao aceitar uma
conexao, esta permanece
ativa até que um dos
lados a interrompa

while(true)
conexao = servidor.accept();

output = new ObjectOutputStream(conexao.getOutputStream());
input = new ObjectInputStream(conexao.getInputStream());

objProc = (Processa) input.readObject();
objProc.processaoObjeto(),
output.writeObject(objProc);

Sockets TCP
Exemplo de aplicacao

public class Servidor {

private ServerSocket servidor;
private Socket conexao;

private ObjectInputStream input;
private ObjectOutputStream output;
private Processa objProc;

public void ativaServer(){
servidor = new ServerSocket (56789, 10);

while(true)
conexao = servidor.accept();

output = new ObjectOutputStream(conexao.getOutputStream());
input = new ObjectInputStream(conexao.getInputStream());

objProc = (Processa) input.readObject():

objProc.processaObjeto(); Apc')s conectar, cria-se
output.writeObject(objProc); : .
) objetos para gerenciar o
} fluxo de dados entre
} cliente e servidor

Sockets TCP
Exemplo de aplicacao

public class Servidor {

private ServerSocket servidor;
private Socket conexao;

private ObjectInputStream input;
private ObjectOutputStream output;
private Processa objProc;

public void ativaServer(){
servidor = new ServerSocket (56789, 10);

while(true)
conexao = servidor.accept();

output = new ObjectOutputStream(conexao.getOutputStream());
input = new ObjectInputStream(conexao.getInputStream());

objProc = (Processa) input.readObject();
objProc.processaoObjeto(),
output.writeObject(objProc);

O servidor aguarda do
cliente o objeto a ser
processado, o0 processa e
retorna o resultado

Sockets TCP

Exemplo de aplicacao

public class Cliente {

private Socket client;

private ObjectInputStream input;
private ObjectOutputStream output;
private Imagem3D objImagem;

public void appCliente()({
client new Socket(InetAddress.getLocalHost(), 56789);

output new ObjectOutputStream(client.getOutputStream());
input = new ObjectInputStream(client.getInputStream());

objImagem = new Imagem3D();
output.writeObject(objImagem);
objImagem = (Imagem3D) input.readObject();

Sockets TCP

Exemplo de aplicacao

public class Cliente {

private Socket client;

private ObjectInputStream input;
private ObjectOutputStream output;
private Imagem3D objImagem;

public void appCliente(){

client
output

Envia uma mensagem de
conexao ao servidor, e
aguarda a aceitacao

new Socket(InetAddress.getLocalHost(), 56789);
new ObjectOutputStream(client.getOutputStream());

input = new ObjectInputStream(client.getInputStream());

objImagem = new Imagem3D();
output.writeObject(objImagem);

objImagem = (Imagem3D) input.readObject();

Sockets TCP

Exemplo de aplicacao

public class Cliente {

Analogamente ao
private Socket client;

private ObjectInputStream input; serwdor, Clia-se 05 i
private ObjectOutputStream output; objetos para gerenciar o

private Imagem3D objImagem; fluxo de dados

public void appCliente(){

client new Socket(InetAddress.getLocalHost(), 56789);
output new ObjectOutputStream(client.getOutputStream());
input = new ObjectInputStream(client.getInputStream());

objImagem = new Imagem3D();
output.writeObject(objImagem);
objImagem = (Imagem3D) input.readObject();

Sockets TCP

Exemplo de aplicacao

public class Cliente {

private Socket client;

private ObjectInputStream input;
private ObjectOutputStream output;
private Imagem3D objImagem;

public void appCliente(){

client = new Socket(InetAddress.getLocalHost(), 56789);
output = new ObjectOutputStream(client.getOutputStream());
input = new ObjectInputStream(client.getInputStream());
objImagem = new Imagem3D(); Cria o ObJetO a Ser_
output.writeObject(objImagem); processado, O envia
objImagem = (Imagem3D)input.readObject(); ao servidor e

3 aguarda o objeto

de resposta

	Prova Didática Comunicação entre processos
	Processos
	Slide 3
	Slide 4
	Comunicação entre processos
	Slide 6
	Slide 7
	Comunicação entre processos Comunicação síncrona/assíncrona
	Comunicação entre processos Comunicação confiável/não-confiável
	Comunicação entre processos Comunicação orientada/não-orientada a conexão
	Sockets
	Sockets TCP
	Sockets TCP Exemplo de aplicação
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

