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Processos

• Processos e Programas

– Um programa é uma entidade estática
• Fornece as instruções necessárias para realizar tarefas
• Não concorre por recursos do sistema

– Um processo é um programa em execução
• Caracteriza-se por uma entidade dinâmica, que muda 

de estados e concorre por recursos do sistema
• Cada processo está associado a um Bloco de Controle 

de Processo (PCB), composto por informações como: 
contador de programa (PC),  descritores de arquivo e 
endereços de memória



  

Processos

• Os processos executando no Sistema 
Operacional podem ser independentes ou 
cooperativos
– Processos independentes não compartilham 

dados com outros processos, os cooperativos sim.

• Principais motivos para cooperação entre 
processos
– Compartilhamento de informações
– Velocidade de computação
– Modularidade



  

Processos

• A cooperação requer que os processos 
comuniquem entre si e sincronizem suas 
ações

• Existem diferentes estratégias de 
comunicação entre processos - IPC (Inter-
Process Communication)
– A maneira mais comum para a comunicação 

entre processos é a troca de mensagens



  

Comunicação entre processos

• O mecanismo de troca de mensagens 
permite a processos locais ou remotos 
comunicarem
– Para a comunicação existir deve haver entre 

eles um canal de comunicação
– A implementação da maioria destes canais se 

baseia nas primitivas de mensagens send(msg) 
e receive(msg)



  

Comunicação entre processos

• Diferentes implementações são possíveis 
para a definição de canais de comunicação

– Comunicação síncrona/assíncrona

– Comunicação confiável/não-confiável

– Comunicação orientada/não-orientada a 
conexão



  

Comunicação entre processos

• Diferentes implementações são possíveis 
para a definição de canais de comunicação

– Comunicação síncrona/assíncrona

– Comunicação confiável/não-confiável

– Comunicação orientada/não-orientada a conexão

• Suponha que existam processos P e Q que 
desejam comunicar
– P deseja enviar uma mensagem a Q



  

Comunicação entre processos
Comunicação síncrona/assíncrona

• Troca de mensagens síncrona
– send(msg, Q): P bloqueia até Q receber a 

mensagem
– receive(msg, P): Q bloqueia até receber a 

mensagem de P
– Conhecida como comunicação rendezvous

• Troca de mensagens assíncrona
– send(msg, Q): P envia e continua sua execução, 

independente se Q recebeu ou não a mensagem
– receive(msg, P): Q recebe a mensagem de P ou 

nada, e continua sua execução



  

Comunicação entre processos
Comunicação confiável/não-confiável

• Canal Confiável
– Estabelecido um canal de comunicação 

[send(msg,Q), receive(msg,P)], garante-se que 
Q receberá msg de P

– Existe um overhead para assegurar a 
confiabilidade

• Canal Não-Confiável
– Ao enviar uma mensagem entre dois processos, 

não há garantia que esta mensagem será 
entregue

– Sem overhead de confiabilidade



  

Comunicação entre processos
Comunicação orientada/não-orientada a 
conexão
• Canal orientado a conexão

– Antes de dois processos comunicarem, o canal é 
estabelecido e só deixa de existir quando 
finalizado por algum dos processos

– Mesmo se ocioso, o canal continua ativo

• Canal não-orientado a conexão
– O canal entre dois processos é estabelecido 

apenas no envio/recebimento de uma 
mensagem

– Ao concluir o envio/recebimento, o canal deixa 
de existir



  

Sockets

• Um socket representa a extremidade de 
um canal de comunicação
– Tendo-se dois ou mais sockets corretamente 

‘conectados’ é possível estabelecer um canal 
de comunicação

• Na comunicação entre processos
– É possível vincular processos a sockets e 

estabelecer um canal de comunicação
– Deve haver um suporte da linguagem de 

programação para utilizar tal estratégia



  

Sockets TCP

• Aplica-se especificamente para estabelecer 
um canal de comunicação em redes TCP/IP

• Utiliza o conceito de portas
– Cada endereço IP tem 65536 portas
– Um socket TCP vincula o processo a uma porta, 

permitindo a comunicação entre processos

• O termo TCP (Transmission Control 
Protocol) vem devido à implementação de 
um canal confiável e orientado a conexão
– A comunicação é feita por fluxos de dados



  

Sockets TCP
Exemplo de aplicação

• Uma empresa lida com problemas de elevada 
complexidade computacional

• Após uma pesquisa resolveu implantar um 
servidor de processamento, ao invés de 
aumentar a capacidade das estações

• Um processo no servidor recebe requisições, 
as processa e retorna o resultado à estação 
cliente

• A comunicação é realizada utilizando sockets 
TCP

• Implementação em Java



  

Sockets TCP
Exemplo de aplicação

• Classes/Interfaces envolvidas na implementação



  

Sockets TCP
Exemplo de aplicação

• Classes/Interfaces envolvidas na implementação

A interface deve ser 
implementada pela classe 
Problema e visualizada pela 
classe Servidor



  

Sockets TCP
Exemplo de aplicação

• Classes/Interfaces envolvidas na implementação

A classe Problema deve implementar 
Serializable, para que os objetos 
desta classe sejam enviados pela 
rede do cliente ao servidor



  

Sockets TCP
Exemplo de aplicação

• Classes/Interfaces envolvidas na implementação

A classe cliente deve ter 
como atributo um 
problema a ser solucionado



  

Sockets TCP
Exemplo de aplicação

• Classes/Interfaces envolvidas na implementação
A classe servidor tem como atributo um 
elemento da interface Processa, que permitirá 
invocar o método processaObjeto(), mesmo 
sem saber qual é este objeto



  

Sockets TCP
Exemplo de aplicação
public class Servidor {
 private ServerSocket servidor;
 private Socket conexao;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Processa objProc;

 public void ativaServer(){
  servidor = new ServerSocket(56789, 10);

  while(true)
   conexao = servidor.accept();

   output = new ObjectOutputStream(conexao.getOutputStream());
   input = new ObjectInputStream(conexao.getInputStream());

   objProc = (Processa) input.readObject();
   objProc.processaObjeto();
   output.writeObject(objProc);
  }
 }
}



  

Sockets TCP
Exemplo de aplicação
public class Servidor {
 private ServerSocket servidor;
 private Socket conexao;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Processa objProc;

 public void ativaServer(){
  servidor = new ServerSocket(56789, 10);

  while(true)
   conexao = servidor.accept();

   output = new ObjectOutputStream(conexao.getOutputStream());
   input = new ObjectInputStream(conexao.getInputStream());

   objProc = (Processa) input.readObject();
   objProc.processaObjeto();
   output.writeObject(objProc);
  }
 }
}

Vincula-se o processo 
servidor à porta 56789. As 
requisições enviadas ao 
endereço 
“IP servidor : 56789” serão 
atendidas por este processo



  

Sockets TCP
Exemplo de aplicação
public class Servidor {
 private ServerSocket servidor;
 private Socket conexao;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Processa objProc;

 public void ativaServer(){
  servidor = new ServerSocket(56789, 10);

  while(true)
   conexao = servidor.accept();

   output = new ObjectOutputStream(conexao.getOutputStream());
   input = new ObjectInputStream(conexao.getInputStream());

   objProc = (Processa) input.readObject();
   objProc.processaObjeto();
   output.writeObject(objProc);
  }
 }
}

O servidor entra em 
espera, até que existam 
requisições para novas 
conexões. Ao aceitar uma 
conexão, esta permanece 
ativa até que um dos 
lados a interrompa



  

Sockets TCP
Exemplo de aplicação
public class Servidor {
 private ServerSocket servidor;
 private Socket conexao;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Processa objProc;

 public void ativaServer(){
  servidor = new ServerSocket(56789, 10);

  while(true)
   conexao = servidor.accept();

   output = new ObjectOutputStream(conexao.getOutputStream());
   input = new ObjectInputStream(conexao.getInputStream());

   objProc = (Processa) input.readObject();
   objProc.processaObjeto();
   output.writeObject(objProc);
  }
 }
}

Após conectar, cria-se 
objetos para gerenciar o 
fluxo de dados entre 
cliente e servidor



  

Sockets TCP
Exemplo de aplicação
public class Servidor {
 private ServerSocket servidor;
 private Socket conexao;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Processa objProc;

 public void ativaServer(){
  servidor = new ServerSocket(56789, 10);

  while(true)
   conexao = servidor.accept();

   output = new ObjectOutputStream(conexao.getOutputStream());
   input = new ObjectInputStream(conexao.getInputStream());

   objProc = (Processa) input.readObject();
   objProc.processaObjeto();
   output.writeObject(objProc);
  }
 }
}

O servidor aguarda do 
cliente o objeto a ser 
processado, o processa e 
retorna o resultado



  

Sockets TCP
Exemplo de aplicação

public class Cliente {

 private Socket client;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Imagem3D objImagem;

 public void appCliente(){

  client = new Socket(InetAddress.getLocalHost(), 56789);
  output = new ObjectOutputStream(client.getOutputStream());
  input = new ObjectInputStream(client.getInputStream());

  objImagem = new Imagem3D();
  output.writeObject(objImagem);
  objImagem = (Imagem3D) input.readObject();

}



  

Sockets TCP
Exemplo de aplicação

public class Cliente {

 private Socket client;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Imagem3D objImagem;

 public void appCliente(){

  client = new Socket(InetAddress.getLocalHost(), 56789);
  output = new ObjectOutputStream(client.getOutputStream());
  input = new ObjectInputStream(client.getInputStream());

  objImagem = new Imagem3D();
  output.writeObject(objImagem);
  objImagem = (Imagem3D) input.readObject();

}

Envia uma mensagem de 
conexão ao servidor, e 
aguarda a aceitação



  

Sockets TCP
Exemplo de aplicação

public class Cliente {

 private Socket client;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Imagem3D objImagem;

 public void appCliente(){

  client = new Socket(InetAddress.getLocalHost(), 56789);
  output = new ObjectOutputStream(client.getOutputStream());
  input = new ObjectInputStream(client.getInputStream());

  objImagem = new Imagem3D();
  output.writeObject(objImagem);
  objImagem = (Imagem3D) input.readObject();

}

Analogamente ao 
servidor, cria-se os 
objetos para gerenciar o 
fluxo de dados



  

Sockets TCP
Exemplo de aplicação

public class Cliente {

 private Socket client;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Imagem3D objImagem;

 public void appCliente(){

  client = new Socket(InetAddress.getLocalHost(), 56789);
  output = new ObjectOutputStream(client.getOutputStream());
  input = new ObjectInputStream(client.getInputStream());

  objImagem = new Imagem3D();
  output.writeObject(objImagem);
  objImagem = (Imagem3D)input.readObject();

}

Cria o objeto a ser 
processado, o envia 
ao servidor e 
aguarda o objeto 
de resposta
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