

Comunicação entre processosComunicação entre processos

Fernando Afonso Santos

UNIFEI
Campus Itabira

Processos

• Processos e Programas

– Um programa é uma entidade estática
• Fornece as instruções necessárias para realizar tarefas
• Não concorre por recursos do sistema

– Um processo é um programa em execução
• Caracteriza-se por uma entidade dinâmica, que muda

de estados e concorre por recursos do sistema
• Cada processo está associado a um Bloco de Controle

de Processo (PCB), composto por informações como:
contador de programa (PC), descritores de arquivo e
endereços de memória

Processos

• Os processos executando no Sistema
Operacional podem ser independentes ou
cooperativos
– Processos independentes não compartilham

dados com outros processos, os cooperativos sim.

• Principais motivos para cooperação entre
processos
– Compartilhamento de informações
– Velocidade de computação
– Modularidade

Processos

• A cooperação requer que os processos
comuniquem entre si e sincronizem suas
ações

• Existem diferentes estratégias de
comunicação entre processos - IPC (Inter-
Process Communication)
– A maneira mais comum para a comunicação

entre processos é a troca de mensagens

Comunicação entre processos

• O mecanismo de troca de mensagens
permite a processos locais ou remotos
comunicarem
– Para a comunicação existir deve haver entre

eles um canal de comunicação
– A implementação da maioria destes canais se

baseia nas primitivas de mensagens send(msg)
e receive(msg)

Comunicação entre processos

• Diferentes implementações são possíveis
para a definição de canais de comunicação

– Comunicação síncrona/assíncrona

– Comunicação confiável/não-confiável

– Comunicação orientada/não-orientada a
conexão

Comunicação entre processos

• Diferentes implementações são possíveis
para a definição de canais de comunicação

– Comunicação síncrona/assíncrona

– Comunicação confiável/não-confiável

– Comunicação orientada/não-orientada a conexão

• Suponha que existam processos P e Q que
desejam comunicar
– P deseja enviar uma mensagem a Q

Comunicação entre processos
Comunicação síncrona/assíncrona

• Troca de mensagens síncrona
– send(msg, Q): P bloqueia até Q receber a

mensagem
– receive(msg, P): Q bloqueia até receber a

mensagem de P
– Conhecida como comunicação rendezvous

• Troca de mensagens assíncrona
– send(msg, Q): P envia e continua sua execução,

independente se Q recebeu ou não a mensagem
– receive(msg, P): Q recebe a mensagem de P ou

nada, e continua sua execução

Comunicação entre processos
Comunicação confiável/não-confiável

• Canal Confiável
– Estabelecido um canal de comunicação

[send(msg,Q), receive(msg,P)], garante-se que
Q receberá msg de P

– Existe um overhead para assegurar a
confiabilidade

• Canal Não-Confiável
– Ao enviar uma mensagem entre dois processos,

não há garantia que esta mensagem será
entregue

– Sem overhead de confiabilidade

Comunicação entre processos
Comunicação orientada/não-orientada a
conexão
• Canal orientado a conexão

– Antes de dois processos comunicarem, o canal é
estabelecido e só deixa de existir quando
finalizado por algum dos processos

– Mesmo se ocioso, o canal continua ativo

• Canal não-orientado a conexão
– O canal entre dois processos é estabelecido

apenas no envio/recebimento de uma
mensagem

– Ao concluir o envio/recebimento, o canal deixa
de existir

Sockets

• Um socket representa a extremidade de
um canal de comunicação
– Tendo-se dois ou mais sockets corretamente

‘conectados’ é possível estabelecer um canal
de comunicação

• Na comunicação entre processos
– É possível vincular processos a sockets e

estabelecer um canal de comunicação
– Deve haver um suporte da linguagem de

programação para utilizar tal estratégia

Sockets TCP

• Aplica-se especificamente para estabelecer
um canal de comunicação em redes TCP/IP

• Utiliza o conceito de portas
– Cada endereço IP tem 65536 portas
– Um socket TCP vincula o processo a uma porta,

permitindo a comunicação entre processos

• O termo TCP (Transmission Control
Protocol) vem devido à implementação de
um canal confiável e orientado a conexão
– A comunicação é feita por fluxos de dados

Sockets TCP
Exemplo de aplicação

• Uma empresa lida com problemas de elevada
complexidade computacional

• Após uma pesquisa resolveu implantar um
servidor de processamento, ao invés de
aumentar a capacidade das estações

• Um processo no servidor recebe requisições,
as processa e retorna o resultado à estação
cliente

• A comunicação é realizada utilizando sockets
TCP

• Implementação em Java

Sockets TCP
Exemplo de aplicação

• Classes/Interfaces envolvidas na implementação

Sockets TCP
Exemplo de aplicação

• Classes/Interfaces envolvidas na implementação

A interface deve ser
implementada pela classe
Problema e visualizada pela
classe Servidor

Sockets TCP
Exemplo de aplicação

• Classes/Interfaces envolvidas na implementação

A classe Problema deve implementar
Serializable, para que os objetos
desta classe sejam enviados pela
rede do cliente ao servidor

Sockets TCP
Exemplo de aplicação

• Classes/Interfaces envolvidas na implementação

A classe cliente deve ter
como atributo um
problema a ser solucionado

Sockets TCP
Exemplo de aplicação

• Classes/Interfaces envolvidas na implementação
A classe servidor tem como atributo um
elemento da interface Processa, que permitirá
invocar o método processaObjeto(), mesmo
sem saber qual é este objeto

Sockets TCP
Exemplo de aplicação
public class Servidor {
 private ServerSocket servidor;
 private Socket conexao;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Processa objProc;

 public void ativaServer(){
 servidor = new ServerSocket(56789, 10);

 while(true)
 conexao = servidor.accept();

 output = new ObjectOutputStream(conexao.getOutputStream());
 input = new ObjectInputStream(conexao.getInputStream());

 objProc = (Processa) input.readObject();
 objProc.processaObjeto();
 output.writeObject(objProc);
 }
 }
}

Sockets TCP
Exemplo de aplicação
public class Servidor {
 private ServerSocket servidor;
 private Socket conexao;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Processa objProc;

 public void ativaServer(){
 servidor = new ServerSocket(56789, 10);

 while(true)
 conexao = servidor.accept();

 output = new ObjectOutputStream(conexao.getOutputStream());
 input = new ObjectInputStream(conexao.getInputStream());

 objProc = (Processa) input.readObject();
 objProc.processaObjeto();
 output.writeObject(objProc);
 }
 }
}

Vincula-se o processo
servidor à porta 56789. As
requisições enviadas ao
endereço
“IP servidor : 56789” serão
atendidas por este processo

Sockets TCP
Exemplo de aplicação
public class Servidor {
 private ServerSocket servidor;
 private Socket conexao;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Processa objProc;

 public void ativaServer(){
 servidor = new ServerSocket(56789, 10);

 while(true)
 conexao = servidor.accept();

 output = new ObjectOutputStream(conexao.getOutputStream());
 input = new ObjectInputStream(conexao.getInputStream());

 objProc = (Processa) input.readObject();
 objProc.processaObjeto();
 output.writeObject(objProc);
 }
 }
}

O servidor entra em
espera, até que existam
requisições para novas
conexões. Ao aceitar uma
conexão, esta permanece
ativa até que um dos
lados a interrompa

Sockets TCP
Exemplo de aplicação
public class Servidor {
 private ServerSocket servidor;
 private Socket conexao;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Processa objProc;

 public void ativaServer(){
 servidor = new ServerSocket(56789, 10);

 while(true)
 conexao = servidor.accept();

 output = new ObjectOutputStream(conexao.getOutputStream());
 input = new ObjectInputStream(conexao.getInputStream());

 objProc = (Processa) input.readObject();
 objProc.processaObjeto();
 output.writeObject(objProc);
 }
 }
}

Após conectar, cria-se
objetos para gerenciar o
fluxo de dados entre
cliente e servidor

Sockets TCP
Exemplo de aplicação
public class Servidor {
 private ServerSocket servidor;
 private Socket conexao;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Processa objProc;

 public void ativaServer(){
 servidor = new ServerSocket(56789, 10);

 while(true)
 conexao = servidor.accept();

 output = new ObjectOutputStream(conexao.getOutputStream());
 input = new ObjectInputStream(conexao.getInputStream());

 objProc = (Processa) input.readObject();
 objProc.processaObjeto();
 output.writeObject(objProc);
 }
 }
}

O servidor aguarda do
cliente o objeto a ser
processado, o processa e
retorna o resultado

Sockets TCP
Exemplo de aplicação

public class Cliente {

 private Socket client;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Imagem3D objImagem;

 public void appCliente(){

 client = new Socket(InetAddress.getLocalHost(), 56789);
 output = new ObjectOutputStream(client.getOutputStream());
 input = new ObjectInputStream(client.getInputStream());

 objImagem = new Imagem3D();
 output.writeObject(objImagem);
 objImagem = (Imagem3D) input.readObject();

}

Sockets TCP
Exemplo de aplicação

public class Cliente {

 private Socket client;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Imagem3D objImagem;

 public void appCliente(){

 client = new Socket(InetAddress.getLocalHost(), 56789);
 output = new ObjectOutputStream(client.getOutputStream());
 input = new ObjectInputStream(client.getInputStream());

 objImagem = new Imagem3D();
 output.writeObject(objImagem);
 objImagem = (Imagem3D) input.readObject();

}

Envia uma mensagem de
conexão ao servidor, e
aguarda a aceitação

Sockets TCP
Exemplo de aplicação

public class Cliente {

 private Socket client;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Imagem3D objImagem;

 public void appCliente(){

 client = new Socket(InetAddress.getLocalHost(), 56789);
 output = new ObjectOutputStream(client.getOutputStream());
 input = new ObjectInputStream(client.getInputStream());

 objImagem = new Imagem3D();
 output.writeObject(objImagem);
 objImagem = (Imagem3D) input.readObject();

}

Analogamente ao
servidor, cria-se os
objetos para gerenciar o
fluxo de dados

Sockets TCP
Exemplo de aplicação

public class Cliente {

 private Socket client;
 private ObjectInputStream input;
 private ObjectOutputStream output;
 private Imagem3D objImagem;

 public void appCliente(){

 client = new Socket(InetAddress.getLocalHost(), 56789);
 output = new ObjectOutputStream(client.getOutputStream());
 input = new ObjectInputStream(client.getInputStream());

 objImagem = new Imagem3D();
 output.writeObject(objImagem);
 objImagem = (Imagem3D)input.readObject();

}

Cria o objeto a ser
processado, o envia
ao servidor e
aguarda o objeto
de resposta

	Prova Didática Comunicação entre processos
	Processos
	Slide 3
	Slide 4
	Comunicação entre processos
	Slide 6
	Slide 7
	Comunicação entre processos Comunicação síncrona/assíncrona
	Comunicação entre processos Comunicação confiável/não-confiável
	Comunicação entre processos Comunicação orientada/não-orientada a conexão
	Sockets
	Sockets TCP
	Sockets TCP Exemplo de aplicação
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

