
Tempos e
Estados Globais
ECO036 - Sistemas Paralelos e

Distribuídos

Tópicos Abordados
- Tempo
- Relógios e Ordenação de eventos.

- Relação Happened- Before
- Relógios Lógicos
- Vetor de Relógios
- Relógios Físicos
- Método de Cristian e Algoritmo de Berkeley
- Network Time Protocol (NTP)

- Estados Globais
- Problema reconhecidos
- Estado global consistente
- Algoritmo snapshot distribuído

2

Porque tempo é interessante?
- Ordenação de eventos

- Armazenamento de dados em memória, arquivos e banco de dados.

- Pedidos de acesso exclusivo, como determinar quem pediu primeiro?

- Trocas interativas

3

Relógio e Ordenação de
Eventos

4

Relógios e Ordenação de Eventos

Para várias aplicações de Sistemas Distribuídos como Agendamento

distribuído e exclusão mútua distribuída, é importante determinar a ordem

no qual os vários eventos estão sendo executados. Se o sistema tem um

relógio global compartilhado, apenas uma marcação de tempo para cada

evento com relógio global seria suficiente para determinar a ordem.

5

Eventos

Como ordenar eventos

na ausência de um

relógio global?

6

Relação Happened-before

- Se e ocorreu antes de f no mesmo processo, logo e → f.

- Se e é o send de uma mensagem e f é o receive da mesma mensagem, logo e → f.

7

Exemplo
O conceito dessa relação foi proposto por

Lamport. É importante destacar que esta

relação consegue dar uma ordem parcial de

um conjunto de eventos.

 A ordem total pode ou não corresponder a

ordem real de execução dos eventos. No

entanto todos os processos devem

concordar com a mesma ordem total.

8

Relógios Lógicos

- Um relógio lógico “marca” cada evento com um valor inteiro de maneira

que a resultante da ordem dos eventos seja consistente com a relação

happened-before

9

Relógios Lógicos

- Inventado por Lamport, o relógio lógico é um contador de software que

aumenta a contagem monotonicamente, cujo o valor não precisa ter nenhum

relacionamento em particular com nenhum relógio físico.

10

Atualização de Relógios Lógicos
- RL1 Li é incrementado antes da ocorrência de um evento no processo pi

Li = Li + 1.

- RL2 a) Quando um processo pi envia uma mensagem m, m leva “de

carona” (piggybacking) o valor t = Li.

b) Na recepção (m,t), um processo pj calcula Lj: max(Lj,t) e , então,

aplica RL1 antes de indicar o tempo do evento no receive.

11

Atualização de Relógios Lógicos

12

Vetor de relógios

- Um relógio lógico estabelece uma ordem total de todos os eventos, mesmo quando

dois eventos são incomparáveis utilizando a relação happened-before. Embora os

relógios lógicos não conseguem tratar toda a informação sobre a relação happened-

before. Vamos descrever um mecanismo chamado de vetor de relógios capaz de

abranger toda a informação sobre a relação happened-before.

13

Vetor de Relógios
Proposto por Mattern and Fidge,

cada processo incrementa seu

própio relógio vetorial, e após isso

envia junto com a mensagem uma

cópia de seu relógio vetorial. No

recebimento da mensagem, atualiza

os valores do relógio vetorial para o

máximo de cada um.

14

Relógios Físicos

- Embora os Relógios de Lamport dê uma ordem não ambígua aos eventos,

o valor do tempo associado aos eventos não é necessariamente próximo

do tempo real no qual eles ocorrem. Em alguns sistemas (por exemplo,

sistemas de tempo-real), o tempo real é importante. Para amenizar os

problemas de sincronização, foram propostos algoritmos como o

Algoritmo de Cristian e o algoritmo de Berkeley.

15

Curiosidades
BIH - Bureau International de l’Heure - Paris, França

TAI - International Atomic Time

UTC - Coordinated Universal Time

16

Método de Cristian

- Usa método de sincronização externa

- Periodicamente, cada máquina cliente contata o servidor de tempo e

requisita a hora.

- O servidor (WWW), informa a hora “oficial”.

- O cliente assume a hora informada pelo servidor.

17

Método de Cristian

- A hora do cliente não pode “voltar” atrás.

- A solução para este problema é fazer com que o relógio do cliente ande

mais lento até sincronizar com o servidor.

18

Método de Cristian

- O atraso de transmissão pode ser relevante
- Contabilizar o RTT(round-trip time) e subtrair o tempo de viagem

- Tentar descobrir tempo de computação do servidor

- Tentar classificar atrasos curtos e longos.

19

Algoritmo de Berkeley

20

Algoritmo de Berkeley

- Algoritmo de Berkeley(Sincronização interna)
- Precisão: depende do RTT

- Tolerância a falhas: Calcula a média dos tempos para um subconjunto de computadores

que diferem a até um certo valor máximo. Ignora mensagens cujo tempo de transmissão

é muito elevado ou muito baixo.

- O que fazer se o master falhar?

Eleger um novo master.

21

Network Time Protocol (NTP)

O método de Cristian e o algoritmo de Berkeley se destinam

principalmente ao uso dentro de intranets. O NTP define uma arquitetura para

um serviço de tempo e um protocolo para distribuir informações de tempo pela

Internet.

22

Network Time Protocol (NTP)

23

Network Time Protocol (NTP)

- Servidores NTP sincronizam em um dos três modos:

- Multicast mode: para conexões LAN. Um ou mais servers periodicamente

lançam o tempo para o servidores via LAN, que fixam seus tempos

assumindo um pequeno delay. Esse modo tem baixa precisão.

- Procedure call: Um server recebe uma requisição, respondendo com o

carimbo de tempo, precisão maior que o anterior.

24

Network Time Protocol (NTP)

- Symmetric mode: usado por servidores que fornecem tempo em LAN,

mais preciso dos modos e maior nível de sincronização de subredes. Um

par de servidores simétricos trocam mensagens com a informação de

tempo

25

Estados Globais

- Estado global capta o conjunto de eventos que foram executados até o

momento.

- Em sistemas distribuídos é complicado avaliar o estado global, é preciso

cuidado ao se estabelecer o que ocorreu durante a execução.

- São utilizados para resolver muitos problemas em sistemas distribuídos.

26

Problemas
- Coleta de lixo distribuída: um objeto é considerado lixo se não existem

mais referências a ele em nenhuma parte do sistema distribuído.

- Detecção de deadlock distribuída: um deadlock distribuído ocorre quando

cada processo de uma coleção de processos espera que outro envie uma

mensagem para o outro.

- Detecção de término distribuída: detectar se um algoritmo distribuído

terminou.

27

Problemas a serem reconhecidos nos estados globais
28

- Histórico local do processo i:

- Histórico global:

Estado Global Consistente

29

- Para achar estados globais consistentes é utilizado uma técnica de corte.
- Este corte é uma divisão na execução do sistema, ou seja é um

subconjunto do histórico global.
- Eventos à direita do corte estão fora do estado global e eventos à

esquerda do corte estão dentro do estado global.
- Corte podem ser:

- Consistentes: obedecem causalidade;
- Insconsistentes: não obedecem causalidade.

Estado Global Consistente

30

Estado Global Consistente

31

- Algorítmo de Chandy e Lamport (1985).
- Determina estados globais consistentes em sistemas distribuídos.
- Permite avaliar predicados estáveis.

- Características instáveis em relação a um objeto: possui lixo, estar em
deadlock ou estar terminado.

- Qualquer processo pode inciar o snapshot.
- Vários snapshots podem estar executando em paralelo.

Algoritmo snapshot distribuído

32

- n processos no sistema.
- Cada canal de comunicação é unidirecional com entrega FIFO.

- FIFO: mensagem enviada primeiro é recebida primeiro.
- Não existe falha no envio de mensagens.
- Todas mensagens chegam intactas (sem perda de informação) e não são

duplicadas.
- Processos continuam a executar normalmente durante o snapshot.

Condições do algoritmo

33

- Para o processo iniciador Pi, ou seja que inicia o snapshot.
- Salva o seu estado
- Então cria mensagens do tipo “Marker”
- Para j = 1 até n, exceto i

- Pi envia mensagens “Marker” pelo canal Cij
- Grava as mensagens recebidas em cada um dos canais de Pi

Algorítmo snapshot distribuído

34

- Para o processo Pi que recebeu um “Marker”, em um canal Cki.
- se (É o primeiro “Marker” que P i está recebendo)

- Salva o seu estado
- Define o estado do canal Cki como “vazio”
- Para j = 1 até n, exceto i

- Pi envia mensagens “Marker” pelo canal Cij
- Grava as mensagens recebidas em cada um dos canais de Pi

- se não
- Define o estado do canal Cki como todas as mensagens que

chegaram desde que a gravação foi ativada para o canal Cki

Algorítmo snapshot distribuído

35

Exemplo de execução

36

Exemplo de execução

37

Conclusão

- Na ausência de Tempo Global em Sistemas Distribuídos, o tempo é uma
variável importante para determinar a ordem de eventos em certas
aplicações.

- Devido a necessidade da utilização de Sistemas Distribuídos os algoritmos
aqui apresentados são de extrema importância para o futuro do
desenvolvimento de aplicações.

38

Referências
- http://users.ece.utexas.edu/~garg/dist/wiley-encyc.pdf (Acesso em Junho de 2016)

- http://www.tlc-networks.polito.it/oldsite/anapaula/Aula_Cap06b.pdf (Acesso em Junho de 2016)

- http://www.di.ubi.pt/~pprata/sdtf/SDTF_10_11_T02_TempoRelogios.pdf (Acesso em Junho de

2016)

- http://www.cin.ufpe.br/~avmm/arquivos/provas%20software/resuminho3.pdf (Acesso em

Junho de 2016)

- http://www-usr.inf.ufsm.br/~ceretta/elc1018/sincronizacao.pdf (Acesso em Junho de 2016)

- http://www.dainf.cefetpr.br/~tacla/SDII/Cap10-06-EstadosGlobais.pdf (Acesso em Junho de

2016)

39

http://users.ece.utexas.edu/~garg/dist/wiley-encyc.pdf
http://users.ece.utexas.edu/~garg/dist/wiley-encyc.pdf
http://www.tlc-networks.polito.it/oldsite/anapaula/Aula_Cap06b.pdf
http://www.tlc-networks.polito.it/oldsite/anapaula/Aula_Cap06b.pdf
http://www.di.ubi.pt/~pprata/sdtf/SDTF_10_11_T02_TempoRelogios.pdf
http://www.cin.ufpe.br/~avmm/arquivos/provas%20software/resuminho3.pdf
http://www-usr.inf.ufsm.br/~ceretta/elc1018/sincronizacao.pdf
http://www-usr.inf.ufsm.br/~ceretta/elc1018/sincronizacao.pdf
http://www.dainf.cefetpr.br/~tacla/SDII/Cap10-06-EstadosGlobais.pdf

