\documentclass[12pt]{extarticle} \usepackage{extsizes} \usepackage[reqno]{amsmath} % equation numbers on the right \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsthm} \usepackage{amscd} \usepackage{amsfonts} \usepackage{graphicx} \usepackage{dsfont} \usepackage{fancyhdr} \usepackage{enumerate} \usepackage[utf8]{inputenc} \usepackage{subfigure} \usepackage[margin=1in]{geometry} \usepackage{graphicx} \usepackage[noend]{algorithmic} \usepackage{algorithm} \usepackage{color} \usepackage{hyperref} %THEOREM STYLES \theoremstyle{plain} \newtheorem{conjecture}{Conjecture} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{problem}{Problem}[section] \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem*{dem}{Proof} \newtheorem{exerc}{Exercise} \newtheorem{ans}{Answer} %NICE HEADER \pagestyle{fancy}\lhead{\textcolor{red}{YOUR NAME HERE}} \rhead{Algebraic Combinatorics - 2019.1} \chead{{\large{\bf }}} \lfoot{} \rfoot{\bf \thepage} \cfoot{} \newcounter{list} \begin{document} \begin{center} \Large \textbf{{Assignment 1}} \end{center} \begin{exerc} Let $f_0 = 1$ and $f_1 = 1$, and $f_k = f_{k-1} + f_{k-2}$. Aka: Fibonacci numbers. Show how to derive a formula for $f_k$ that does not depend on previous terms using what you learned about formal power series. \end{exerc} \begin{ans} \textcolor{red}{TYPE ANSWER HERE} \end{ans} \begin{ans} \end{ans} \begin{ans} \end{ans} \end{document}