
Adaptive Normalization: A Novel Data Normalization Approach for
Non-Stationary Time Series

Eduardo Ogasawara, Leonardo C. Martinez, Daniel de Oliveira,

Geraldo Zimbrão, Gisele L. Pappa and Marta Mattoso

Abstract* - Data normalization is a fundamental preprocessing
step for mining and learning from data. However, finding an
appropriated method to deal with time series normalization is
not a simple task. This is because most of the traditional
normalization methods make assumptions that do not hold for
most time series. The first assumption is that all time series are
stationary, i.e., their statistical properties, such as mean and
standard deviation, do not change over time. The second
assumption is that the volatility of the time series is considered
uniform. None of the methods currently available in the
literature address these issues. This paper proposes a new
method for normalizing non-stationary heteroscedastic (with
non-uniform volatility) time series. The method, named
Adaptive Normalization (AN), was tested together with an
Artificial Neural Network (ANN) in three forecast problems.
The results were compared to other four traditional
normalization methods, and showed AN improves ANN
accuracy in both short- and long-term predictions.

I. INTRODUCTION
Any application that deals with data requires a lot of time

and effort for data preparation [1-3]. The main goal of data
preparation is to guarantee the quality of the data before it is
fed to any learning algorithm, and includes data cleaning,
integration and transformation, and reduction. This paper
focuses on data transformation methods, especially
normalization, when dealing with time series data.

The most common normalization methods used during
data transformation include the min-max (where the data
inputs are mapped into a predefined range, varying from 0 or
−1 to 1), the z-score (where the values of an attribute A are
normalized according to its mean and standard deviation),
and the decimal scaling (where the decimal point of the
values of an attribute A are moved according to its maximum
absolute value). However, these methods are not always
applicable to time series data. Consider the min-max and the
decimal scaling methods, for instance. Their applicability
depends on knowing the minimum and/or maximum values
of a time series, which is not always possible. We can
assume these values are present in a time series sample, but
future data might be out of bounds.

The z-score method, in contrast, is useful when the
minimum and maximum values of an attribute are unknown,

Eduardo Ogasawara, Daniel de Oliveira, Geraldo Zimbrão and Marta
Mattoso are with the Department of Computer Science, Federal University
of Rio de Janeiro – Brazil (email: {ogasawara, danielc, zimbrao,
marta}@cos.ufrj.br).
Leonardo Martinez and Gisele Pappa are with the Department of Computer
Science, Federal University of Minas Gerais - Brazil (email: {leocm,
glpappa}@dcc.ufmg.br).

and can be applied to stationary time series [4,5], i.e., time
series whose statistical properties, such as mean, variance,
and autocorrelation, are constant over time. However, in the
real world, most of the financial and economical time series
are non-stationary [6]. In contrast with stationary time series,
in non-stationary series data statistical properties do vary
over time.

Fig. 1 Monthly average exchange rate of U.S. Dollar to Brazilian Real time
series

In order to illustrate the concepts described above, Fig. 1
presents the monthly time series of average exchange rates of
U.S. Dollar to Brazilian Real from January 1999 to
December 2009. Complementary, Table I shows the mean,
standard deviation, and minimum and maximum values of
the series per year. Observe that these values change over
time. For instance, the exchange rate mean in 1999 was 1.81,
and this value rose to 3.08 in 2003. These variations shows
that time series in Fig. 1 is non-stationary.

TABLE I
STATISTICS OF THE MONTHLY AVERAGE EXCHANGE RATE OF U.S. DOLLAR

TO BRAZILIAN REAL TIME SERIES

Year Mean Std. Deviation Min Max
1999 1.81 0.13 1.50 1.97
2000 1.83 0.07 1.74 1.96
2001 2.35 0.25 1.95 2.74
2002 2.92 0.56 2.32 3.81
2003 3.08 0.26 2.86 3.59
2004 2.93 0.12 2.72 3.13
2005 2.44 0.17 2.21 2.70
2006 2.18 0.04 2.13 2.27
2007 1.95 0.13 1.77 2.14
2008 1.83 0.28 1.59 2.39
2009 2.00 0.23 1.73 2.31

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

01
/1

99
9

06
/1

99
9

11
/1

99
9

04
/2

00
0

09
/2

00
0

02
/2

00
1

07
/2

00
1

12
/2

00
1

05
/2

00
2

10
/2

00
2

03
/2

00
3

08
/2

00
3

01
/2

00
4

06
/2

00
4

11
/2

00
4

04
/2

00
5

09
/2

00
5

02
/2

00
6

07
/2

00
6

12
/2

00
6

05
/2

00
7

10
/2

00
7

03
/2

00
8

08
/2

00
8

01
/2

00
9

06
/2

00
9

11
/2

00
9

US$

High volatility

Low volatility

Although there are ways of transforming non-stationary
in stationary time series through mathematical
manipulations, such as differencing transformations [7], this
process is not always appropriated to handle non-stationary
series [8,9], as it removes long-run information from data.

One traditional approach that attempts to overcome the
problems of the aforementioned normalization methods to
handle non-stationary time series uses the sliding window
technique [10,11]. This approach divides data series into
sliding windows, extracts statistical properties from data
considering only the last ω items of the series, where ω is
the length of the window, and normalizes each window
considering these statistical properties. The sliding window
technique works well for time series with uniform volatility
[6,12,13], but most time series present non-uniform volatility
[6], that is, high volatility for certain time periods and low
for others.

For instance, consider the time series presented in Fig. 1.
Its volatility is non-uniform, as it is high from December
2001 to October 2002 and low from April 2003 to February
2004. Time series presenting this behavior are said to be
heteroscedastic [4] and the sliding window technique do not
deal well with them, since all the normalized sliding
windows present the same volatility.

This paper addresses the problem of normalizing non-
stationary heteroscedastic time series. We propose a new
method, named Adaptive Normalization (AN), which is a
variation of the sliding window technique. The main
difference between the two methods is that AN transforms
the time series into a data sequence from which global
statistical properties, obtained from a sample set, can be
calculated and considered in the normalization process.
Thus, the sliding windows of AN are able to represent
different volatilities.

We also studied how Adaptive Normalization affects
time series forecasting with artificial neural networks
(ANN). We chose to start its analysis by using an ANN due
to the great impact data normalization has in neural
networks, as it prevents attributes with initially large ranges
from outweighing attributes with initially smaller ranges
[1,14], while improving error estimations and reducing
training time [10,15,16].

Experiments with Adaptive Normalization were
performed using three time series: U.S. Dollar to Brazilian
Real Exchange Rate, Brazilian Agriculture Gross Product,
and São Paulo Unemployment Rate. We compared the
method with four other normalization techniques and the
results showed that AN achieved better results for short- and
long-term forecasts.

The remainder of this paper is organized as follows.
Section II discusses traditional data normalization
techniques. Section III introduces the new method, Adaptive
Normalization. Section IV presents experimental results
using AN with neural networks for time series forecasting.
Finally, Section V presents some conclusions and directions
for future work.

II. TRADITIONAL DATA NORMALIZATION METHODS
In this section, we briefly describe the three data

normalization methods most commonly used in the
literature: min-max, decimal scaling and z-score [1]. In
addition, we also discuss the sliding window technique,
usually applied to normalize time series data. Table II
summarizes the notation that is used throughout this paper.
Note that the term sequence is used to represent any ordered
list of values (e.g., a time series).

TABLE II
SUMMARY OF NOTATION

Symbol Definition
݉݅݊, ݔܽ݉ The minimum and maximum values of attribute A
,ሻܣሺߤ ሻܣሺߪ Mean and standard deviation of attribute A

|ܵ| Length of sequence S
ܵሾ݅ሿ The ith entry of sequence S (1 ≤ i ≤ |S|)

ܵሾ݅: ݆ሿ Subsequence os S, from index i to index j
ܵሺሻ The k-moving average sequence of S
ܵ௦

ሺሻ The k-simple moving average sequence of S

ܵ
ሺሻ The k-exponential moving average sequence of S
߱ Length of the disjoint/sliding windows
φ Number of disjoint/sliding windows of training set
 The ith disjoint/sliding window of sequence Sݏ

(= S[(i − 1) × ω + 1 : i × ω], i ≥ 1)
,ሺܵሺሻߜ ሻ The level of adjustment of the k-moving averageݎ

sequence of S to the disjoint sliding window ri
,ሺܵሺሻߜ ܴሻ The level of adjustment of the k-moving average

sequence of S to all the disjoint sliding windows of R

The min-max method normalizes the values of an

attribute A according to its minimum and maximum values.
It converts a value a of A to a´ in the range [low, high] by
computing:

aᇱ ൌ ሺhigh െ lowሻ ൈ
a െ min

max െ min
 low

The main problem of using the min-max normalization

method in time series forecast is that the minimum and
maximum values of out-of-sample data set are unknown. A
simple way to overcome this problem is to consider the
minimum (minA) and maximum (maxA) values presented in
the in-sample data set, and then map all out-of-sample values
below minA and above maxA to low and high, respectively.
However, this approach leads to significant information loss
and to a concentration of values on certain parts of the
normalized range [1], which implies more computational
effort and loss of quality in learning techniques [14,16].

Fig. 1 illustrates this problem in the monthly average
exchange rate of U.S. Dollar to Brazilian Real time series. If
we use the min-max normalization with an in-sample set
from January 1999 to December 2001, we observe that from
the middle of 2002, the min-max would lead to an out of
bounds normalization.

Fig. 2 U.S. Dollar to Brazilian Real Exchange Rate using min-max

Another common normalization method, the decimal
scaling normalization, moves the decimal point of the values
of an attribute A according to its maximum absolute value.
Hence, a value a of A is normalized to a´ by computing:

ܽᇱ ൌ
ܽ

ሺ10ௗሻ

where d is the smallest integer such that Max(|a´|) < 1. This
method also depends on knowing the maximum values of a
time series and has the same problems of min-max when
applied to time series data.

Finally, in the z-score normalization, the values of an
attribute A are normalized according to their mean and
standard deviation. A value a of A is normalized to a´ by
computing:

ܽᇱ ൌ
ܽ െ µሺܣሻ

σሺܣሻ

This method is useful in stationary environments when

the actual minimum and maximum values of attribute A are
unknown, but it cannot deal well with non-stationary time
series since the mean and standard deviation of the time
series vary over time.

Another traditional approach commonly used for data
normalization is the sliding window technique [10,11]. The
basic idea of this approach is that, instead of considering the
complete time series for normalization, it divides the data
into sliding windows of length ω, extracts statistical
properties from it considering only a fraction of ω
consecutive time series values [1,17], and normalizes each
window considering only these statistical properties. The
rationale behind this approach is that decisions are usually
based on recent data. The sliding window technique has the
advantage of always normalizing data in the desired range.
However, it has a drawback of assuming that the time series
volatility is uniform, which is not true in many phenomena
[4,6,18].

In order to illustrate this problem, Fig. 3 and Fig. 4
present two sample data of the monthly average exchange
rate of U.S. Dollar to Brazilian Real time series using ω = 5.
The first one is from August 2000 to December 2000 and the
second is from April 2001 to August 2001. Fig. 3 shows the

original time series values, while Fig. 4 shows the values
normalized by the min-max method. Although the dataset
from window number 1 had less volatility than the dataset of
window number 2, the normalized windows do not preserve
this behavior.

Fig. 3 U.S. Dollar to Brazilian Real Exchange Rate from aug/2000 to
dec/2000 and from apr/2001 to aug/2001

Fig. 4 U.S. Dollar to Brazilian Real Exchange Rate from aug/2000 to
dec/2000 and from apr/2001 to aug/2001 normalized by sliding window

Traditional normalization methods, as discussed above,
are successful in stationary time series. The sliding window
technique tries to overcome the limitations of those methods,
but with an implicit assumption of uniform volatility. As
these techniques are extrapolated to non-stationary time
series with heteroscedasticity, they are not capable to
represent the time series correctly in a normalized range.

III. ADAPTIVE NORMALIZATION
Adaptive Normalization is a novel data normalization

approach specially developed to be applied to non-stationary
heteroscedastic time series. Its complete process of data
normalization can be divided into three stages: (i)
transforming the non-stationary time series into a stationary
sequence, which creates a sequence of disjoint sliding
windows (that do not overlap); (ii) outlier removal; (iii) data
normalization itself. The data resulting from this process are
given as input to a learning method, such as an ANN. In this

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50
01

/1
99

9

06
/1

99
9

11
/1

99
9

04
/2

00
0

09
/2

00
0

02
/2

00
1

07
/2

00
1

12
/2

00
1

05
/2

00
2

10
/2

00
2

03
/2

00
3

08
/2

00
3

01
/2

00
4

06
/2

00
4

11
/2

00
4

04
/2

00
5

09
/2

00
5

02
/2

00
6

07
/2

00
6

12
/2

00
6

05
/2

00
7

10
/2

00
7

03
/2

00
8

08
/2

00
8

01
/2

00
9

06
/2

00
9

11
/2

00
9

US$ (min-max)

normalization
problem
in upper

boundary

Normalization problem
in lower boundary

sample set used
to collect statistics
for normalization

1.50

1.70

1.90

2.10

2.30

2.50

2.70

08
/2

00
0

09
/2

00
0

10
/2

00
0

11
/2

00
0

12
/2

00
0

01
/2

00
1

02
/2

00
1

03
/2

00
1

04
/2

00
1

05
/2

00
1

06
/2

00
1

07
/2

00
1

08
/2

00
1

US$

sequence for slide window #1

sequence for slide window #2

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50
08

/2
00

0

09
/2

00
0

10
/2

00
0

11
/2

00
0

12
/2

00
0

01
/2

00
1

02
/2

00
1

03
/2

00
1

04
/2

00
1

05
/2

00
1

06
/2

00
1

07
/2

00
1

08
/2

00
1

US$

normalized slide
window #1

normalized slide
window #2

case, after forecasts are made, a denormalization and
detransformation process maps the output values to the
original values in the time series.

In order to illustrate AN, this section introduces the
concepts and shows the method working in a toy example,
based on the daily time series presented in Table III, which
contains the exchange rate of U.S. Dollar to Brazilian Real
from the 1st to the 17th of December 2009. This time series
contain 13 points, and in this example we show how AN is
used to forecast the 13th element of sequence S.

TABLE III
SAMPLE DAILY EXCHANGE RATE OF U.S. DOLLAR TO BRAZILIAN REAL

TIME SERIES

i Date US$/R$: S EMA: ࢋࡿ
ሺሻ

1 2009-12-01 1.734 1.721
2 2009-12-02 1.720 1.729
3 2009-12-03 1.707 1.734
4 2009-12-04 1.708 1.742
5 2009-12-07 1.735 1.745
6 2009-12-08 1.746 1.747
7 2009-12-09 1.744 1.752
8 2009-12-10 1.759 1.752
9 2009-12-11 1.751 1.760
10 2009-12-14 1.749 -
11 2009-12-15 1.763 -
12 2009-12-16 1.753 -
13 2009-12-17 1.774 -

A. Data Transformation
In the first stage of Adaptive Normalization, the original

non-stationary time series is transformed into a stationary
sequence. This transformation is based on the concepts of
moving averages and proceeds in two steps. First, the
moving average of the original time series is calculated.
Then, its values are used to create a new stationary sequence
which is divided into disjoint sliding windows (DSWs).

Moving averages (MAs) [7] have been widely used in
many areas, such as finance [6] and econometrics [19]. They
are useful for finding trends and patterns in time series data,
and detecting changes in their behavior by reducing the
effect of noise [20]. Furthermore, MAs can implicitly deal
with inertia [4], an important concept in time series data.
Inertia is a physical and mathematical concept that is
expressed as the resistance an object offers to a change in its
state of motion [21]. In time series data, inertia is an
important property that allows handling the stability-
plasticity dilemma [22]. In AN, in a moving average of order
k, k corresponds to the number of periods used to introduce
inertia to the new stationary sequence, as explained below.

MAs convert a given sequence S into a new sequence S(k),
where each value in S(k) represents the average of k
consecutive values of sequence S. In other words, given a
sequence S = {S[1], S[2], . . . , S[n]} of length n and a
moving average order k (1 ≤ k ≤ n), the i-th value S(k)[i] (1 ≤
i ≤ n−k+1) of the k-moving average sequence S(k) is defined
as an average of the values of the subsequence S[i : i + k −
1].

Two types of MA can be used in the adaptive
normalization process: a Simple Moving Average (SMA) or

an Exponential Moving Average (EMA) [23]. While a SMA
is a sequence of non-weighted averages, EMAs are
sequences of weighted averages with weighting factors
decreasing exponentially. EMAs give more weight to recent
observations, where the weights decrease by a constant
smoothing factor α (0≤α≤1), w is usually expressed in terms
of the EMA order k:α = 2/(k + 1).

When using SMA with Adaptive Normalization, Ss
(k)[i]

can be defined as:

ܵ௦

ሺሻሾ݅ሿ ൌ ଵ

∑ ܵሾ݆ሿ, 1 /݅ ݅ ݊ െ ݇ 1ାିଵ
ୀ .

When using EMA, in contrast, Se

(k)[i] can be recursively
defined as:

ܵ

ሺሻሾ1ሿ ൌ ܵ௦
ሺሻሾ1ሿ

ܵ

ሺሻሾ݅ሿ ൌ ሺ1 െ ሻܵߙ
ሺሻሾ݅ െ 1ሿ ሾ݅ܵߙ ݇ െ 1ሿ,

2 /݅ ݅ ݊ െ ݇ 1

The third column of Table III shows the EMA with k = 5

and α = 0.333 for the time series listed in the second column.
For instance, ܵ

ሺହሻሾ2ሿ = 0.667 × ܵ
ሺହሻሾ1ሿ + 0.333 × ܵሾ6ሿ =

1.729. After creating the moving average sequence, Adaptive
Normalization transforms the original non-stationary time
series into a stationary sequence divided into disjoint sliding
windows, as explained below.

Given a sequence S of length n, its k-moving average
S(k) of length n − k + 1, and a sliding window length ω, a
new sequence R can be defined as:

ܴሾ݅ሿ ൌ
ௌሾ ⎡

ഘ⎤ ሺ୧ିଵሻ ୫୭ୢ ωሿ

ௌሺೖሻቂ ⎡
ഘ⎤ ቃ

,

(1)

for all 1 ≤ i ≤ (n − ω + 1) × ω. This sequence R is divided
into n − ω + 1 disjoint sliding windows. Considering our
example, Table IV shows the sequence R divided into eight
DSWs with ω = 6. For instance, the 9th element of sequence
R appears in the third element of the second DSW. Its value
can be calculated by Equation 1:
ܴሾ9ሿ ൌ ௌሾସሿ

ௌ
ሺఱሻሾଶሿ

ൌ ଵ.଼
ଵ.ଶଽ

ൌ 0.988. The DSWs {r1, . . . , r7} are

used in the training data set while r8 is used in the testing
data set.

As can be seen, for each DSW ri, all the fraction’s
denominator are the same (ܵሺሻሾ݅ሿ). This factor is important
to preserve the original trend of the time series and to bring
the same inertia to all the values in a DSW. Each DSW
contains ω −1 input values and 1 output value. Note that, if k
> ω − 1, i.e., if the moving average order is larger than the
number of inputs, we should first calculate ܵሺሻ and then
discard the k−(ω−1) first values of S in order to create the
sequence R. For instance, if k = ω= 3, we should remove the
first term of sequence S. Then, the first DSW of R would be

ௌሾଶሿ

ௌ
ሺయሻሾଵሿ

, ௌሾଷሿ

ௌ
ሺయሻሾଵሿ

 and ௌሾସሿ

ௌ
ሺయሻሾଵሿ

.

TABLE IV
SAMPLE OF DISJOINT SLIDING WINDOWS OF SEQUENCE R

ሿሾࡿ ࢘
ࢋࡿ

ሺሻሾሿ

ሾࡿ ሿ
ࢋࡿ

ሺሻሾሿ

ሾࡿ ሿ
ࢋࡿ

ሺሻሾሿ

ሾࡿ ሿ
ࢋࡿ

ሺሻሾሿ

ሾࡿ ሿ
ࢋࡿ

ሺሻሾሿ

ሾࡿ ሿ
ࢋࡿ

ሺሻሾሿ

1 1.008 1.000 0.992 0.993 1.008 1.015
2 0.995 0.987 0.988 1.003 1.010 1.009
3 0.984 0.985 1.000 1.007 1.006 1.014
4 0.980 0.996 1.002 1.001 1.010 1.005
5 0.994 1.000 0.999 1.008 1.003 1.002
6 1.000 0.999 1.007 1.003 1.001 1.009
7 0.995 1.004 0.999 0.998 1.006 1.001
8 1.004 0.999 0.998 1.006 1.000 1.012

The type of the MA to be used in Adaptive
Normalization and its order vary according to the time series
characteristics. We test the adjustment level of all the
combinations of “MA type” and “order k”, and the one with
the best adjustment to all the DSWs is selected. First, we
calculate the level of adjustment of each ܵሺሻ to each one of
the training set DSWs:

,൫ܵሺሻߜ ൯ݎ ൌ
1
߱ ሺܵሾ݆ሿ െ ܵሺሻሾ݅ሿሻଶ

ାఠିଵ

ୀ

, 1/݅ ݅ φ (2)

where φ is the number of DSWs used in the training data set.
Then, we calculate the level of adjustment of ܵሺሻ according
to all the DSWs of R:

,൫ܵሺሻߜ ܴ൯ ൌ
1
φ

 ,൫ܵሺሻߜ ൯ݎ
φ

ୀଵ

 (3)

The ߜ൫ܵሺሻ, ܴ൯ that achieves the lowest adjustment level

is selected to be used in Adaptive Normalization. Although
there are other ways to calculate the adjustments levels, we
decided to use Equations 2 and 3 to calculate them for all the
experiments. The concept of adjustment here (and
consequently the definition of Equations 2 and 3) is the same
used in linear regression: minimize the sum of the squares of
some measure. We used the difference between the
numerators and denominators of each fraction as our
measure, with the main goal to keep the values of sequence
R closest to 1.

B. Outlier Removal
The second stage of Adaptive Normalization is dedicated

to outlier removal [1,3,24]. Outlier removal of sample data is
a key step in the data preprocessing phase, and is also
important for time series analysis. The main problem to the
data normalization process arises when outliers occur in
extreme boundaries of the time series, leading to incoherent
minimum and/or maximum values. This affects the global
statistics of the time series and also the data normalization
quality, since values may be concentrated on a specific range
of the normalized range.

To avoid this inconvenience, a method based on Box
plots [25,26] for detecting outliers in a data sample set can be
applied. The method prune any value smaller than the first
quartile minus 1.5 times the interquartile range, and also any
value larger than the third quartile plus 1.5 times the
interquartile range [27], that is, all the values that are not in
the range [Q1−1.5×IQR, Q3+1.5×IQR] are considered
outliers. In Adaptive Normalization, any DSW that contains
at least one outlier is not considered during the algorithm
training phase.

In our example, the subsequence R[1 : 42] (the training
data set) illustrated by Table IV has Q1 = 0.996 and Q3 =
1.006. Then, IQR = Q3−Q1 = 0.010, Q1−1.5×IQR = 0.981
and Q3 + 1.5 × IQR = 1.021. Thus, only r4 is discarded from
the training data set, since it contains a value smaller than
0.981.

The multiplier 1.5 for the interquartile range may be
adjusted depending on the data set. The value 3.0 is also
commonly used to remove only the extreme outliers [27]. In
the experiments reported in Section IV, we used the value
3.0.

C. Data Normalization
Adaptive normalization uses the min-max method to

normalize the values of sequence R in the range [−1, 1], but
in a different way of the traditional sliding window approach.
The idea is to explore all the disjoint sliding windows in
order to obtain global data statistics (including global
minimum and global maximum), and to use these values as
inputs for the min-max normalization method. However, the
value Q1 − 1.5 × IQR (Q3 + 1.5 × IQR) is considered the
global minimum (maximum) if R contains any value smaller
(larger) than it.

Continuing with our example, the minimum and
maximum values used in the min-max normalization method
were, respectively, 0.981 (Q1−1.5×IQR) and 1.015
(maximum value of R). Table V shows the sequence R after
normalization.

It is now possible to return to the example of Fig. 3, and
compare the traditional sliding window normalization
showed by Fig. 4 with Adaptive Normalization. Fig. 5
presents the normalized values of the monthly average
exchange rate of U.S. Dollar to Brazilian Real time series
from August 2000 to December 2000 and from April 2001 to
July 2001 using AN, with k = 4 and ω = 5. The problems
observed using traditional sliding window methods do not
occur when using AN. In the sequence of sliding window
number 1 in Fig. 3 there is an upward trend, with lower
volatility than the one of sliding window number 2. This still
occurs when observing the normalized windows in Fig. 5. It
is worth noticing that values are not stretched to reach -1 to
1. Indeed they respect the global volatility obtained from the
whole sample set.

Fig. 5 U.S. Dollar to Brazilian Real Exchange Rate from aug/2000 to
dec/2000 and from apr/2001 to aug/2001 normalized by Adaptive
Normalization

TABLE V
SAMPLE OF DISJOINT SLIDING WINDOWS OF SEQUENCE R NORMALIZED WITH

ADAPTIVE NORMALIZATION IN THE RANGE [−1, 1]

 Sequence R ࢘
1 0,585 0,102 -0,347 -0,313 0,620 1,000
2 -0,187 -0,634 -0,599 0,329 0,707 0,638
3 -0,801 -0,766 0,159 0,536 0,468 0,982
4 - - - - - -
5 -0,221 0,154 0,086 0,597 0,324 0,256
6 0,112 0,044 0,554 0,282 0,214 0,690
7 -0,142 0,366 0,095 0,027 0,502 0,163
8 0,355 0,084 0,016 0,491 0,152 0,864

D. Data Denormalization and Detransformation
The transformed and normalized data resulting from the

complete process described in the last three subsections are
given as input to a learning method, such as an ANN. After
forecasts are made, a denormalization and detransformation
process maps the output values to the original values in the
time series.

Given an attribute A, the denormalization process for
min-max converts a value a´ in the range [low, high] to a
value a of A by computing:

ܽ ൌ
ܽᇱ െ ݓ݈

݄݄݅݃ െ ൈ ݓ݈ ሺ݉ܽݔ െ ݉݅݊ሻ ݉݅݊

Consider our toy example, where the output value of the
ANN (the normalized forecast for S[13]) was 0.888. Then,
its denormalized forecasted value was .଼଼଼ିሺିଵሻ

ଵିሺିଵሻ
 ൈ

 ሺ1.015 െ 0.981ሻ 0.981 ൌ 1.013.
In the detransformation phase it is necessary to convert

the denormalized value to the original time series value. In
order to do this, we only need to multiply the denormalized
value by the correct ܵሺሻሾ݅ሿ. In our example, we proposed to
forecast Sሾ13ሿ, represented in the sequence R by the element

ܴሾ42ሿ ௌሾଵଷሿ

ௌ
ሺఱሻሾ଼ሿ

. Since the denormalized forecasted value for

S[13] was 1.013, the (detransformed) forecasted value for
S[13] was 1.013 × ܵ

ሺହሻሾ8ሿ = 1.013 × 1.752 = 1.775.

IV. EXPERIMENTS AND RESULTS
This section presents experimental results performed to

evaluate the proposed adaptive normalization method. As
explained before, the method was tested with an ANN, and
from now on it is referred as NN-AN. Here, NN-AN is
compared to four neural networks using different data
normalization approaches: traditional min-max
normalization (NN-MM), decimal-scaling normalization
(NN-DS), z-score normalization (NN-ZS) and sliding
windows/min-max normalization (NN-SW). In order to
analyze the quality of the forecasts obtained by these
methods, we also present the results achieved by the auto
regression (AR) model [28].

The method was evaluated considering three different
time series: (i) U.S. Dollar to Brazilian Real Exchange Rate,
(ii) Brazilian Agriculture Gross Product, and (iii) São Paulo
Unemployment Rate (%). The three time series are available
for download from the Brazilian Institute of Applied
Economic Research [29], but, for convenience, they can also
be downloaded from first author’s homepage [30].

Our main goal is to evaluate the forecast performance for
short- and long-term horizons, forecasting the next twelve
observations after the sample/training set, using 1-step-ahead
and 12-step-ahead forecasts. For the 12-step-ahead forecast,
we have used the recursive strategy [31], which considers the
initial forecasted values to forecast the next ones. The
performance of out-of-sample forecast is evaluated by two
commonly used error measures, which represents different
angles to evaluate forecasting models: the root mean square
error (RMSE) and the mean absolute percentage error
(MAPE). While RMSE is a measure of absolute
performance, MAPE evaluates the ANN relative
performance.

In all experiments, we used a classical feed-forward
neural network [10], trained with the back-propagation
algorithm, three neurons in the hidden layer and one neuron
in the output layer, implementing a hyperbolic tangent
function. The number of neurons in the input layer is the
result of an autocorrelation analysis [28], commonly used for
checking randomness in a data set by computing
autocorrelations for data values at different time-lag
separations. If the data set is random, the autocorrelations
should be small (near zero) for all time-lag separations. If the
data set is non-random, one or more of the autocorrelations
are significantly non-zero.

Fig. 6 shows the sample autocorrelation function for the
monthly average exchange rate of U.S. Dollar to Brazilian
Real time series calculated using MatLab [32]. The
horizontal highlighted lines are placed at zero plus and minus
two approximate standard errors of the sample
autocorrelations, namelyേ ଶ

√
, where n is the length of the

time series [7]. As observed, there are two relevant lags: lag
1, that exceeds two standard errors above zero and lag 7 that
exceeds two standard errors below zero. Since the last
relevant lag was lag 7, the number of selected inputs for this
time series was equal to 7 (lags 1, 2, … , 7). For all the
experiments, the number of inputs was calculated based on
similar autocorrelation analysis.

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50
08

/2
00

0

09
/2

00
0

10
/2

00
0

11
/2

00
0

12
/2

00
0

01
/2

00
1

02
/2

00
1

03
/2

00
1

04
/2

00
1

05
/2

00
1

06
/2

00
1

07
/2

00
1

08
/2

00
1

US$

normalized slide
window #1

with Adaptive Normalization

normalized slide
window #2

with Adaptive Normalization

The length of the sliding windows of NN-SW and the
disjoint windows of NN-AN is the same, and equals to the
number of inputs plus one (the output), giving to both
methods the same dataset size for training. The value of the
inertia parameter (order of the used moving average) of NN-
AN is at most 10% of the sample size and is chosen by the
best level of adjustment of all the possible moving averages,
as described in Subsection III-A.

When training the network, the learning rate was set to
0.64, and the back-propagation algorithm also used a
momentum of 0.8. The network was trained for 200,000
epochs. This choice was made to give equal conditions to all
different normalization techniques and is in agreement with
previous work [15] in which this structure usually presented
results that were near to the optimal ones.

Fig. 6 Sample Autocorrelation of the monthly average exchange rate of
U.S. Dollar to Brazilian Real time series

A. Forecasting U.S. Dollar to Brazilian Real Exchange
Rate
The first time series used in our experiments was the

monthly average exchange rate of U.S. Dollar to Brazilian
Real. This time series represents a period of 132 months,
varying from January 1999 to December 2009. The training
set covered the first 120 months and the test set covered the
last 12 months. The number of inputs used in this example
was 7. The EMA was used with inertia 8.

Table VI shows the RMSE and MAPE obtained by the
six algorithms for the 1-step-ahead and 12-step-ahead
forecasts during the test period. The NN-AN achieved the
best results for both the 1-step-ahead horizon, with RMSE
and MAPE 24% and 14% smaller than the AR (2nd best),
and the 12-step-ahead horizon. For the 12-step-ahead
horizon, the RMSE and MAPE were 24% and 22% smaller
than the NN-SW (2nd best).

B. Forecasting Brazilian Agricultural Gross Product
The second time series used in our experiments was the

quarterly Brazilian Agriculture Gross Product - Index Linked
(average in 1995 = 100). This time series is seasonally
adjusted, i.e., it does not contain the seasonal component. By

removing the seasonal component, it is better to reveal
certain non-seasonal features and easier to focus on the trend
and cyclical components of the time series. The series
represents a period of 119 quarters, varying from 1980 Q1 to
2009 Q3. The training set covered the first 107 quarters and
the test set covered the last 12 quarters. Both the number of
inputs and the SMA order were equal to 4.

TABLE VI
PERFORMANCE OF ALGORITHMS TO FORECAST THE MONTHLY AVERAGE

EXCHANGE RATE OF U.S. DOLLAR TO BRAZILIAN REAL TIME SERIES

 RMSE MAPE (%)
Algorithm 1-step 12-step 1-step 12-step

AR 0.082 0.545 3.174 27.099
NN-MM 0.177 1.173 8.446 57.611
NN-DS 0.094 1.444 3.545 69.517
NN-ZS 0.126 0.814 4.526 40.931
NN-SW 0.088 0.451 3.661 20.917
NN-AN 0.062 0.345 2.730 16.398

Table VII presents the RMSE and MAPE of the

forecasts. As in the previous experiment, the NN-AN
achieved the best results considering both RMSE and MAPE
and the two forecasting horizons. Considering the 1-step-
ahead horizon, the NN-AN obtained both the RMSE (4%)
and MAPE (17%) smaller than the AR. For the 12-step-
ahead horizon, both the RMSE (3%) and the MAPE (8%)
were smaller than the NN-DS.

TABLE VII
PERFORMANCE OF ALGORITHMS TO FORECAST THE QUARTERLY BRAZILIAN

AGRICULTURE GROSS PRODUCT TIME SERIES

 RMSE MAPE (%)
Algorithm 1-step 12-step 1-step 12-step

AR 0.082 0.545 3.174 27.099
NN-MM 0.177 1.173 8.446 57.611
NN-DS 0.094 1.444 3.545 69.517
NN-ZS 0.126 0.814 4.526 40.931
NN-SW 0.088 0.451 3.661 20.917
NN-AN 0.062 0.345 2.730 16.398

C. Forecasting São Paulo Unemployed Rate
The third experiment used the time series of the monthly

Unemployment Rate of São Paulo. This series considers 130
months, varying from January 1999 to October 2009. The
first 118 months were chosen for training and the last 12
months were chosen for test. For this experiment, we used 16
inputs and a SMA of order 15.

Table VIII presents the RMSE and MAPE of the
forecasts. Again, the NN-AN gave the best results for all the
tests, with the RMSE 15% and the MAPE 14% smaller than
the one obtained by the AR for the 1-step-ahead forecasts.
For the 12-step-ahead horizon, the RMSE (9%) and the
MAPE (17%) were smaller than the NN-SW.

TABLE VIII
PERFORMANCE OF THE ALGORITHMS TO FORECAST THE MONTHLY SÃO

PAULO UNEMPLOYMENT RATE TIME SERIES

 RMSE MAPE (%)
Algorithm 1-step 12-step 1-step 12-step

AR 0.687 2.354 4.356 15.384
NN-MM 1.288 2.014 8.878 14.091
NN-DS 0.794 2.912 4.668 18.793
NN-ZS 2.730 2.885 20.455 21.472
NN-SW 0.778 1.067 5.645 7.923
NN-AN 0.587 0.975 3.742 6.553

V. CONCLUSIONS AND FUTURE WORK
This paper presented Adaptive Normalization (AN), a

new method for normalizing non-stationary heteroscedastic
time series. AN is a variation of the sliding window
technique and has the advantage of transforming the time
series into a data sequence, from which global statistical
properties of a sample set can be calculated and considered
during the normalization process. This allows us to build
sliding windows that are capable to represent different
volatilities, i.e., preserve the original time-series properties
inside each relative slide window. Moreover, this method
does not require renormalizing the entire dataset as more
time series data become available.

We studied how Adaptive Normalization affects time
series forecasting with artificial neural networks (ANN),
since ANN are very sensitive to data normalization.
Experiments were performed in three datasets, and the
results compared to four other normalization methods. The
neural network using adaptive normalization outperformed
both the ANN using other normalization methods as well as
an auto regression method.

As future work, we plan to analyze the behavior of
adaptive normalization with other learning methods, such as
Support Vector Machines, as well as its combination with
ANN for clustering.

ACKNOWLEDGMENTS
The authors would like to thank CNPq and CAPES for

financial support. The authors are grateful to the High
Performance Computing Center (NACAD-COPPE/UFRJ),
where the experiments were performed.

REFERENCES
[1] P. Tan, M. Steinbach, and V. Kumar, 2005, Introduction to Data

Mining. Addison Wesley.
[2] J. Han and M. Kamber, 2006, Data Mining: Concepts and Techniques.

Morgan Kaufmann.
[3] D. Pyle, 1999, Data Preparation for Data Mining. 1 ed. Morgan

Kaufmann.
[4] D.N. Gujarati and D.C. Porter, 2008, Basic econometrics. McGraw-Hill

New York.
[5] M.G. Kendall, 1976, Time Series. 2 ed. Oxford Univ Pr (Txt).
[6] R.S. Tsay, 2001, Analysis of Financial Time Series. 1 ed. Wiley-

Interscience.
[7] J.D. Cryer and K. Chan, 2008, Time Series Analysis: With Applications

in R. 2 ed. Springer.
[8] C.R. Nelson and C.R. Plosser, 1982, Trends and random walks in

macroeconmic time series : Some evidence and implications, Journal
of Monetary Economics, v. 10, n. 2, p. 139-162.

[9] D.A. Pierce, 1977, Relationships--and the Lack Thereof--Between
Economic Time Series, with Special Reference to Money and Interest
Rates, Journal of the American Statistical Association, v. 72, n. 357
(Mar.), p. 11-26.

[10] S. Haykin, 2008, Neural Networks and Learning Machines. 3 ed.
Prentice Hall.

[11] J. Lin and E. Keogh, 2004, Finding or not finding rules in time series,
p. Emerald Group Publishing Limited.

[12] V. Fang, V.C. Lee, and Y.C. Lim, 2005, "Volatility Transmission
Between Stock and Bond Markets: Evidence from US and Australia",
Intelligent Data Engineering and Automated Learning - IDEAL 2005, ,
p. 580-587.

[13] E.H. Wu and P.L. Yu, 2005, "Volatility Modelling of Multivariate
Financial Time Series by Using ICA-GARCH Models", Intelligent
Data Engineering and Automated Learning - IDEAL 2005, , p. 571-
579.

[14] L.A. Shalabi and Z. Shaaban, 2006, Normalization as a Preprocessing
Engine for Data Mining and the Approach of Preference Matrix, In:
Proceedings of the International Conference on Dependability of
Computer Systems, p. 207-214

[15] E. Ogasawara, L. Murta, G. Zimbrão, and M. Mattoso, 2009, Neural
networks cartridges for data mining on time series, In: IJCNN, p. 2302-
2309, Atlanta, USA.

[16] J. Sola and J. Sevilla, 1997, Importance of input data normalization for
the application of neural networks to complex industrial problems,
IEEE Transactions on Nuclear Science, v. 44, n. 3, p. 1464-1468.

[17] H. Li and S. Lee, 2009, Mining frequent itemsets over data streams
using efficient window sliding techniques, Expert Syst. Appl., v. 36, n.
2, p. 1466-1477.

[18] J.C. Hull, 2005, Options, Futures and Other Derivatives. 6 ed.
Prentice Hall.

[19] C. Chatfield, 2003, The Analysis of Time Series: An Introduction, Sixth
Edition. 6 ed. Chapman and Hall/CRC.

[20] Y. Moon and J. Kim, 2007, Efficient moving average transform-based
subsequence matching algorithms in time-series databases, Inf. Sci., v.
177, n. 23, p. 5415-5431.

[21] I. Newton, 1999, The Principia : Mathematical Principles of Natural
Philosophy. 1 ed. University of California Press.

[22] S. Grossberg, 1988, Neural Networks and Natural Intelligence.
Bradford Book.

[23] Rui Jiang and K. Szeto, 2003, Extraction of investment strategies
based on moving averages: A genetic algorithm approach, In:
International Conference on Computational Intelligence for Financial
Engineering, p. 403-410

[24] K. Choy, 2001, Outlier detection for stationary time series, Journal of
Statistical Planning and Inference, v. 99, n. 2 (Dezembro.), p. 111-
127.

[25] D.C. Hoaglin, F. Mosteller, and J.W. Tukey, 2000, Understanding
Robust and Exploratory Data Analysis. 1 ed. Wiley-Interscience.

[26] R. Matignon, 2005, Neural Network Modeling Using SAS Enterprise
Miner. AuthorHouse.

[27] Kvanli/Pavur/Keeling, 2006, Concise Managerial Statistics. 1 ed.
[28] G.E. Box, G.M. Jenkins, and G.C. Reinsel, 2008, Time series analysis:

forecasting and control. 4 ed. Wiley.
[29] Ipeadata, 2010, Ipeadata database, http://www.ipeadata.gov.br.
[30] E. Ogasawara, 2010. IJCNN 2010 Datasets. Dispon?vel em:

http://www.cos.ufrj.br/~ogasawara/ijcnn2010. Acesso em: 24 Mar
2010.

[31] J. Tikka and J. Hollmén, 2008, Sequential input selection algorithm for
long-term prediction of time series, Neurocomput., v. 71, n. 13-15, p.
2604-2615.

[32] Matlab, 2009, The Mathworks MatLab & Simulink,
http://www.mathworks.com/.

