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Abstract* - Data normalization is a fundamental preprocessing 
step for mining and learning from data. However, finding an 
appropriated method to deal with time series normalization is 
not a simple task. This is because most of the traditional 
normalization methods make assumptions that do not hold for 
most time series. The first assumption is that all time series are 
stationary, i.e., their statistical properties, such as mean and 
standard deviation, do not change over time. The second 
assumption is that the volatility of the time series is considered 
uniform. None of the methods currently available in the 
literature address these issues. This paper proposes a new 
method for normalizing non-stationary heteroscedastic (with 
non-uniform volatility) time series. The method, named 
Adaptive Normalization (AN), was tested together with an 
Artificial Neural Network (ANN) in three forecast problems. 
The results were compared to other four traditional 
normalization methods, and showed AN improves ANN 
accuracy in both short- and long-term predictions. 

I. INTRODUCTION 
Any application that deals with data requires a lot of time 

and effort for data preparation [1-3]. The main goal of data 
preparation is to guarantee the quality of the data before it is 
fed to any learning algorithm, and includes data cleaning, 
integration and transformation, and reduction. This paper 
focuses on data transformation methods, especially 
normalization, when dealing with time series data. 

The most common normalization methods used during 
data transformation include the min-max (where the data 
inputs are mapped into a predefined range, varying from 0 or 
−1 to 1), the z-score (where the values of an attribute A are 
normalized according to its mean and standard deviation), 
and the decimal scaling (where the decimal point of the 
values of an attribute A are moved according to its maximum 
absolute value). However, these methods are not always 
applicable to time series data. Consider the min-max and the 
decimal scaling methods, for instance. Their applicability 
depends on knowing the minimum and/or maximum values 
of a time series, which is not always possible. We can 
assume these values are present in a time series sample, but 
future data might be out of bounds.  

The z-score method, in contrast, is useful when the 
minimum and maximum values of an attribute are unknown, 
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and can be applied to stationary time series [4,5], i.e., time 
series whose statistical properties, such as mean, variance, 
and autocorrelation, are constant over time. However, in the 
real world, most of the financial and economical time series 
are non-stationary [6]. In contrast with stationary time series, 
in non-stationary series data statistical properties do vary 
over time. 

 

 
Fig. 1 Monthly average exchange rate of U.S. Dollar to Brazilian Real time 
series 

In order to illustrate the concepts described above, Fig. 1 
presents the monthly time series of average exchange rates of 
U.S. Dollar to Brazilian Real from January 1999 to 
December 2009. Complementary, Table I shows the mean, 
standard deviation, and minimum and maximum values of 
the series per year. Observe that these values change over 
time. For instance, the exchange rate mean in 1999 was 1.81, 
and this value rose to 3.08 in 2003. These variations shows 
that time series in Fig. 1 is non-stationary. 

TABLE I 
STATISTICS OF THE MONTHLY AVERAGE EXCHANGE RATE OF U.S. DOLLAR 

TO BRAZILIAN REAL TIME SERIES 

Year Mean Std. Deviation Min Max 
1999 1.81 0.13 1.50 1.97 
2000 1.83 0.07 1.74 1.96 
2001 2.35 0.25 1.95 2.74 
2002 2.92 0.56 2.32 3.81 
2003 3.08 0.26 2.86 3.59 
2004 2.93 0.12 2.72 3.13 
2005 2.44 0.17 2.21 2.70 
2006 2.18 0.04 2.13 2.27 
2007 1.95 0.13 1.77 2.14 
2008 1.83 0.28 1.59 2.39 
2009 2.00 0.23 1.73 2.31 
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Although there are ways of transforming non-stationary 
in stationary time series through mathematical 
manipulations, such as differencing transformations [7], this 
process is not always appropriated to handle non-stationary 
series [8,9], as it removes long-run information from data. 

One traditional approach that attempts to overcome the 
problems of the aforementioned normalization methods to 
handle non-stationary time series uses the sliding window 
technique [10,11]. This approach divides data series into 
sliding windows, extracts statistical properties from data 
considering only the last  ω items of the series, where ω is 
the length of the window, and normalizes each window 
considering these statistical properties. The sliding window 
technique works well for time series with uniform volatility 
[6,12,13], but most time series present non-uniform volatility 
[6], that is, high volatility for certain time periods and low 
for others.  

For instance, consider the time series presented in Fig. 1. 
Its volatility is non-uniform, as it is high from December 
2001 to October 2002 and low from April 2003 to February 
2004. Time series presenting this behavior are said to be 
heteroscedastic [4] and the sliding window technique do not 
deal well with them, since all the normalized sliding 
windows present the same volatility. 

This paper addresses the problem of normalizing non-
stationary heteroscedastic time series. We propose a new 
method, named Adaptive Normalization (AN), which is a 
variation of the sliding window technique. The main 
difference between the two methods is that AN transforms 
the time series into a data sequence from which global 
statistical properties, obtained from a sample set, can be 
calculated and considered in the normalization process. 
Thus, the sliding windows of AN are able to represent 
different volatilities. 

We also studied how Adaptive Normalization affects 
time series forecasting with artificial neural networks 
(ANN). We chose to start its analysis by using an ANN due 
to the great impact data normalization has in neural 
networks, as it prevents attributes with initially large ranges 
from outweighing attributes with initially smaller ranges 
[1,14], while improving error estimations and reducing 
training time [10,15,16]. 

Experiments with Adaptive Normalization were 
performed using three time series: U.S. Dollar to Brazilian 
Real Exchange Rate, Brazilian Agriculture Gross Product, 
and São Paulo Unemployment Rate. We compared the 
method with four other normalization techniques and the 
results showed that AN achieved better results for short- and 
long-term forecasts. 

The remainder of this paper is organized as follows. 
Section II discusses traditional data normalization 
techniques. Section III introduces the new method, Adaptive 
Normalization. Section IV presents experimental results 
using AN with neural networks for time series forecasting. 
Finally, Section V presents some conclusions and directions 
for future work. 

II. TRADITIONAL DATA NORMALIZATION METHODS 
In this section, we briefly describe the three data 

normalization methods most commonly used in the 
literature: min-max, decimal scaling and z-score [1]. In 
addition, we also discuss the sliding window technique, 
usually applied to normalize time series data. Table II 
summarizes the notation that is used throughout this paper. 
Note that the term sequence is used to represent any ordered 
list of values (e.g., a time series). 

 

TABLE II 
SUMMARY OF NOTATION 

Symbol Definition 
݉݅݊஺, ஺ݔܽ݉ The minimum and maximum values of attribute A 
,ሻܣሺߤ ሻܣሺߪ Mean and standard deviation of attribute A 

|ܵ| Length of sequence S 
ܵሾ݅ሿ The ith entry of sequence S (1 ≤ i ≤ |S|) 

ܵሾ݅: ݆ሿ Subsequence os S, from index i to index j 
ܵሺ௞ሻ The k-moving average sequence of S 
ܵ௦

ሺ௞ሻ The k-simple moving average sequence of S 

ܵ௘
ሺ௞ሻ The k-exponential moving average sequence of S 
߱ Length of the disjoint/sliding windows 
φ Number of disjoint/sliding windows of training set 
 ௜ The ith disjoint/sliding window of sequence Sݏ

(= S[(i − 1) × ω + 1 : i × ω], i ≥ 1) 
,ሺܵሺ௞ሻߜ  ௜ሻ The level of adjustment of the k-moving averageݎ

sequence of S to the disjoint sliding window ri 
,ሺܵሺ௞ሻߜ ܴሻ The level of adjustment of the k-moving average 

sequence of S to all the disjoint sliding windows of R 
 
The min-max method normalizes the values of an 

attribute A according to its minimum and maximum values. 
It converts a value a of A to a´ in the range [low, high] by 
computing: 

 

aᇱ ൌ ሺhigh െ lowሻ  ൈ  
a െ min୅

max୅ െ min୅
൅ low 

 
The main problem of using the min-max normalization 

method in time series forecast is that the minimum and 
maximum values of out-of-sample data set are unknown. A 
simple way to overcome this problem is to consider the 
minimum (minA) and maximum (maxA) values presented in 
the in-sample data set, and then map all out-of-sample values 
below minA and above maxA to low and high, respectively. 
However, this approach leads to significant information loss 
and to a concentration of values on certain parts of the 
normalized range [1], which implies more computational 
effort and loss of quality in learning techniques [14,16]. 

Fig. 1 illustrates this problem in the monthly average 
exchange rate of U.S. Dollar to Brazilian Real time series. If 
we use the min-max normalization with an in-sample set 
from January 1999 to December 2001, we observe that from 
the middle of 2002, the min-max would lead to an out of 
bounds normalization. 



 
Fig. 2 U.S. Dollar to Brazilian Real Exchange Rate using min-max 

Another common normalization method, the decimal 
scaling normalization, moves the decimal point of the values 
of an attribute A according to its maximum absolute value. 
Hence, a value a of A is normalized to a´ by computing: 

ܽᇱ ൌ  
ܽ

ሺ10ௗሻ 

where d is the smallest integer such that Max(|a´|) < 1. This 
method also depends on knowing the maximum values of a 
time series and has the same problems of min-max when 
applied to time series data. 

Finally, in the z-score normalization, the values of an 
attribute A are normalized according to their mean and 
standard deviation. A value a of A is normalized to a´ by 
computing: 

 

ܽᇱ ൌ  
ܽ െ  µሺܣሻ

σሺܣሻ  

 
This method is useful in stationary environments when 

the actual minimum and maximum values of attribute A are 
unknown, but it cannot deal well with non-stationary time 
series since the mean and standard deviation of the time 
series vary over time. 

Another traditional approach commonly used for data 
normalization is the sliding window technique [10,11]. The 
basic idea of this approach is that, instead of considering the 
complete time series for normalization, it divides the data 
into sliding windows of length ω, extracts statistical 
properties from it considering only a fraction of ω 
consecutive time series values [1,17], and normalizes each 
window considering only these statistical properties. The 
rationale behind this approach is that decisions are usually 
based on recent data. The sliding window technique has the 
advantage of always normalizing data in the desired range. 
However, it has a drawback of assuming that the time series 
volatility is uniform, which is not true in many phenomena 
[4,6,18]. 

In order to illustrate this problem, Fig. 3 and Fig. 4 
present two sample data of the monthly average exchange 
rate of U.S. Dollar to Brazilian Real time series using ω = 5. 
The first one is from August 2000 to December 2000 and the 
second is from April 2001 to August 2001. Fig. 3 shows the 

original time series values, while Fig. 4 shows the values 
normalized by the min-max method. Although the dataset 
from window number 1 had less volatility than the dataset of 
window number 2, the normalized windows do not preserve 
this behavior. 

 

 

Fig. 3 U.S. Dollar to Brazilian Real Exchange Rate from aug/2000 to 
dec/2000 and from apr/2001 to aug/2001 

 
Fig. 4 U.S. Dollar to Brazilian Real Exchange Rate from aug/2000 to 
dec/2000 and from apr/2001 to aug/2001 normalized by sliding window 

Traditional normalization methods, as discussed above, 
are successful in stationary time series. The sliding window 
technique tries to overcome the limitations of those methods, 
but with an implicit assumption of uniform volatility. As 
these techniques are extrapolated to non-stationary time 
series with heteroscedasticity, they are not capable to 
represent the time series correctly in a normalized range. 

III. ADAPTIVE NORMALIZATION 
Adaptive Normalization is a novel data normalization 

approach specially developed to be applied to non-stationary 
heteroscedastic time series. Its complete process of data 
normalization can be divided into three stages: (i) 
transforming the non-stationary time series into a stationary 
sequence, which creates a sequence of disjoint sliding 
windows (that do not overlap); (ii) outlier removal; (iii) data 
normalization itself. The data resulting from this process are 
given as input to a learning method, such as an ANN. In this 
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case, after forecasts are made, a denormalization and 
detransformation process maps the output values to the 
original values in the time series. 

In order to illustrate AN, this section introduces the 
concepts and shows the method working in a toy example, 
based on the daily time series presented in Table III, which 
contains the exchange rate of U.S. Dollar to Brazilian Real 
from the 1st to the 17th of December 2009. This time series 
contain 13 points, and in this example we show how AN is 
used to forecast the 13th element of sequence S. 

TABLE III 
SAMPLE DAILY EXCHANGE RATE OF U.S. DOLLAR TO BRAZILIAN REAL 

TIME SERIES 

i Date US$/R$ : S EMA: ࢋࡿ
ሺ૞ሻ 

1 2009-12-01 1.734 1.721 
2 2009-12-02 1.720 1.729 
3 2009-12-03 1.707 1.734 
4 2009-12-04 1.708 1.742 
5 2009-12-07 1.735 1.745 
6 2009-12-08 1.746 1.747 
7 2009-12-09 1.744 1.752 
8 2009-12-10 1.759 1.752 
9 2009-12-11 1.751 1.760 
10 2009-12-14 1.749 - 
11 2009-12-15 1.763 - 
12 2009-12-16 1.753 - 
13 2009-12-17 1.774 - 

 

A. Data Transformation 
In the first stage of Adaptive Normalization, the original 

non-stationary time series is transformed into a stationary 
sequence. This transformation is based on the concepts of 
moving averages and proceeds in two steps. First, the 
moving average of the original time series is calculated. 
Then, its values are used to create a new stationary sequence 
which is divided into disjoint sliding windows (DSWs). 

Moving averages (MAs) [7] have been widely used in 
many areas, such as finance [6] and econometrics [19]. They 
are useful for finding trends and patterns in time series data, 
and detecting changes in their behavior by reducing the 
effect of noise [20]. Furthermore, MAs can implicitly deal 
with inertia [4], an important concept in time series data. 
Inertia is a physical and mathematical concept that is 
expressed as the resistance an object offers to a change in its 
state of motion [21]. In time series data, inertia is an 
important property that allows handling the stability-
plasticity dilemma [22]. In AN, in a moving average of order 
k, k corresponds to the number of periods used to introduce 
inertia to the new stationary sequence, as explained below. 

MAs convert a given sequence S into a new sequence S(k), 
where each value in S(k) represents the average of k 
consecutive values of sequence S. In other words, given a 
sequence S = {S[1], S[2], . . . , S[n]} of length n and a 
moving average order k (1 ≤ k ≤ n), the i-th value S(k)[i] (1 ≤ 
i ≤ n−k+1) of the k-moving average sequence S(k) is defined 
as an average of the values of the subsequence S[i : i + k − 
1].  

Two types of MA can be used in the adaptive 
normalization process: a Simple Moving Average (SMA) or 

an Exponential Moving Average (EMA) [23]. While a SMA 
is a sequence of non-weighted averages, EMAs are 
sequences of weighted averages with weighting factors 
decreasing exponentially. EMAs give more weight to recent 
observations, where the weights decrease by a constant 
smoothing factor α (0≤α≤1), w is usually expressed in terms 
of the EMA order k:α = 2/(k + 1). 

When using SMA with Adaptive Normalization, Ss
(k)[i] 

can be defined as: 
 
ܵ௦

ሺ௞ሻሾ݅ሿ ൌ  ଵ
௞

∑ ܵሾ݆ሿ, 1 /݅׊ ൑ ݅ ൑ ݊ െ ݇ ൅ 1௜ା௞ିଵ
௝ୀ௜ . 

 
When using EMA, in contrast, Se

(k)[i]  can be recursively 
defined as: 

 
ܵ௘

ሺ௞ሻሾ1ሿ ൌ  ܵ௦
ሺ௞ሻሾ1ሿ 

 
ܵ௘

ሺ௞ሻሾ݅ሿ ൌ ሺ1 െ ሻܵ௘ߙ
ሺ௞ሻሾ݅ െ 1ሿ ൅ ሾ݅ܵߙ ൅ ݇ െ 1ሿ, 

2 /݅׊ ൑ ݅ ൑ ݊ െ ݇ ൅ 1 
 
The third column of Table III shows the EMA with k = 5 

and α = 0.333 for the time series listed in the second column. 
For instance,  ܵ௘

ሺହሻሾ2ሿ  = 0.667 × ܵ௘
ሺହሻሾ1ሿ  + 0.333 × ܵሾ6ሿ = 

1.729. After creating the moving average sequence, Adaptive 
Normalization transforms the original non-stationary time 
series into a stationary sequence divided into disjoint sliding 
windows, as explained below. 

Given a sequence S of length n, its k-moving average 
S(k) of length n − k + 1, and a sliding window length ω, a 
new sequence R can be defined as: 

 

ܴሾ݅ሿ ൌ
ௌሾ ⎡ ೔

ഘ⎤ ሺ୧ିଵሻ ୫୭ୢ ωሿ 

ௌሺೖሻቂ ⎡ ೔
ഘ⎤ ቃ

, 
 
 

(1) 
 
for all 1 ≤ i ≤ (n − ω + 1) × ω. This sequence R is divided 
into n − ω + 1 disjoint sliding windows. Considering our 
example, Table IV shows the sequence R divided into eight 
DSWs with ω = 6. For instance, the 9th element of sequence 
R appears in the third element of the second DSW. Its value 
can be calculated by Equation 1: 
ܴሾ9ሿ ൌ  ௌሾସሿ

ௌ೐
ሺఱሻሾଶሿ

ൌ ଵ.଻଴଼
ଵ.଻ଶଽ 

ൌ 0.988. The DSWs {r1, . . . , r7} are 

used in the training data set while r8 is used in the testing 
data set. 

As can be seen, for each DSW ri, all the fraction’s 
denominator are the same (ܵሺ௞ሻሾ݅ሿ). This factor is important 
to preserve the original trend of the time series and to bring 
the same inertia to all the values in a DSW. Each DSW 
contains ω −1 input values and 1 output value. Note that, if k 
> ω − 1, i.e., if the moving average order is larger than the 
number of inputs, we should first calculate ܵሺ௞ሻ  and then 
discard the k−(ω−1) first values of S in order to create the 
sequence R. For instance, if k = ω= 3, we should remove the 
first term of sequence S. Then, the first DSW of R would be 

ௌሾଶሿ

ௌ೐
ሺయሻሾଵሿ

, ௌሾଷሿ

ௌ೐
ሺయሻሾଵሿ

 and ௌሾସሿ

ௌ೐
ሺయሻሾଵሿ

. 



 

TABLE IV 
SAMPLE OF DISJOINT SLIDING WINDOWS OF SEQUENCE R 

ሿ࢏ሾࡿ ࢏࢘
ࢋࡿ

ሺ૞ሻሾ࢏ሿ
 

࢏ሾࡿ ൅ ૚ሿ
ࢋࡿ

ሺ૞ሻሾ࢏ሿ
 

࢏ሾࡿ ൅ ૛ሿ
ࢋࡿ

ሺ૞ሻሾ࢏ሿ
 

࢏ሾࡿ ൅ ૜ሿ
ࢋࡿ

ሺ૞ሻሾ࢏ሿ
 

࢏ሾࡿ ൅ ૝ሿ
ࢋࡿ

ሺ૞ሻሾ࢏ሿ
 

࢏ሾࡿ ൅ ૞ሿ
ࢋࡿ

ሺ૞ሻሾ࢏ሿ
 

1 1.008 1.000 0.992 0.993 1.008 1.015
2 0.995 0.987 0.988 1.003 1.010 1.009
3 0.984 0.985 1.000 1.007 1.006 1.014
4 0.980 0.996 1.002 1.001 1.010 1.005
5 0.994 1.000 0.999 1.008 1.003 1.002
6 1.000 0.999 1.007 1.003 1.001 1.009
7 0.995 1.004 0.999 0.998 1.006 1.001
8 1.004 0.999 0.998 1.006 1.000 1.012

 
 

The type of the MA to be used in Adaptive 
Normalization and its order vary according to the time series 
characteristics. We test the adjustment level of all the 
combinations of “MA type” and “order k”, and the one with 
the best adjustment to all the DSWs is selected. First, we 
calculate the level of adjustment of each ܵሺ௞ሻ to each one of 
the training set DSWs: 

 

,൫ܵሺ௞ሻߜ ௜൯ݎ ൌ  
1
߱ ෍ ሺܵሾ݆ሿ െ ܵሺ௞ሻሾ݅ሿሻଶ

௜ାఠିଵ

௝ୀ௜

, 1/݅׊ ൑ ݅ ൑ φ (2) 

 
where φ is the number of DSWs used in the training data set. 
Then, we calculate the level of adjustment of ܵሺ௞ሻ according 
to all the DSWs of R: 
 

,൫ܵሺ௞ሻߜ ܴ൯ ൌ  
1
φ

෍ ,൫ܵሺ௞ሻߜ ௜൯ݎ
φ

௜ୀଵ

  (3) 

 
The ߜ൫ܵሺ௞ሻ, ܴ൯ that achieves the lowest adjustment level 

is selected to be used in Adaptive Normalization. Although 
there are other ways to calculate the adjustments levels, we 
decided to use Equations 2 and 3 to calculate them for all the 
experiments. The concept of adjustment here (and 
consequently the definition of Equations 2 and 3) is the same 
used in linear regression: minimize the sum of the squares of 
some measure. We used the difference between the 
numerators and denominators of each fraction as our 
measure, with the main goal to keep the values of sequence 
R closest to 1. 

B. Outlier Removal  
The second stage of Adaptive Normalization is dedicated 

to outlier removal [1,3,24]. Outlier removal of sample data is 
a key step in the data preprocessing phase, and is also 
important for time series analysis. The main problem to the 
data normalization process arises when outliers occur in 
extreme boundaries of the time series, leading to incoherent 
minimum and/or maximum values. This affects the global 
statistics of the time series and also the data normalization 
quality, since values may be concentrated on a specific range 
of the normalized range. 

To avoid this inconvenience, a method based on Box 
plots [25,26] for detecting outliers in a data sample set can be 
applied. The method prune any value smaller than the first 
quartile minus 1.5 times the interquartile range, and also any 
value larger than the third quartile plus 1.5 times the 
interquartile range [27], that is, all the values that are not in 
the range [Q1−1.5×IQR, Q3+1.5×IQR] are considered 
outliers. In Adaptive Normalization, any DSW that contains 
at least one outlier is not considered during the algorithm 
training phase. 

In our example, the subsequence R[1 : 42] (the training 
data set) illustrated by Table IV has Q1 = 0.996 and Q3 = 
1.006. Then, IQR = Q3−Q1 = 0.010, Q1−1.5×IQR = 0.981 
and Q3 + 1.5 × IQR = 1.021. Thus, only r4 is discarded from 
the training data set, since it contains a value smaller than 
0.981. 

The multiplier 1.5 for the interquartile range may be 
adjusted depending on the data set. The value 3.0 is also 
commonly used to remove only the extreme outliers [27]. In 
the experiments reported in Section IV, we used the value 
3.0. 

C. Data Normalization 
Adaptive normalization uses the min-max method to 

normalize the values of sequence R in the range [−1, 1], but 
in a different way of the traditional sliding window approach. 
The idea is to explore all the disjoint sliding windows in 
order to obtain global data statistics (including global 
minimum and global maximum), and to use these values as 
inputs for the min-max normalization method. However, the 
value Q1 − 1.5 × IQR (Q3 + 1.5 × IQR) is considered the 
global minimum (maximum) if R contains any value smaller 
(larger) than it. 

Continuing with our example, the minimum and 
maximum values used in the min-max normalization method 
were, respectively, 0.981 (Q1−1.5×IQR) and 1.015 
(maximum value of R). Table V shows the sequence R after 
normalization.  

It is now possible to return to the example of Fig. 3, and 
compare the traditional sliding window normalization 
showed by Fig. 4 with Adaptive Normalization. Fig. 5 
presents the normalized values of the monthly average 
exchange rate of U.S. Dollar to Brazilian Real time series 
from August 2000 to December 2000 and from April 2001 to 
July 2001 using AN, with k = 4 and ω = 5. The problems 
observed using traditional sliding window methods do not 
occur when using AN. In the sequence of sliding window 
number 1 in Fig. 3 there is an upward trend, with lower 
volatility than the one of sliding window number 2. This still 
occurs when observing the normalized windows in Fig. 5. It 
is worth noticing that values are not stretched to reach -1 to 
1. Indeed they respect the global volatility obtained from the 
whole sample set. 

 



 
Fig. 5 U.S. Dollar to Brazilian Real Exchange Rate from aug/2000 to 
dec/2000 and from apr/2001 to aug/2001 normalized by Adaptive 
Normalization 

TABLE V 
SAMPLE OF DISJOINT SLIDING WINDOWS OF SEQUENCE R NORMALIZED WITH 

ADAPTIVE NORMALIZATION IN THE RANGE [−1, 1] 

 Sequence R ࢏࢘
1 0,585 0,102 -0,347 -0,313 0,620 1,000
2 -0,187 -0,634 -0,599 0,329 0,707 0,638
3 -0,801 -0,766 0,159 0,536 0,468 0,982
4 - - - - - - 
5 -0,221 0,154 0,086 0,597 0,324 0,256
6 0,112 0,044 0,554 0,282 0,214 0,690
7 -0,142 0,366 0,095 0,027 0,502 0,163
8 0,355 0,084 0,016 0,491 0,152 0,864

 

D. Data Denormalization and Detransformation 
The transformed and normalized data resulting from the 

complete process described in the last three subsections are 
given as input to a learning method, such as an ANN. After 
forecasts are made, a denormalization and detransformation 
process maps the output values to the original values in the 
time series. 

Given an attribute A, the denormalization process for 
min-max converts a value a´ in the range [low, high] to a 
value a of A by computing: 

ܽ ൌ  
ܽᇱ െ ݓ݋݈ 

݄݄݅݃ െ ൈ ݓ݋݈ ሺ݉ܽݔ஺ െ ݉݅݊஺ሻ ൅ ݉݅݊஺ 

Consider our toy example, where the output value of the 
ANN (the normalized forecast for S[13]) was 0.888. Then, 
its denormalized forecasted value was ଴.଼଼଼ିሺିଵሻ

ଵିሺିଵሻ
  ൈ

 ሺ1.015 െ  0.981ሻ  ൅  0.981 ൌ  1.013. 
In the detransformation phase it is necessary to convert 

the denormalized value to the original time series value. In 
order to do this, we only need to multiply the denormalized 
value by the correct ܵሺ௞ሻሾ݅ሿ. In our example, we proposed to 
forecast Sሾ13ሿ, represented in the sequence R by the element 

ܴሾ42ሿ ௌሾଵଷሿ

ௌ೐
ሺఱሻሾ଼ሿ

. Since the denormalized forecasted value for 

S[13] was 1.013, the (detransformed) forecasted value for 
S[13] was 1.013 × ܵ௘

ሺହሻሾ8ሿ = 1.013 × 1.752 = 1.775. 

IV. EXPERIMENTS AND RESULTS 
This section presents experimental results performed to 

evaluate the proposed adaptive normalization method. As 
explained before, the method was tested with an ANN, and 
from now on it is referred as NN-AN. Here, NN-AN is 
compared to four neural networks using different data 
normalization approaches: traditional min-max 
normalization (NN-MM), decimal-scaling normalization 
(NN-DS), z-score normalization (NN-ZS) and sliding 
windows/min-max normalization (NN-SW). In order to 
analyze the quality of the forecasts obtained by these 
methods, we also present the results achieved by the auto 
regression (AR) model [28]. 

The method was evaluated considering three different 
time series: (i) U.S. Dollar to Brazilian Real Exchange Rate, 
(ii) Brazilian Agriculture Gross Product, and (iii) São Paulo 
Unemployment Rate (%). The three time series are available 
for download from the Brazilian Institute of Applied 
Economic Research [29], but, for convenience, they can also 
be downloaded from first author’s homepage [30]. 

Our main goal is to evaluate the forecast performance for 
short- and long-term horizons, forecasting the next twelve 
observations after the sample/training set, using 1-step-ahead 
and 12-step-ahead forecasts. For the 12-step-ahead forecast, 
we have used the recursive strategy [31], which considers the 
initial forecasted values to forecast the next ones. The 
performance of out-of-sample forecast is evaluated by two 
commonly used error measures, which represents different 
angles to evaluate forecasting models: the root mean square 
error (RMSE) and the mean absolute percentage error 
(MAPE). While RMSE is a measure of absolute 
performance, MAPE evaluates the ANN relative 
performance. 

In all experiments, we used a classical feed-forward 
neural network [10], trained with the back-propagation 
algorithm, three neurons in the hidden layer and one neuron 
in the output layer, implementing a hyperbolic tangent 
function. The number of neurons in the input layer is the 
result of an autocorrelation analysis [28], commonly used for 
checking randomness in a data set by computing 
autocorrelations for data values at different time-lag 
separations. If the data set is random, the autocorrelations 
should be small (near zero) for all time-lag separations. If the 
data set is non-random, one or more of the autocorrelations 
are significantly non-zero. 

Fig. 6 shows the sample autocorrelation function for the 
monthly average exchange rate of U.S. Dollar to Brazilian 
Real time series calculated using MatLab [32]. The 
horizontal highlighted lines are placed at zero plus and minus 
two approximate standard errors of the sample 
autocorrelations, namelyേ ଶ 

√௡
, where n is the length of the 

time series [7]. As observed, there are two relevant lags: lag 
1, that exceeds two standard errors above zero and lag 7 that 
exceeds two standard errors below zero. Since the last 
relevant lag was lag 7, the number of selected inputs for this 
time series was equal to 7 (lags 1, 2, … , 7). For all the 
experiments, the number of inputs was calculated based on 
similar autocorrelation analysis. 
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The length of the sliding windows of NN-SW and the 
disjoint windows of NN-AN is the same, and equals to the 
number of inputs plus one (the output), giving to both 
methods the same dataset size for training. The value of the 
inertia parameter (order of the used moving average) of NN-
AN is at most 10% of the sample size and is chosen by the 
best level of adjustment of all the possible moving averages, 
as described in Subsection III-A. 

When training the network, the learning rate was set to 
0.64, and the back-propagation algorithm also used a 
momentum of 0.8. The network was trained for 200,000 
epochs. This choice was made to give equal conditions to all 
different normalization techniques and is in agreement with 
previous work [15] in which this structure usually presented 
results that were near to the optimal ones. 

 

 
Fig. 6 Sample Autocorrelation of the monthly average exchange rate of 
U.S. Dollar to Brazilian Real time series 

A. Forecasting U.S. Dollar to Brazilian Real Exchange 
Rate 
The first time series used in our experiments was the 

monthly average exchange rate of U.S. Dollar to Brazilian 
Real. This time series represents a period of 132 months, 
varying from January 1999 to December 2009. The training 
set covered the first 120 months and the test set covered the 
last 12 months. The number of inputs used in this example 
was 7. The EMA was used with inertia 8. 

Table VI shows the RMSE and MAPE obtained by the 
six algorithms for the 1-step-ahead and 12-step-ahead 
forecasts during the test period. The NN-AN achieved the 
best results for both the 1-step-ahead horizon, with RMSE 
and MAPE 24% and 14% smaller than the AR (2nd best), 
and the 12-step-ahead horizon. For the 12-step-ahead 
horizon, the RMSE and MAPE were 24% and 22% smaller 
than the NN-SW (2nd best). 

B. Forecasting Brazilian Agricultural Gross Product 
The second time series used in our experiments was the 

quarterly Brazilian Agriculture Gross Product - Index Linked 
(average in 1995 = 100). This time series is seasonally 
adjusted, i.e., it does not contain the seasonal component. By 

removing the seasonal component, it is better to reveal 
certain non-seasonal features and easier to focus on the trend 
and cyclical components of the time series. The series 
represents a period of 119 quarters, varying from 1980 Q1 to 
2009 Q3. The training set covered the first 107 quarters and 
the test set covered the last 12 quarters. Both the number of 
inputs and the SMA order were equal to 4.  

TABLE VI 
PERFORMANCE OF ALGORITHMS TO FORECAST THE MONTHLY AVERAGE 

EXCHANGE RATE OF U.S. DOLLAR TO BRAZILIAN REAL TIME SERIES  

 RMSE  MAPE (%) 
Algorithm 1-step 12-step  1-step 12-step

AR 0.082 0.545  3.174 27.099
NN-MM 0.177 1.173  8.446 57.611
NN-DS 0.094 1.444  3.545 69.517
NN-ZS 0.126 0.814  4.526 40.931
NN-SW 0.088 0.451  3.661 20.917
NN-AN 0.062 0.345  2.730 16.398

 
Table VII presents the RMSE and MAPE of the 

forecasts. As in the previous experiment, the NN-AN 
achieved the best results considering both RMSE and MAPE 
and the two forecasting horizons. Considering the 1-step-
ahead horizon, the NN-AN obtained both the RMSE (4%) 
and MAPE (17%) smaller than the AR. For the 12-step-
ahead horizon, both the RMSE (3%) and the MAPE (8%) 
were smaller than the NN-DS. 

TABLE VII 
PERFORMANCE OF ALGORITHMS TO FORECAST THE QUARTERLY BRAZILIAN 

AGRICULTURE GROSS PRODUCT TIME SERIES 

 RMSE  MAPE (%) 
Algorithm 1-step 12-step  1-step 12-step

AR 0.082 0.545  3.174 27.099
NN-MM 0.177 1.173  8.446 57.611
NN-DS 0.094 1.444  3.545 69.517
NN-ZS 0.126 0.814  4.526 40.931
NN-SW 0.088 0.451  3.661 20.917
NN-AN 0.062 0.345  2.730 16.398

 

C. Forecasting São Paulo Unemployed Rate 
The third experiment used the time series of the monthly 

Unemployment Rate of São Paulo. This series considers 130 
months, varying from January 1999 to October 2009. The 
first 118 months were chosen for training and the last 12 
months were chosen for test. For this experiment, we used 16 
inputs and a SMA of order 15.  

Table VIII presents the RMSE and MAPE of the 
forecasts. Again, the NN-AN gave the best results for all the 
tests, with the RMSE 15% and the MAPE 14% smaller than 
the one obtained by the AR for the 1-step-ahead forecasts. 
For the 12-step-ahead horizon, the RMSE (9%) and the 
MAPE (17%) were smaller than the NN-SW. 



TABLE VIII 
PERFORMANCE OF THE ALGORITHMS TO FORECAST THE MONTHLY SÃO 

PAULO UNEMPLOYMENT RATE TIME SERIES 

 RMSE  MAPE (%) 
Algorithm 1-step 12-step  1-step 12-step

AR 0.687 2.354  4.356 15.384
NN-MM 1.288 2.014  8.878 14.091
NN-DS 0.794 2.912  4.668 18.793
NN-ZS 2.730 2.885  20.455 21.472
NN-SW 0.778 1.067  5.645 7.923
NN-AN 0.587 0.975  3.742 6.553

 

V. CONCLUSIONS AND FUTURE WORK 
This paper presented Adaptive Normalization (AN), a 

new method for normalizing non-stationary heteroscedastic 
time series. AN is a variation of the sliding window 
technique and has the advantage of transforming the time 
series into a data sequence, from which global statistical 
properties of a sample set can be calculated and considered 
during the normalization process. This allows us to build 
sliding windows that are capable to represent different 
volatilities, i.e., preserve the original time-series properties 
inside each relative slide window. Moreover, this method 
does not require renormalizing the entire dataset as more 
time series data become available.  

We studied how Adaptive Normalization affects time 
series forecasting with artificial neural networks (ANN), 
since ANN are very sensitive to data normalization. 
Experiments were performed in three datasets, and the 
results compared to four other normalization methods. The 
neural network using adaptive normalization outperformed 
both the ANN using other normalization methods as well as 
an auto regression method.  

As future work, we plan to analyze the behavior of 
adaptive normalization with other learning methods, such as 
Support Vector Machines, as well as its combination with 
ANN for clustering. 
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