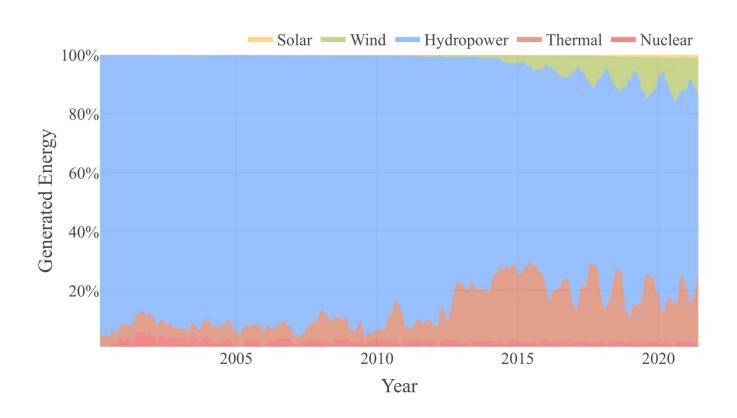


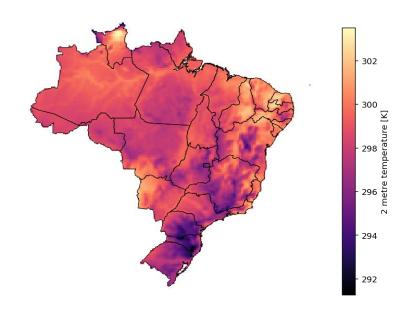
Revealing the Impact of Extreme Events on Electricity Consumption in Brazil: A Data-Driven Counterfactual Approach

Gianlucca Zuin gzuin@dcc.ufmg.br

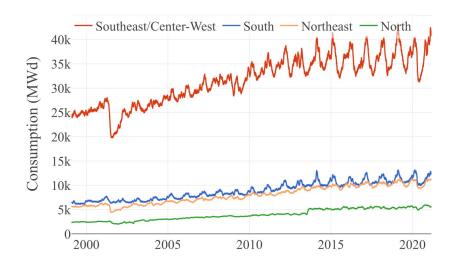

Universidade Federal de Minas Gerais (UFMG)

BACKGROUND

Brazil and clean energy



DATA


Weather

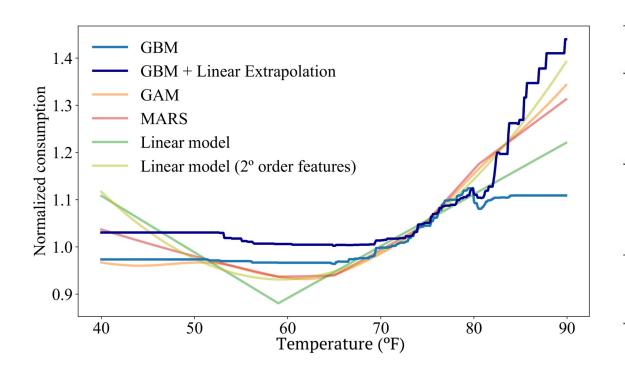
Derived from the ERA5 dataset, consisting of global hourly estimates from 1950 to 2021 for atmospheric variables.

Energy

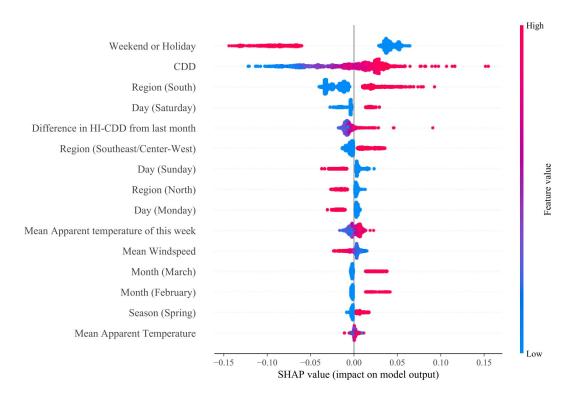
Sourced directly from the Brazilian National Energy System Operator website containing daily energy consumption measures dating back to 1999.

Counterfactual Model

- Outages
- Extreme events
- Normalize demand by projected load growth:
 - Consumption nearly doubled in 20 years.
 - Remove load growth trend from series before fitting.
- Train a model on data from 2000 to 2019.
- Evaluate on relevant extreme events:
 - Heatwaves
 - COVID-19 pandemic



Enable GBM to extrapolate



	Model	Overall	
		R^2	MAPE
Simple Features	Linear Regression	.788	2.76%
	GAM	.783	2.78%
	MARS	.787	2.78%
	SVM	.616	3.95%
Second order and logarithm features	Linear Regression	.790	2.74%
	GAM	.784	2.79%
	MARS	.788	2.73%
	SVM	.649	3.72%
	LightGBM	.854	2.64%
	LightGBM + Linear Extrapolation	.848	2.69%

Explicability

Overall

R² 0.854 +/- 0.022 **MAPE** 2.7% +/- 0.3%

North

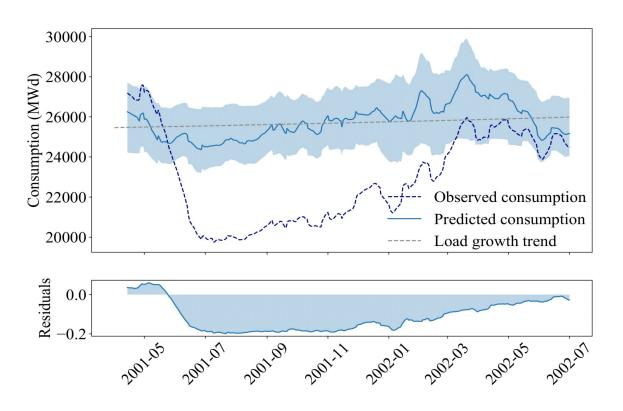
R² 0.619 +/- 0.063 **MAPE** 2.6% +/- 0.2%

Northeast

R² 0.773 +/- 0.048 **MAPE** 2.3% +/- 0.3%

South

R² 0.887 +/- 0.023 **MAPE** 3.1% +/- 0.6%

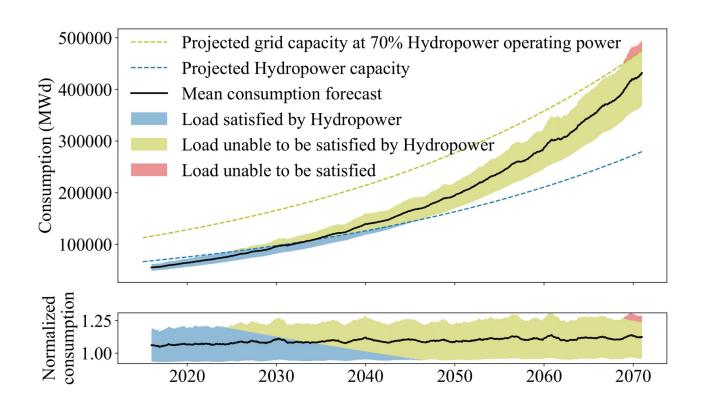

Southeast/Centerwest

R² 0.850 +/- 0.019 **MAPE** 2.5% +/- 0.3%

Impact of Extreme Events

Due to a hydric crisis, in 2001 the Brazilian government enacted a series of policies targeted at reducing energy consumption by 20%.

In the same period, we observed residuals of between 18% and 21%.



Future Projections

IPCC CMIP6 ACCESS-ESM1.5 SSP5-8.5 scenario following Brazilians Electric Energy Trading Chamber projections for load growth.

We can expect considerable thermal usage by 2035.

Brazil will be unable to sustain its own consumption by 2070.

Revealing the Impact of Extreme Events on Electricity Consumption in Brazil: A Data-Driven Counterfactual Approach

Gianlucca Zuin gzuin@dcc.ufmg.br

Universidade Federal de Minas Gerais (UFMG)