On-Line Synthesis of Parsers for String Events

João Saffran

UFMG, Brazil

Haniel Barbosa

UFMG, Brazil

Fernando Magno Quintão Pereira

UFMG, Brazil

Srinivas Vladamani

Cyral Inc., USA

Abstract

A string event is the occurrence of a specific pattern in the textual output of a program. The capture and treatment of string events has several applications, such as log anonymization, error handling and user notification. However, there is no systematic approach to identify and treat string events today. This paper formally defines string events and brings forward the theory and practice of a general framework to handle them. The framework encompasses an example-based user interface to specify string patterns plus a grammar synthesizer that allows efficiently parsing such patterns. We demonstrate the effectiveness of this framework by using it to implement Zhefuscator, a system that redacts occurrences of sensitive information in database logs. Zhefuscator is implemented as an extension to the Java Virtual Machine (JVM). It intercepts patterns of interest on-the-fly and does not require interventions in the source code of the protected program. It can infer log formats and capture string events with minimal performance overhead. As an illustration, it is up to 14x faster than an equivalent brute-force approach, converging to a definitive grammar after observing less than 10 examples from typical logs.
1. Introduction

We define a string event as the occurrence of some pattern of interest in the output of a program. Events can be produced automatically, for instance, as part of a log, or due to interactions between programs and users, as in a chat system. Examples of events of interest include the output of sensitive information that must be redacted or occurrences of notifications requiring immediate attention. Since there is no unified framework for capturing and treating string events, each software application handles them in specific ways. Nevertheless, the building blocks to construct such infrastructure are already in place: grammar synthesis [1, 2, 3] and function interception [4, 5]. This paper uses this body of knowledge to create a framework that handles string events for applications running in the Java Virtual Machine, as a way to anonymize sensitive data in logs.

The advent of Data Protection Laws in several countries [6, 7, 8] has bestowed great importance onto the capacity to treat and explain the output produced from black-boxes software (Section 2.1). However, this task is challenging (Section 2.2), since the chain of characters produced by such black boxes is unbounded. The efficient detection of string events requires the synthesis of a language’s grammar from a potentially unlimited number of examples.

Contributions. We describe an on-line grammar synthesis algorithm that incrementally over-approximates a grammar for any language (Section 3). Our grammars fit into a format henceforth called Heap-Chomsky Normal Form (Section 3.1), a restriction of Chomsky Normal Form. Heap-CNP grammars recognize, indeed, a regular language; hence, they can be represented as regular automata. Therefore, these grammars are never ambiguous and admit LL(1) parsers. LL(1) parsers can run in linear time on the input size [9], and admit formal proofs of correctness, as recently shown by Edelmann et al [10]. We have implemented a system that uses our theory to anonymize sensitive information in logs, while treating the log generator as a black-box (Section 4).

Summary of Results. We implemented the above techniques in a tool, the
Zhefuscator, that redacts sensitive data in SQL queries found in logs created by Java-based systems. Zhefuscator implements a form of reactive programming, which, in the words of Ramson and Hirschfeld [11, p12-2], “consist of two parts: detection of change and reaction to change.” Detection is the topic of Section 3, whereas reaction is discussed in Section 4. In Section 5 we evaluate properties of this tool. We summarize the results of this evaluation as follows:

- Section 5.1 shows that we can construct a grammar for typical database logs (MySQL and PostgreSQL) after observing less than 10 examples of outputs. Exercising Zhefuscator on more complex logs, e.g., files in the /var/log directory of MacOS, then convergence requires more examples, but still a small proportion compared to the size of the log. Our worst case performance required 170 examples in a log containing 6,579 entries.

- Section 5.2 demonstrates that our on-line approach can be up to 14x faster than a brute-force event detection system that does not synthesize grammars. Performance is important because our techniques are meant to be used in tandem with a running application. If it’s overhead is prohibitive, then chances are that users would not employ it. Furthermore, the more complex is the language that generates the logs, the larger is the improvement of Zhefuscator over its trivial counterpart.

- Section 5.3 shows that our event handler does not add statistically significant overhead onto 11 out of 15 benchmarks from DaCapo [12], when building a grammar for the entire output of each benchmark. Furthermore, in the four benchmarks where overhead is noticeable, in only one case (luindex), it reaches 50%.

Software. Zhefuscator is open software, distributed through the GPLv3 license, and publicly available at https://github.com/lac-dcc/Zhe. As of today, it is embedded in products of at least one data-protection company: Cyral Inc. (https://www.cyral.com/).
2. Motivation and Challenges

Section 2.1 provides motivation for the automatic treatment of string events and Section 2.2 discusses the challenges related to this endeavor.

2.1. String Events in the Context of Data Protection

In this paper, we call a generator a computer program that produces a string t_i at each time slot i. Software that produces logs, like database servers and operating systems, or content providers, such as e-mail and news services, can be understood as generators. Usually, when part of the output of a generator is analyzed, this analysis is performed off-line, i.e., after such text has been produced and stored. However, there are situations in which such analysis must be carried out on-line, i.e., while it is being produced.

Data protection laws are one of the forces driving the need for on-line analyses. As an example, the General Data Protection Regulation (GDPR)1, valid in the European Economic Area since 2016, requires companies to anonymize personal data, whenever this data is amenable to be used in ways not foreseen by the company’s terms of use [8]. Discussions involving the European GDPR have inspired similar laws in other regions, such as the California Consumer Privacy Act2, taking effective since January of 2020 in the American state of California, and the General Law of Personal Data Protection [13], taking effect in August of 2020 in Brazil.

Data protection laws bear an impact on log generation, since logs should not leak personal data. However, many software systems have been designed and implemented before the advent of these laws. Adapting these systems to accommodate privacy is an expensive endeavor inasmuch as such adaptation entails modifications in legacy code. However, in this paper, we demonstrate that it is possible to filter logs while they are produced, by projecting this problem onto the general framework of string events. The appearance of sensitive

1https://eugdpr.org/
2AB-375 Privacy: personal information: businesses.(2017-2018)
information in a log is a string event. Given the right framework, this event can
be detected and treated on-the-fly. Nevertheless, the creation and deployment
of this framework involves theoretical and practical challenges, which we discuss
in the next section.

2.2. Event Recognition: Challenges

Handling string events while treating the event generator as a black box is
challenging for three reasons, which we discuss in this section. To make this
presentation more concrete, we relate the challenges to the following real-world
problem, which Zhefuscator solves:

Example 1 (Concrete Problem). Consider a log-producing database server
running on the Java Virtual Machine. The grammar that describes the log syn-
tax is unknown. Logs might contain SQL queries. Some queries contain sensi-
tive information. Design a system that intercepts strings in the log, before they
are printed, and anonymizes particular literals embedded in the SQL queries.
A literal is any constant in the SQL query, e.g., integer values, quoted strings,
and so on. The users specifying which data must be elided are not necessarily
programmers.

Challenge 1 (Grammar Synthesis). How to efficiently identify SQL queries
within the log, when the log grammar is not known?

Each generator has its own log format. Part of this log uses the SQL syntax.
If we call \(L \) the language of log strings, then each string \(t \in L \) might contain
SQL and non-SQL substrings, as Example 2 shows. In this combination of two
languages, we call \(L \) the host language and SQL the event language.

Example 2. Figure 1 shows part of a log taken from an actual application
(literals have been replaced with fake surrogates). Strings in the target language,
SQL, are shown in red. This log contains five examples, one per line. Each
example is produced by the generator in successive moments in time. A solution
to Challenge 1 amounts to synthesizing a parser for this log.
Requiring a parser for the host language \(L \) would complicate the deployment of the obfuscator, as this requirement forces users to be aware of \(L \)'s format. It is possible to separate host and event languages via a brute-force approach considering every token of the host language as the potential starting point of a sentence in the event language. However, as we show in Section 5.2.1, this approach does not scale well with the number of tokens in the string \(t \in L \). The generator produces an infinite stream of strings; hence, Challenge 1 involves inferring a grammar \textit{in the limit}, that is, from an infinite number of examples.

Even though this problem is undecidable even for regular or superfinite languages, as shown by Edward Gold [14], we can efficiently build unambiguous grammars that recognize, in a scalable manner, the subset of the host language defined by all examples seen up to a point. We detail this process in Section 3.

Challenge 2 (Interface). \textit{Which interface should users who are not programmers use to specify sensitive patterns?}

Obfuscating the log in Figure 1 requires knowing which SQL literals must be redacted. It is up to users of the obfuscator to specify such literals. However, information can be sensitive when used in some types of queries, and innocuous when used in others, as Example 3 illustrates.

Example 3. \textit{Consider an instance of the concrete problem (Ex. 1) that requires redacting occurrences of SSN in the pattern: SELECT * FROM Clts WHERE SSN='?'. Occurrences of SSN in other patterns, such as DELETE FROM Clts WHERE SSN='000-00-0000', must be preserved.}

When building Zhefuscator, we first considered defining a domain specific
language (DSL) to let users specify patterns to obfuscate\(^3\). Our experience shows that this option is not ideal: it prevents users of the log-producing system—usually non-programmers—from using our tool. In Section 4.1 we describe a programming-by-examples approach, inspired by the Parsimony IDE [2], which provides users a simple but effective interface for specifying sensitive data. From this interface, we derive an *event grammar*, that specifies which queries should have their literals redacted. This grammar feeds Zhefuscator with knowledge to distinguish sensitive and innocuous queries. It will redact every literal within the former group, while preserving occurrences of the same literal in the latter. What distinguishes one type of query from the other? Syntax! And this syntax is specified by the user, when building the event grammar (following steps yet to be introduced in Section 4.1). Notice that the user will never have to deal with the format of the tokens, e.g., the SSN format in Example 3. All that she must do is to highlight examples of sensitive queries.

Challenge 3 (Engineering). *How to intercept the generator’s output without changing its implementation?*

Challenge 3 is an engineering problem specific to the log-generation application. In Section 4.2 we describe a solution for systems running on the Java Virtual Machine. In contrast to our solutions to the other challenges, the approach adopted in Section 4.2 is not general—a natural consequence of the fact that Challenge 3 is technology specific.

3. First Challenge: Grammar Synthesis

Context-free grammars. Let \(G = (S, N, T, P) \) be a context-free grammar, with non-terminals \(N \), terminals \(T \), a start symbol \(S \in N \) and production rules \(P \subseteq N \times (N \cup T)^* \). The set \(V = N \cup T \) is \(G \)'s vocabulary. A *sentence* is a string

\(^3\)This language, which we currently call *ZheLang* is publicly available at https://github.com/joaosaffran/zhe-lang. ZheLang, when used as a tool to specify string events, is more expressive than the techniques that we explain in this paper. However, it requires some knowledge of parsing and Boolean logic, which our example-based approach avoids. It is our intention to describe ZheLang in future work.
of terminals. A sentence t is generated from a grammar G if there is a sequence of applications of production rules that transforms S in t. This sequence of applications is called a derivation. In a leftmost derivation the leftmost non-terminal is always reduced first. The concatenation of strings p and q is pq. If t and t' are strings, and t is a substring of t', we write $t \in \text{subs}(t')$. A context-free grammar G is in Chomsky normal form if all of its production rules are of the form $A ::= BC$, $A ::= a$, or $S ::= \epsilon$, in which A, B and C are non-terminals, a is a terminal and S is the start symbol. The language that G recognizes, denoted $\text{lang}(G)$, is the set of all strings generated from G. Given a string t, it can be generated ambiguously by a grammar G if G allows two different derivations that generate t. If G generates any string ambiguously, then G is ambiguous.

String events. Let L be a language. A text over L is a sequence of strings t_0, t_1, \ldots, such that $t_i \in L$. A generator for L is a Turing Machine that generates this text. We say that t_i is the text generated at time i. We allow $t_i = t_j$, $i \neq j$. No function from time to strings is assumed; however, we assume that on the limit the text covers L. Notice that the existence of a generator, coupled with this last assumption, implies that L is recursively enumerable. From these notions, we define string events as follows:

Definition 1 (String Event). A string event (s, G_e, t_i, L), parameterized by a context-free grammar G_e, which we call the event grammar, occurs at time $i, i > 0$, on the text t_i produced by a language L, which we call the host language, if there exists $s \in \text{lang}(G_e)$, such that $s \in \text{subs}(t_i)$.

Example 4 (String Event). Let the host language L be the language that contains the string representations of every natural number, and only these strings. Let the event grammar G_e be a grammar that recognizes palindromes with more than one digit on the language of positive decimal numbers. Tokens, in this case, are single digits. Consider the text over L in which $t_i = \text{“}i\text{“}$, for $i \in \mathbb{N}^+$, i.e., the text is “1”, “2”, “3”, “10”, “11”, “12”, “13”,… A string event occurs on $t_{1223} = \text{“}1223\text{“}$, because “22” $\in \text{subs}(\text{“}1223\text{“})$ is a palindrome.
3.1. Synthesizing the Grammar for the Host Language

As seen in Definition 1, capturing string events involves detecting occurrences of substrings produced by a context-free grammar G_e within text pertaining to a recursively enumerable language L. We call a grammar G that recognizes L, i.e., $L = \text{lang}(G)$, the host grammar. In the context of handling string events from a black-box event generator, as explained in Section 2.2, we cannot assume that the host grammar is known. Thus, it is necessary for L to be discovered while string events are being captured. Moreover, only examples of strings that are part of the language, denoted “positive examples”, are available to do so. As demonstrated by Gold [14], this problem is undecidable for most classes of languages, including context-free.

3.2. On-Line Grammar Synthesis

The intuition behind Gold’s result is simple: since L is being determined by positive examples, whichever grammar has been synthesized up to time m can fail to parse an example $t_n, n > m$. However, up to time m, it is always possible to build a grammar G_m that recognizes t_1, \ldots, t_m: in the worst case, G_m contains m production rules, one for each string $t_i, 1 \leq i \leq m$. Therefore, Gold’s conclusions indicate that a grammar for L should be recognized by an on-line algorithm, which builds successive grammars G_1, \ldots, G_m up to time m, such that $\{t_1, \ldots, t_m\} \subseteq \text{lang}(G_m), 1 \leq i \leq m$.

The Language Separation Problem.. In this paper, we assume that the event grammar G_e that encodes string events is known\(^4\). Therefore, to capture string events we must be able to distinguish occurrences of strings from $\text{lang}(G_e)$ within the input text. From these observations, we define the language separation problem as follows:

\(^4\)Section 4.1 discusses the approach that we have chosen to let users specify events. Notice that users do not need to provide G_e explicitly: they specify events through examples valid in G_e, which is assumed to be already known by the language synthesis system.
An infinite sequence of strings:
val text: String stream
Parameters of the implementation
val TOKENIZE: String -> Token list
fun add_example (tokens: Token list, current_grmr: Grammar) =
 if successful_parse(current_grmr, tokens)
 then current_grmr
 else
 let
 val new_grammar = fill_holes(tokens)
 in
 merge(current_grmr, new_grammar)
 end
fun build_grammar((example::text): String stream, grammar: Grammar) =
 let
 val new_grammar = add_example(TOKENIZE example, grammar)
 in
 build_grammar(text, new_grammar)
 end

Start language separation with the simplest sketch grammar:
val grammar: Grammar = build_grammar(text, R1 ::= ε)

Figure 2: The language separation procedure.

Definition 2 (Language Separation Problem). Let \(T = \{t_1, \ldots, t_m\} \) be a
set of strings pertaining to an unknown host language \(L \). Given \(G_e = \langle s_e, N_e, T_e, P_e \rangle \),
find grammars \(G_m = \langle s_m, N_m \cup N_e, T_m \cup T_e, P_m \cup P_e \rangle \) such that \(\{t_1, \ldots, t_m\} \subseteq \text{lang}(G_m), 1 \leq i \leq m \).

Our language separation algorithm is outlined in Figure 2 as a program written in ML syntax. The entry point of this program is function build_grammar,
which receives text, the infinite sequence of strings \(t_1, t_2, t_3, \ldots \) corresponding to
the language to be recognized. The function build_grammar operates in a class-
cic counterexample-guided inductive synthesis (CEGIS) \([15, 16]\) loop, in which
a learner proposes solutions and a verifier checks them, providing counterexam-
pies for failures. In our context the learner produces grammars that recognize
the examples seen so far and the verifier checks whether they can generate the
subsequent examples.

For each string example in the text stream, build_grammar refines a grammar
that recognizes example. Thus, the grammar variable at line 25 of Figure 2 refers
to the grammar that recognizes text on the limit, that is, after an infinite num-
ber of examples have been produced. Notice, nevertheless, that even though
build_grammar never halts, it produces a new grammar each time it is recur-
sively invoked (Line 21). Function build_grammar uses an auxiliary routine
add_example. This procedure checks if the current grammar can parse a string
in text (Line 8). If it can, nothing else happens (Line 9). However, if parsing
fails, then \texttt{add_example} refines the current grammar (Lines 10-15). The next
section describes this refinement.

\textit{On the \texttt{TOKENIZE} Function.} In this work, we do not focus on synthesis of lexers.
Instead, we rely on a predefined lexer, the \texttt{TOKENIZE} function, which trans-
forms examples into sequences of tokens. Said function is invoked at Line
19 of Figure 2. Examples of tokens are $\texttt{int} = \{\ldots,-2,-1,0,1,2,\ldots\}$ and
\texttt{time = int : int}. Our solution to language separation (Fig. 2) is parameterized
by this function. The tokenizer might bear an impact on the number of exam-
ples necessary to synthesize a definitive grammar for the host language. It can
also modify the speed of the algorithms that we shall discuss in the next section.
In Section 5.2.4 we analyze these two facts empirically.

3.3. Grammar Synthesis from Examples

Whenever \texttt{build_grammar} fails for a new example t_i, we use the function
\texttt{fill_holes} to produce a grammar G_i that recognizes it. This function is in-
voked at Line 12 of Figure 2, and its implementation is given in Figure 3. We
shall be explaining this code in the rest of this section. Notice that the auxiliary
function \texttt{build_hcnf} contains comments mentioning two “Rules”. These rules
will be the explained shortly.

\begin{verbatim}
Build a grammar in Heap-CNF that recognizes "tokens"
fun build_hcnf(n:int, [token]: Token list): Grammar =
 ...
fun fill_holes(tokens: Token list): Grammar = build_hcnf(1, tokens)

1 # Build a grammar in Heap-CNF that recognizes "tokens"
2 fun build_hcnf(n:int, [token]: Token list): Grammar =
3 R_n::= token # Rule 1
4 | build_hcnf(n:int, token::Rest: Token list): Grammar =
5 R_n::= R_{2n}R_{2n+1} # Rule 2
6 R_{2n}::= token # Rule 1
7 build_hcnf(2n+1, Rest) # R_{2n+1} ::= ...
8
9 fun fill_holes(tokens: Token list): Grammar = build_hcnf(1, tokens)

Figure 3: The grammar synthesizer.

To build a parser for the host language L, thus solving the Language Sepa-
ration Problem, we apply a programming-by-examples [17] approach. For each
example t_i we synthesize a grammar G_i that generates it. Then we merge this
grammar into a previously synthesized grammar G that generates the previous
examples, thus obtaining a new grammar G such that $\{t_1, \ldots, t_i\} \subseteq G$. Each grammar G_i synthesized for generating the given example t_i is in Heap-CNF, a restrictive form of CNF defined as follows:

Definition 3 (Heap-CNF). A Heap-CNF grammar has restrictions on the non-terminals and the production rules. Non-terminals are $R_1, R_2, R_3, \ldots, R_{2^n-2}, R_{2^n-1}$, for some arbitrary n. The allowed production rules are

- $R_{2^{k+1}-2} ::= a,$
- $R_{2^{k}-1} ::= R_{2^{k+1}-2} R_{2^{k+1}-1},$ and
- $R_{2^{k}-1} ::= a$

in which a is a terminal and $k \in \{1, \ldots, n\}$. Since non-terminals are numbered in the same way as data in the heap data structure, we call this restricted version of Chomsky Normal Form, Heap-CNF.

We restrict ourselves to Heap-CNF grammars for three reasons. First, given two grammars in this format, it is possible to merge them in linear time on the number of non-terminals, thus producing a new Heap-CNF grammar, as we will see in Section 3.3.1. Second, they are not ambiguous (Theorem 5). Finally, they admit LL(1) parsing (Theorem 7). We shall leverage the two latter properties to demonstrate that our solution to the language separation problem is correct. The two latter properties are a consequence of Heap-CNF grammars encoding regular languages. Indeed, a Heap-CNF language can be described by a regular automaton. Nevertheless, we shall call them grammars, as we are using them to synthesize parsers.

The grammar G_i is built by successively increasing its vocabulary and by “filling holes”, i.e. adding production rules to a partial grammar while $t_i = t_1^i t_2^i \cdots t_n^i$ is traversed. Initially the partial grammar contains only the starting non-terminal R_1 and no terminals or production rules. At each iteration, the grammar is augmented to generate the first token in the sequence, which is then
removed from it. The grammar is also expanded so that it can be further augmented to generate the remaining tokens. This is represented by the application of the following two expansions, which add production rules to G_i:

$$R_k ::= ? \quad \text{(Rule 1)} \quad R_k ::= t_i^j, \text{ if } t_i^j \text{ is the last token of } t_i$$

or G_i contains R_{k+1}

$$R_k ::= ? \quad \text{(Rule 2)} \quad R_k ::= R_{2k}R_{2k+1}, R_{2k} ::= ?, R_{2k+1} ::= ? \quad \text{otherwise}$$

in which R_k is a non-terminal not yet associated with a production rule.

The first rule allows the consumption of the first remaining token in t_i. It can be applied when the respective non-terminal is not the last one in G, except if there is only one token left to be consumed. Otherwise, the second rule is applied, which introduces two new non-terminals in the grammar: one for consuming the first remaining token, via Rule 1, and another to continue the process for generating the subsequent tokens in t_i. This process continues until the grammar that parses t_i is obtained. Function fill_holes (Figure 3), which implements this procedure, takes as input a sequence of tokens t_i and yields a grammar G_i in Heap-CNF that consumes said sequence, as stated below.

Theorem 1 (Correctness). Function fill_holes (Fig. 3) produces a grammar G_i that recognizes an example $t_i = t_i^1 \cdots t_i^n$ in n steps with $2n - 1$ non-terminals.

Proof 1. The proofs of all lemmas and theorems of this paper are provided as supplementary material.

Example 5. Figure 4 illustrates fill_holes “stepwisely” building a grammar that generates the first example from Figure 1. Note that the characters ‘82’ and ‘0’ were tokenized to int and the SQL query to s_e. At Step 1 the partial grammar consists only of the starting non-terminal R_1. Given that the list of tokens to generate contains more than one element, fill_holes applies rule 2 (line 5 of Figure 1), producing the partial grammar in Step 2 with two new undefined
non-terminals. Rule 1 is then applied to generate the first token in the list (line 6), producing the grammar in Step 3. The fill_holes algorithm proceeds to recursively build a grammar to generate the remaining tokens, applying rules 2 and 1 in sequence, until it reaches the case when there is only one token to be generated. This triggers a final application of rule 1 (line 3), yielding the grammar in Step 8.

The grammar synthesis has the following properties:

Lemma 1 (fill_holes yields Heap-CNF). Given an example \(t_i \), the resulting grammar \(G_i \) produced by fill_holes that generates \(t_i \) is in Heap-CNF.

Theorem 2. Given an example \(t_i = t_1^i t_2^i \cdots t_n^i \), the resulting grammar \(G_i \) produced by fill_holes is such that \(R_2^{n-1} ::= t_1^i \).

Theorem 2 and Lemma 1 perfectly define the structure of grammars produced by fill_holes, as stated below:

Corollary 1. Given an example \(t_i = t_1^i t_2^i \cdots t_n^i \), the resulting grammar \(G_i \) produced by fill_holes is such that

\[
R_{2^{k+1} -2} ::= \begin{cases}
 t_k^i & k \in \{1, \ldots, n-1\} \\
 R_{2^{k+1} -2} R_{2^{k+1} -1} & k \in \{1, \ldots, n-1\} \\
 t_1^i & k = n
\end{cases}
\]

Figure 5 illustrates the structure of a derivation of a string of 5 tokens from the Heap-CNF grammar that would be produced by fill_holes.
The se Token. Throughout this paper, we have been treating the string event as a single token. As an example, in Figure 4, we represent it as s_e, the starting symbol of the even grammar G_e. However, the string event is not a single token; rather, it is a complex sentence pertaining to $\text{lang}(G_e)$. Consequently, the sentence represented by s_e does not even need to be formed by the same tokens as the host language. In other words, the tokens in s_e do not, necessarily, need to be recognizable by the TOKENIZE function adopted in our implementation of build_grammar. That function recognizes tokens from the host language, not from the event language.

Recognizing s_e is necessary when augmenting the current grammar via the fill_holes routine. To perform this task, we resort to a brute-force approach: we try to recognize the largest subsentence $s \in \text{subs}(t_i)$ within the active example t_i so that $s \in \text{lang}(G_e)$ (See Definition 1). This heuristic is $O(|G_e| |t_i|)$, because we can imagine a scenario in which every prefix of t_i is also a prefix of some—incomplete—sentence in $\text{lang}(G_e)$.

Nevertheless, the brute-force search tends to fail already in the first token, at least in the setting in which we use it: redaction of SQL queries embedded in an unknown language. For instance, consider that the event language is a subset of SQL performing the so called CRUD operations, i.e., SELECT, UPDATE, CREATE and DELETE. Only sentences that start with one of these
four tokens can be part of the event language. Therefore, as soon as the brute-force algorithm stumbles on a different token, it can stop searching immediately.

Typical data-representation languages, such as YAML, XML or JSON bear similar properties, meaning that valid sentences in these languages start with a limited number of token combinations.

Furthermore, it is important to consider that the brute force approach is only necessary to augment the current grammar. Whenever line 8 of Figure 2 succeeds, no brute-force heuristics are used. As we shall see in Section 5.1, in a typical SQL or PostgreSQL log, four to nine samples—among an unbounded number of examples—are enough to give us a definitive grammar to solve the language separation problem.

3.3.1. Merging grammars

Once fill_holes produces a grammar \(G_i \) for a new example \(t_i \), this grammar is merged into the current grammar \(G \), as it can be seen at Line 26 of Figure 2.

We define the merging of two Heap-CNF grammars as follows:

Definition 4 (Grammar Merging). Let \(G = (R_1, N, T, P) \) and \(G_i = (R_1, N^i, T^i, P^i) \) be two Heap-CNF grammars. \(G' = (R_1, N \cup N^i, T \cup T^i, P \cup P^i) \) is the grammar that merges \(G \) and \(G_i \).

Our goal is that \(G' \) be also in Heap-CNF and still generates \(\text{lang}(G) \) and \(\text{lang}(G_i) \). This is achieved by combining the production rules of \(G \) and \(G_i \), i.e. by defining the production rules of \(G' \) as \(P \cup P^i \). Since \(G \) and \(G_i \) are in Heap-CNF they have the same non-terminals up to \(R_{2k-1} \), in which \(R_{2k-1} \) is the maximum non-terminal in either \(G \) or \(G_i \). So each non-terminal in \(G' \) up to \(R_{2k-1} \) will generate the combined tokens of \(G \) and \(G_i \), while every non-terminal beyond \(R_{2k-1} \) has the same production rules of the grammars it comes from, thus generating the same strings that grammar generates.

Example 6. Figure 6 shows the grammars produced for the first, third and fifth lines of Figure 1. The tokenization applied to the characters is illustrated in the derivation trees. Each grammar but the first is formed by the merging of a
current grammar plus the grammar newly built to match the latest example in
the log. Since grammars share non-terminals up to a given index, the union of
the production rules has the effect of adding tokens as alternatives to a given
non-terminal. For example, in the grammar that generates the first example, \(R_{15} \)
generates the terminal int, while in the second grammar it generates the non
 terminals \(R_{30}, R_{31} \), so merging these two grammars results in a grammar in which
\(R_{15} ::= R_{30} R_{31} \mid \text{int} \). This observation ensures that the merged grammar will be
able to generate both the examples generated by the two original grammars.

Notice that the final grammar that results from merging multiple grammars
recognizes a language that is larger than the union of all the examples seen
thus far. For instance, the final grammar in Example 6 recognizes the string

![Grammars produced from the examples in Figure 1.](image)
“int Query s_e Query s_e”, which encodes two SQL queries.

Lemma 2 (Merging). If G is the grammar that results from merging two Heap-CNF grammars G' and G'', then G is Heap-CNF, and $\text{lang}(G') \cup \text{lang}(G'') \subseteq \text{lang}(G)$.

Theorem 3. The procedure build grammar (Fig. 2) constructs grammars in Heap-CNF.

Theorem 4 (Semantics). Let G_1, G_2, \ldots, G_n be the grammars constructed by function build grammar (Fig. 2) for input strings t_1, t_2, \ldots, t_n. Grammar $G_i, 1 \leq i \leq n$ recognizes every input $t_i, 1 \leq i \leq n$.

Lemma 3 (Size Complexity). Let G_n be the grammar constructed by function build grammar (Fig. 2) after observing inputs t_1, t_2, \ldots, t_n. The size of G_n is $O(N)$, where N is the number of tokens in t_1, t_2, \ldots, t_n.

Theorem 5 (Determinacy). Let G_n be the grammar constructed by function build grammar (Fig. 2) after observing inputs t_1, t_2, \ldots, t_n. G_n is not ambiguous.

Corollary 2 (Time Complexity). Let G_n be the grammar constructed by function build grammar (Fig. 2) after observing inputs t_1, t_2, \ldots, t_n. G_n recognizes $t_i, 1 \leq i \leq n$ with $O(N)$ derivations, where N is the number of tokens in t_1.

3.3.2. Limitations: False Positives

The procedure build grammar synthesizes a grammar G that over-approximates the host language L. By over-approximation, we mean that there might exist strings that belong to $\text{lang}(G)$, but that do not belong to L. This observation leads to the notion of false positives, which we define as follows:

Definition 5 (False Positive). Let G_n be the grammar synthesized by build grammar after observing n examples from the host language L. We call a false positive an example t_{fp} such that $t_{fp} \notin L$, $t_{fp} \in \text{lang}(G_n)$ and t_{fp} contains a string event (Definition 1).
Example 7 (False Positive). Consider the third grammar seen in Figure 6.
This grammar recognizes four strings with four tokens: (i) int query s e int; (ii) int time s e int; (iii) int query int int; (iv) int time int int. Only sentences in the format (i) fit the examples seen in Figure 6. Sentence (ii) does not correspond to any example and contains a string event (marked by s e).

A false positive will lead to the treatment of a string event that, in principle, should be ignored. In the context of this work, the system to be described in the next section will redact information that is not sensitive. Such action is innocuous in the settings where said system is deployed. Furthermore, the logs that we evaluate in Section 5 never lead to false positives. Therefore, we have decided to take no account of false positives in this work. There are two more reasons that led us to ignore them. First, the number of events is unbounded; hence, strings that are false positives up to a certain instant in time might become true positives later. Second, we follow Parsimony’s approach [2] when specifying the event grammar, as we discuss in Section 4.1. Parsimony does not support negative examples—a potential way to avoid some false positives.

4. Case Study: the Zhefuscator

We have used the grammar inference techniques discussed in Section 3 to implement a system that redacts sensitive information present in program logs. This system is called the Zhefuscator. Zhefuscator receives as input an event language, given as a grammar G_e, and a running instance of the Java Virtual Machine (JVM). Notice that the Zhefuscator does not need the source code of the program under execution in the JVM—this program is treated as a black box. Figure 7 provides an overview of this tool. In the rest of this section, we discuss particular details of its implementation.

4.1. Second Challenge: User Interface

Zhefuscator is meant to be used by professionals who are not necessarily programmers. Therefore, to simplify the task of specifying string events, we provide users with an example-based interface, in which users select substrings
User selects examples of queries that must be redacted (Sec. 4.1). Zhefuscator builds a grammar \(G_e \) that recognizes string events. \(G_e \) starts with \(s_e \), the starting symbol of the event language (Sec. 4.1).

Function \texttt{build	extunderscore grammar} (Fig. 2) uses \(G_e \) to infer the grammar \(G \) of the host language \(L \) (Sec. 3).

Events are captured and treated during the execution of the program. Treatment involves redacting sensitive information in the output \(T \) of the program (Sec. 4.2).

Figure 7: Zhefuscator: event handler for the JVM.

from log entries, and a base grammar, \(G_b \), which will be used as a basis for building the event grammar \(G_e \). As a helper to the user, once a substring \(l \) is marked for being redacted, all other substrings in the log entries that are recognized by the same rule from \(G_b \) which recognizes \(l \) are highlighted. That rule is then added to \(G_e \). Through this iterative procedure, the event grammar \(G_e \) is built from the basic grammar \(G_b \) according to the example substrings selected by the user. Note that users do not deal directly neither with the basic nor with the event grammar: they only deal with textual examples, from which they must choose samples. Currently, we use the SQL grammar as the base grammar, but our implementation is not specific to any grammar. Just keep in mind that if the base grammar does not recognize the example substring selected to be redacted, this example will be ignored in the final event grammar.

To determine which data must be redacted, users follow the procedure \texttt{markup}, in Figure 8.

Theorem 6 (Markup). Grammar \(G_e \) produced by \texttt{markup} (Fig. 8) recognizes a subset of \(\text{lang}(G_b) \) or the empty language.

As seen in the proof of Theorem 6, grammars \(G_e \) and \(G_b \) start with the same initial symbol \(s_e \). This symbol is used to compose the instance of the language separation problem (Definition 2) that routine \texttt{build	extunderscore grammar} solves.
Procedure \texttt{markup}(G_b : Base Grammar, L_f : Log Example)

1. Let G_e be an empty grammar.

2. The user selects a literal l to be redacted, which occurs in a given example from L_f.

3. Zhefuscator uses the event grammar to extract the largest string $s \in \text{lang}(G_b)$ that contains l.

4. A grammar G'_e, formed with the production rules of G_b necessary to recognize s is constructed.

5. The terminal symbol T that recognizes l is marked to be redacted, T must occur within the rule that recognizes s.

6. G_e is augmented with the rules in G'_e.

7. Every sentence $s' \in L_f$ that G_e recognizes is highlighted.

8. If there are more literals in L_f that must still be obfuscated, the user goes back to step 2.

Figure 8: The \texttt{markup} procedure that determines which literals must be redacted.

4.2. Third Challenge: Engineering

This section describes details concerning the engineering of the Zhefuscator—a language-specific problem. For reasons related to the business model in which the authors of this paper are involved, Zhefuscator has been implemented in Java, and deployed onto the Java Virtual Machine. Therefore, it intercepts and treats string events produced by programs written in any programming language that runs on the JVM, including Java, Scala, Kotlin, Clojure and many others. In what follows, we discuss particular aspects of the implementation of this tool.

\texttt{Parsing}. Zhefuscator uses the theory seen in Section 3 to build parsers incrementally. These parsers are constructed via the ANTLR [18] parser generation tool. This tool takes as input a grammar that specifies a language and generates as output source code for a recognizer of that language. Procedure \texttt{build_grammar} gives ANTLR a new grammar whenever it fails to parse the current text example. ANTLR produces LL(*) parsers, which suits the needs of
build_grammar, because Heap-CNF grammars are always Left-to-right, Left-
most derivation and can be parsed with one token of lookahead, as the Theo-
rem 7 states. In terms of implementation, we update the grammar by relying
on the JVM’s ability to load classes dynamically. The JVM does not need to be
restarted in this process. The new grammar is compiled into Java bytecodes by
a separate thread, and, as we will see in Section 5, such updates take negligible
time.

Theorem 7 (LL). Any Heap-CNF grammar is LL(1).

Corollary 3. There are languages whose grammars cannot be synthesized by
Zhefuscator.

The proof of Theorem 7 mentions that Heap-CNF grammars recognize lan-
guages with a finite number of possible derivation trees. In fact, strictly speak-
ing, a Heap-CNF language is finite, as the grammar is not recursive. However, in
practice, Zhefuscator deals with infinite languages. Infiniteness comes from the
lexer. The procedure build_grammar is parameterized by a string tokenizer. In
the context of Zhefuscator’s implementation, this tokenizer is given by ANTLR.
The regular language used to recognize tokens can accept an unbounded num-
ber of strings. In Section 5.2.4 we evaluate the impact of the tokenizer on the
performance of Zhefuscator.

Method interception. Zhefuscator uses Java Agents to intercept calls to the
System.out.* singleton object. The Java Agent API [19] provides support to
the dynamic instrumentation of JVM applications. Intercepted strings are first
fed to build_grammar, and then redacted. The first action might result in an
expansion of the host language’s grammar. The second might lead to modifica-
tions in the output of the program. Literals that must be redacted are specified
using the technique discussed in Section 4.1.

String Obfuscation. Zhefuscator performs the redaction of sensitive informa-
tion via asymmetric cryptography. A sensitive literal l is replaced with a new
string l, which can be later used as a key to retrieve the true value of l from a classified table. Currently, we use *Advanced Encryption Standard* (AES) to ensure safe redaction of values.

4.3. Discussion

The developments explained in this section are necessary to make the ideas introduced in Section 3 practical. We do not claim them as contributions, given that the interface and implementation that we adopted have been already discussed in previous work. Our choice for these aspects of our work are pragmatical. On the one hand, the interface discussed in Section 6.3 and the implementation discussed in Section 4.2 were effective enough to realize the ideas discussed in this paper. However, this choice comes with limitations, which we discuss in the rest of this section.

4.3.1. Lack of Negative Examples

The main limitation of our example-based approach is a lack of negative examples. This limitation is also present in Parsimony [2]; hence, it has naturally persisted in our implementation of it. We opted to avoid negative examples because it is our understanding that in most of the cases where Zhefuscator is useful, negative examples are unnecessary. In other words, database logs tend to follow simple formats, with a small set of sentences of interest. Nevertheless, if necessary to handle more complex formats, then Zhefuscator might produce false positives. In the context of this work, as explained in Section 3.3.2, false positives might cause the redaction of sentences that do not contain sensitive information.

4.3.2. Expressiveness

Additionally, an example-based interface lacks resources that would be promptly available in a domain-specific language, such as the ability to specify logical combinations of events. For instance, users could be interested in enabling certain events only after particular events of interest have been detected. Our current interface lacks such sequencing operations. Users interested in such ability are
encouraged to use ZheLang, a DSL that we have defined for the treatment of string events. Nevertheless, ZheLang is not the focus of this paper.

5. Evaluation

We have implemented the techniques discussed in this paper onto an actual on-line obfuscator, which we call the Zhefuscator. Zhefuscator is open source and can be used to redact queries produced by database logs. This section investigates the following research questions related to this implementation, as well as the techniques that support it:

- **RQ1—Convergence**: how many examples are necessary to produce grammars for languages typically used by SQL logging systems?
- **RQ2—Effectiveness**: are the parsers derived from the synthesized grammars effective?
- **RQ3—Practicality**: what is the runtime overhead of Zhefuscator when deployed onto a database system dealing with a heavy workload?

We chose these three particular questions to demonstrate that the theory developed in Section 3, and its implementation described in Section 4, once combined into a concrete tool, lead to a system that is not only novel, but also practical.

Runtime Setup. Every result reported in this section has been produced on an 8-core Intel(R) Core(TM) i7-3770 at 3.40GHz, with 16GB of RAM running Ubuntu 16.04.

5.1. **RQ1—Convergence**

Methodology. To answer RQ1 we measure how many times the predicate `successfull_parse`, invoked at Line 8 of Figure 2, fails before we produce a definitive grammar for a certain log generator. We perform this analysis on logs from two database systems and from the OSX operating system. Logs are given as a text of examples t_i, as defined in Section 3. Each t_i is the entire output...
produced by the generator, be it a database, be it the operating system, at
time unit \(i \). To determine the parts of the log that should be obfuscated, we
chose, from each one, four examples, following the steps enumerated in Figure 8.
We chose the first four sentences that did not fit into the same SQL production
rule. However, this choice bears no impact on the results reported in this paper.
Convergence does not depend on it, and the time to redact strings (running time
will be evaluated in the next section) is the same for the different approaches
that we compare.

5.1.1. Logs from Database

On this experiment, we have generated logs from two different SQL Databases:
MySQL version 14.14 Distribution 5.7.27 and PostgreSQL version 9.2.24. Work-
loads for these two databases were produced by the 9 real-world web applica-
tions emulated by OLTP-Bench [20], which include systems such as Wikipedia,
Twitter and an ordinary seats system.

Discussion. Figure 9 shows the average prefix necessary to synthesize a gram-
mar in different database systems. Zhefuscator requires approximately eight
examples to infer a grammar for the logs produced by MySQL, and five for
those produced by PostgreSQL. In the former collection, logs contain an av-
erage of 662K lines; in the latter, 1,867K. This experiment indicates that, for
typical database logs, the grammar inference procedure of Section 3 tends to
converge to a definitive parser after five to eight examples. Furthermore, these
examples are a very small portion of the entire log: in every case, we had a
definitive grammar after observing less than 0.01% of the whole log file.

5.1.2. Logs from the Operating System

This experiment uses the logs produced by default by MacOS version 10.14.6
in the `/var/log` directory. Contrary to the examples that use the databases,
these logs are very different one from the other (the format of sentences is not
shared across them). This fact will be made clear once we analyze how many ex-
amples are necessary for synthesizing a definitive grammar—this number varies
substantially across the logs. We gathered four logs from five distinct OS users,
whose usage pattern corresponds to the profile of professional programmers.

The logs used in this experiment are:

- **corecaptured.log**: logs operations of the network hardware. On average, these logs have 174K lines.

- **wifi.log**: logs network traffic. On average, they contain 9K lines.

- **system.log**: logs the operations executed in the whole system. On average, they contain 4K lines.

- **fsck_apfs.log**: logs file system operations, and contain 4K lines on average.

Discussion. Figure 10 shows the average prefix necessary to synthesize grammars for the OSX logs. The number of required examples is higher than what has been observed in Section 5.1.1. The ratio of examples per log size is also higher. In one case (**user3:system**) we had a log with only five lines, whose grammar demanded three examples. This case is an anomaly, due to the small log size. The largest prefix consisted in 170 examples, for a log with 6,579 samples (**user1:system**). In general, the ratio of examples per sample is still very low. For instance, our largest logs (**corecaptured**) have almost 200K lines on average, and yet our on-line grammar inference engine finds a grammar that recognizes all these samples after observing 57 to 64 examples.
5.2. RQ2—Effectiveness

This section evaluates the practicality of the grammars synthesized by Zhefusculator. To this effect, we shall answer the five questions below. BF refers to the *Brute Force* approach, which searches event patterns exhaustively within text examples:

1. Section 5.2.1: how does Zhefusculator compare to BF to parse one individual example for which a parser has not already been synthesized.

2. Section 5.2.2: how does Zhefusculator compare to BF to parse 1,000 examples in an actual log file produced by a MySQL database.

3. Section 5.2.3: how does Zhefusculator compare to BF to parse 1,000 examples in artificially generated logs of different sizes.

4. Section 5.2.4: how does the tokenizer change the runtime of Zhefusculator.

5.2.1. Parsing Effectiveness

There exists a trivial approach to solve the Language Separation Problem introduced in Definition 2: given an example t_i in the host language, we start a search for an event s, an SQL query in our context, at every token of t_i. If two events can start at the same token, we choose the longest one. This solution is called the *brute-force* approach. The developments in Section 3 are attractive inasmuch as they lead to a faster solution to language separation than the brute-force technique. In this section, we compare the parsing speed of both approaches.
Before we discuss our methodology, two observations are in order. First, when Zhefuscator’s current grammar is not able to recognize the active example, it behaves in a similar manner as the brute force approach: it must scan the SQL query, assuming that it can start at any token. In addition to this, it must augment the current grammar using the techniques discussed in Section 3. Second, when Zhefuscator’s parser is able to recognize the active example, parsing happens via $O(N)$ productions, where N is the number of tokens. Yet, the number of characters per token varies, and the lexer’s runtime must be taken into consideration. Thus, the overall runtime is $O(M)$, where M is the number of characters in the active example. The brute force approach might expand $O(N^2)$ productions; however, such worst case seldom happens. Most of the tokens in a valid example cannot be the prefix of any SQL query. Therefore, although naïve, the brute force approach is still likely to outperform Zhefuscator for examples with few characters.

Methodology. The brute-force approach becomes less practical as the number of characters in the examples t_i of the host language L increases. To investigate at which point the grammars synthesized by `build_grammar` become more efficient, we have used the logs seen in Section 5.1.1. To obtain examples of varying sizes, we either split or concatenate lines from these logs; hence, producing strings of different lengths.

Discussion. Figure 11 compares the brute-force with our synthetic grammars. Our grammars are more asymptotically efficient than the brute-force approach. After multiple merging operations, a Heap-CNF grammar still recognizes a sentence in $O(N)$ derivation steps, where N is the size of the sentence. The brute force approach, in turn, will always require $O(N^2)$ steps. Figure 11 shows that for examples between 128 and 256 characters (about 16 tokens) our approach becomes consistently better than the trivial brute-force parsing. In Section 5.2.2 we observe the effect of this improvement when applied onto an actual log.
5.2.2. Effectiveness on an Actual Log File

In Section 5.2.1, we compared the average time taken by the Zhefuscator and the brute force approach to parse one example. However, the benefit of our parser synthesizer becomes more evident once we analyze its effect when amortized onto a long chain of examples. In this section, we analyze this effect via skyline charts. These charts show the time taken per individual example in the log. For this experiment, we chose the log produced by the MySQL implementation for the AUCTONMARK application. We emphasize that the choice of log, for this experiment, is immaterial: all the logs produced by MySQL follow the same format, and Zhefuscator’s parser needs to be augmented only 8 times for all of them. AUCTONMARK has been chosen simply because it is the first benchmark in OLTPBench.

Methodology. We compare both the approaches, Zhefuscator and the brute force, when given the first 1,000 examples in the log that MySQL produces for AUCTONMARK. For each example, we count only the time to recognize strings—redaction is not accounted for, because it applies the same algorithm, the same number of times, in both the approaches. Notice that choosing more than 1,000 examples will not change the results reported in this section, because Zhefuscator builds a definitive parser after observing 19 entries in the log file.

Discussion. Figure 12 shows the result of this experiment, juxtaposing the
skyline produced by the brute force approach and by Zhefuscator. The log file contains two distinct parts. The first 250 examples are system configuration commands, and have 1,021 characters, on average. The last 750 examples are various SQL queries, and contain 106 characters on the average. Using the C tokenizer, we obtain 105 tokens, on the average, considering the 1,000 examples in the log file. Under this circumstance, the performance gap between Zhefuscator and the brute force approach is noticeable.

Zhefuscator spends, on the average, 26.15 milliseconds per example, with a standard deviation of 17.86 ms. This number includes the extra time Zhefuscator needs to augment the current parser—an action that happened 8 times in this experiment. The brute force approach spends 586.63 milliseconds per example, with a standard deviation of 1,830.33 ms. Zhefuscator is 22.5x faster, per example, than the brute force approach. However, this experiment uses an ideal scenario for Zhefuscator: a long stream of homogeneous textual examples. In the next section, we shall analyze the behavior of Zhefuscator under more unfavorable conditions.

5.2.3. Increased Effectiveness via Amortized Cost

The logs produced by MySQL and PostgreSQL are formed by long individual examples (more than 100 tokens on average). However, these examples are all similar; hence, as already observed in Figure 9, Zhefuscator synthesizes a definitive parser after observing a very short subset of them. To stress out the
performance of Zhefuscator, in this section we analyze its behavior when dealing with more complex logs, which we have produced artificially.

Methodology. To produce the logs, we use six different types of tokens: booleans, integers, doubles, strings, dates and sets of comma-separated integers within curly brackets, e.g., \{2,3,5,7\}. We generate four types of logs. Each log contains a random number of tokens between 0 and \(R \in \{4,8,16,40\}\), before and after an SQL query. We use always the query “SELECT `string` FROM `string` WHERE `id` = `int`”. With \(R = 4\), we have \(4^6 + 4^6 = 8,192\) possible example formats; with \(R = 8\), we have \(8^6 + 8^6 = 524,288\), and so on. Therefore, **fill_holes** will be invoked a much larger number of times than in the setup used in the previous section.

Discussion. Figure 13 shows the result of this experiment. Whereas BF shows homogeneous behavior—its runtime per example varying only slightly—Zhefuscator has two types of responses. Such responses depend on the current parser recognizing or not the active example. When recognition is possible, parsing is fast; otherwise, the parser must be augmented with new productions, and we observe a runtime spike, which is marked in Figure 13 with a black dot. Said spikes are compulsory for the initial examples. However, as the current grammar increases, sentence recognition becomes more common, and spikes tend to disappear. As a consequence, the more events are observed, the larger is the performance improvement of Zhefuscator over the brute force approach.

Figure 14 shows average time per example, plus standard deviations observed for Zhefuscator and for the brute force approach. The figure shows two results for Zhefuscator: the first considers only the time when parsing succeeds; the second considers, in addition, the time taken by **fill_holes**, when Zhefuscator fails. In the former scenario, Zhefuscator always outperforms the brute force approach. In the latter, it always loses. The conclusion is that, once it reaches a steady state, Zhefuscator’s \(O(N)\) parser is consistently a better option than BF’s \(O(N^2)\) algorithm. However, if necessary to augment the current parser too often, our technique loses its attractiveness. In this particular experiment, **fill_holes** performs worse than in Section 5.2.2, because the host language is
much more complex.

5.2.4. Impact of the Tokenizer on Runtime

The add_example routine, which is invoked by build_grammar (Figure 2, Lines 7-15) is parameterized by a tokenizer. The tokenizer is a function that converts the input text into tokens. The tokenizer is just an artifact of our implementation: users of our system will never have to deal with it. The implementation of Zhefuscator can use any tokenizer that ANTLR supports. As we have hinted in Section 3.2, the tokenizer impacts both the number of examples...
as well as the runtime of Zhefuscator. In this section, we analyze this impact by verifying the behavior of Zhefuscator when parameterized by two different lexers.

Methodology. We have tried Zhefuscator with two different lexers. Both were taken from public projects that use ANTLR—they have not been implemented as part of this research.

Discussion. Although the choice of tokenizer might modify the number of examples necessary to reach a definitive grammar, the two tokenizers that we have used led to the same prefix size in Figures 9 and 10. This happens because C and SQL have many similar tokens, including identifiers—the most common in the examples. However, the impact on runtime is different. Using the C tokenizer, Zhefuscator takes 26.15 milliseconds, on average (STD = 17.85ms), per example from the AuctionMark log (Figure 12), including the eventual time taken to augment the grammar. Using the SQL version, this time drops down to 18.81 milliseconds, with a standard deviation of 3.33ms. The latter is faster because the SQL lexer uses a smaller automaton than the C lexer.

5.3. RQ3—Practicality

The techniques described in Section 3 have a computational cost. The goal of this section is to measure such cost. This empirical evaluation shall allow us to claim that the overhead of Zhefuscator, when deployed onto typical Java applications, is low enough to be practical.
Methodology. It is difficult to measure the overhead of Zhefuscator in our experimental setup involving actual deployments of MySQL and PostgreSQL. This difficulty comes from the fact that logging, at least in that particular setting, is a rare event. Log entries are produced only when users enter queries in the database. In this scenario, the overhead of Zhefuscator is negligible. Thus, to probe this overhead in a more heavily loaded scenario, we shall proceed with two experiments. In Section 5.3.1 we measure the runtime overhead that event handling imposes onto a single invocation of the `System.out.println` routine used to output log information in a database server. This evaluation provides some insight into the absolute overhead of event handling; however, it does not give us much information about how Zhefuscator would impact user experience, for the time of handling one single string event is very fast. To circumvent this limitation, in Section 5.3.2 we measure the overhead that Zhefuscator imposes onto batch computations, i.e., that perform a fixed number of steps. In this case, we focus on the Java Dacapo benchmark suite [12].

5.3.1. Overhead of Treating one String Event

To measure the overhead of treating one string event, we have built a system that reads a log file and outputs it line by line using the `System.out.println` method from the Java Standard Library. For maximum stress, we assume that every SQL literal must be redacted. In this experiment, we adopt the same logs from the MySQL databases used in Section 5.1.1.

Discussion. Figure 15 presents the results of this evaluation. Each log was evaluated ten times; hence, each box plot contains ten samples. The figure makes it clear that Zhefuscator’s event handler has an overhead over individual method invocations. This overhead can be as high as two orders of magnitude, as observed in `resourcestresser`. However, this cost accounts for a very small proportion of the runtime of a typical database system. In the case of `resourcestresser`, the average time to redact every literal in the log is 0.03sec per invocation of `System.out.println`. This time includes the invocation of `build_grammar` (Fig. 2) and the obfuscation of literals. Obfuscation includes
the time to encrypt literals using AES.

5.3.2. Deploying on Java Dacapo

In this experiment, we measure the overhead of building a grammar for every output produced by the programs in the DaCapo Benchmark Suite. DaCapo’s logs do not contain SQL queries; hence, in this section, we are measuring the time to build grammars, but not the time to redact queries.

Discussion. Figure 16 compares the runtime of DaCapo without and with interventions from Zhefuscator. Figure 17 shows accompanying data: p-values, number of log events and number of production rules in the final grammar that we synthesize. The p-value provides us with some notion of statistically significant runtime difference: the lower the p-value, the more noticeable is the gap in runtime between the two versions of each DaCapo program. Typically, p-values below 0.05 are considered statistically significant. These p-values have been obtained via a T-Test applied on the same data used to produce Figure 16. The T-Test provides us with an idea on how different are a “control” and a “test” groups. In our setting, the control group is formed (in Figure 16) by applications that do not run the Zhefuscator. The test group, in contrast, is formed by the
same applications using the Zhefuscator. The lower the p-value returned by
the T-Test, the more statistically significant is the difference between these two
groups.

![Box plots showing runtime overhead of Zhefuscator on Dacapo.]

Figure 16: The overhead of Zhefuscator on Dacapo.

<table>
<thead>
<tr>
<th>P-values</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>avora</td>
<td>47</td>
</tr>
<tr>
<td>batik</td>
<td>68</td>
</tr>
<tr>
<td>eclipse</td>
<td>38</td>
</tr>
<tr>
<td>top</td>
<td>0</td>
</tr>
<tr>
<td>jython</td>
<td>54</td>
</tr>
<tr>
<td>luindex</td>
<td>99</td>
</tr>
<tr>
<td>lusearch</td>
<td>0</td>
</tr>
<tr>
<td>lusearch-fix</td>
<td>0.03</td>
</tr>
<tr>
<td>pmd</td>
<td>17</td>
</tr>
<tr>
<td>sunflow</td>
<td>52</td>
</tr>
<tr>
<td>tomcat</td>
<td>0</td>
</tr>
<tr>
<td>tradebeans</td>
<td>45</td>
</tr>
<tr>
<td>tradesoap</td>
<td>45</td>
</tr>
<tr>
<td>xalan</td>
<td>16</td>
</tr>
</tbody>
</table>

Figure 17: The overhead of Zhefuscator on Dacapo. The lower the p-value, the more statistically significant the overhead.

The runtime overhead of Zhefuscator, even when deployed onto a batch
system, tends to be small. In 11, out of 15 cases, we could not perceive any
statistically significant runtime difference. The largest runtime gap that we
have observed was in top; however, this is the benchmark that runs for the
shortest time. Thus, this overhead, due to the initialization of Zhefuscator’s
agent, tends to be amortized in systems that run for more time. The largest
absolute overhead was observed in xalan: 1.7 seconds on average, over a system
that runs for 44 seconds on average.
6. Related Work

Much theory concerning the recognition of languages on the limit has been designed and discussed in the literature. Section 6.1 discusses this theory, to give the reader some perspective on the foundations of the present work. We also notice that much of the developments in this work bear resemblances to programming fuzzing. Yet, whereas fuzzing is concerned with recognizing a language that describes the input of a program, our paper deals with the inverse problem: we recognize a language that describes the output of the program. Section 6.2 discusses work related to fuzzing. Additionally, there exists a vast body of literature concerned with the synthesis of grammars from examples. This is the approach that we use in Section 4.1 to equip the Zhefuscator with a user interface. In Section 6.3 we discuss work related to the synthesis of grammars from examples. Finally, our theory, once implemented into an actual tool, yields a reactive system. Events, in this case, are the occurrence of particular patterns in Strings. Section 6.4 explores other reactive systems of similar nature.

6.1. Inductive Grammar Synthesis

The notion of language identification in the limit, which we have used as a motivation for our on-line grammar inference algorithm, was introduced by Edward Gold in the mid sixties [14]. Much research evolved from Gold’s initial problem formulation. The main developments in the field are due to Angluin and her collaborators [21, 22, 23, 24]. Nevertheless, several research groups have formalized grammar inference for specific types of languages [25, 26, 27, 28, 29]. Since the nineties, decidability for inference of grammars for several classes of languages is already known [30]. Usually, the language thus produced is deterministic, although Eman et al. have shown how to derive probabilistic automata on the limit [31]. The identification of string events fits into the framework of language inference in the limit; however, in this paper, we do not try to guess the right host language \(L \) that contains said events. Instead, we try to infer a grammar \(G \) that recognizes string events in any prefix of this
language. Notice that G might also recognize strings that do not belong into L. This possibility has no practical implications in the context of this paper: we are interested in finding string events, not in recognizing exactly the host language that contains it.

Recent progress in the field of machine-learning has imbued Gold’s original program with renewed attractiveness. For an overview of how machine-learning techniques are used to solve language recognition in the limit, we recommend Bennaceur et al.’s [32]. The literature contains several examples of how statistical inference techniques are used to learn a language in the limit, such as the work of Li et al. [33], who employ a genetic-based algorithm to learn the structure of XML documents. Or, along a different direction, the work of Graben et al. [34], who have developed an interactive system to gradually learn a simple language of English numerals. We contend that such techniques, although effective in their contexts, are not ideal fits to our problem—online language recognition—because they require slow, exploratory-based algorithms, which would be too heavy for our needs.

6.2. Program Fuzzing

In this paper, we are interested in approximating a grammar that characterizes the output of a program. The inverse problem has received more attention in the programming language community: to infer a grammar that describes the input of a program. This kind of inference is useful in testing via software fuzzing, as demonstrated by Bastani et al. [35] and Blazytko et al. [36], for instance. The many approaches described in the literature [35, 36, 37, 38] differ from our work in many ways. First, there is the obvious difference in direction: we infer grammars for program outputs, not inputs. Second, these techniques typically rely on negative examples to refine the inferred grammar, whereas negative examples play no role in our formulation. Finally, there is a difference in purpose: we are not interested in testing a program; rather, our intention is to intervene in the program already in production.
6.3. Interactive Grammar Inference

There exists prior work about the construction of parsers for programming languages based on examples [39, 40, 41, 1, 2]. Such systems synthesize and refine grammars, one example at a time. Much of the inspiration behind our approach to select which literals must be redacted (see Section 4.1) came from Parsimony [2], an IDE for example-guided synthesis of lexers and parsers. This line of work is an instance of a much broader field known as programming-by-examples (PBE) [42]. Zhefuscator is not a framework to support programming by example. It infers grammars on-the-fly that recognize examples produced automatically by a machine, not a person. Therefore, the speed to synthesize a parser is an essential requirement of our work—more than clarity, or the efficiency of the parser itself. That is the reason why we have opted to produce Heap-CNF grammars: it is fast to generate and merge them.

6.4. String Events

This paper is not the first work to deal with the on-line detection of string events. Research along this direction was mostly concerned with security. String events have been handled, for instance, in the context of intrusion detection [43, 44], dynamic taint analysis [45, 46] and on-the-fly spam identification [47]. Nevertheless, if we do not claim primacy, we claim generality. All these previous works would identify string events in very specific situations, e.g., as particular patterns embedded in an SQL query, in the case of tainted flow analysis [45], or as a combination of specific tokens within a network package, in the case of intrusion detection [43]. This paper is the first work to provide a general framework that, in a way, “learns” a language, and recognizes string events embedded into it.

7. Conclusion

This paper has presented a theoretical framework to detect string events. Said events are described by a language whose grammar is known. They occur within a potentially infinite text, defined by a host language, whose grammar is
unknown. We showed how to synthesize a grammar G that recognizes any prefix of the infinite text stream. By defining a specific restriction of Chomsky Normal Form, the Heap-CNF, we guarantee that G is non-ambiguous (Theorem 5) and admits LL(1) parsing (Theorem 7). We have shown, empirically, that this theory can be implemented into an efficient log anonymization system, the Zhefuscator, which redacts sensitive information from the output of programs, while treating these programs as black-box software. We have tested the Zhefuscator onto logs from databases (MySQL and PostgreSQL), operating systems (OSX) and Java benchmarks (DaCapo). In every case, the performance overhead of this system is very small.

Future work. We speculate that recent developments in the programming languages community can be used to strengthen the theory and the practice discussed in this paper. First, concerning formalization, our theorems are not mechanically verified. This shortcoming is due to the lack of a general framework to reason about properties of LL(1) parsers. However, Edelmann et al. [10] have showed how to build LL(1) parsers with derivatives and zippers that are correct by construction.

Second, Zhefuscator is parameterized by a tokenizer, which our current implementation borrows from ANTLR. The fact that users have no way to specify a lexer in our system can be considered a limitation of our current implementation. Thus, it would be desirable to give users the possibility to define their own tokenizers without exposing them to minutia related to automata theory. Recent work by Chen et al. [48] has provided a clear interface for this purpose, which is based on examples supported by a natural language (NL) description of regular expressions. We believe that NL-based specifications will be able to improve purely example-based approaches that have recently been shown to be effective to specify regular expressions [49, 50]. This research direction is even more promising once we consider the availability of efficient string solvers such as CVC4Sy [51] or Z3-Str [52], which supports a wide range of logical theories, including strings and regular expressions.
References

[52] Y. Zheng, X. Zhang, V. Ganesh, Z3-Str: A Z3-based string solver for web

[53] D. J. Rosenkrantz, R. E. Stearns, Properties of deterministic top down
Proofs of Lemmas and Theorems

This appendix contains proofs of Lemmas, Theorems and Corollaries present in the paper “On-Line Synthesis of Parsers for String Events”.

Theorem 1. Function \texttt{fill} (Fig. 3) produces a grammar \(G_i \) that recognizes an example \(t_i = t_1^i \cdots t_n^i \) in \(n \) steps with \(2^n - 1 \) non-terminals.

Proof 2. The proof is by induction on the size \(|t_i|\) of the example. On the Base Case, we have that \(t_i = \text{token} \); hence, \(|t_i| = 1 \). \texttt{fill} produces \(R_1 ::= \text{token} \), which recognizes \(t_i \) trivially. On the Inductive Case, we assume that \(t_i = \text{token} \cdot \text{Rest} \). By induction, we have that \texttt{fill} generates a grammar with starting symbol \(R_{2i+1} \) that recognizes \texttt{Rest} in \(n - 1 \) steps (Line 7 of Figure 3). The extended grammar recognizes \(t_i \):

\[
R_n ::= R_{2n} R_{2n+1} \\
R_{2n} ::= \text{token} \\
R_{2n+1} ::= \ldots
\]

By induction, we know that \(R_{2n+1} \) starts production rules with \(2(n - 1) - 1 \) non-terminals. Adding \(R_n \) and \(R_{2n} \), we have that the resulting grammar contains \(2n - 1 \) non-terminals.

Lemma 2. If \(G \) is the grammar that results from merging two Heap-CNF grammars \(G' \) and \(G'' \), then \(G \) is Heap-CNF, and \(\text{lang}(G') \cup \text{lang}(G'') \subseteq \text{lang}(G) \)

Proof 3. We demonstrate the lemma analyzing each one of the four cases involved in the process of merging two Heap-CNF grammars. We let \(R'_i ::= P' \) be the production rule that corresponds to \(R_i \) in \(G_i \). Similarly, we let \(R''_i ::= P'' \) be the production rule that corresponds to \(R_i \) in \(G_i'' \). We let \(tk \) be a token:

- \(P' = tk'_1 | \ldots | tk'_n \) and \(P'' = tk''_1 | \ldots | tk''_n \). In this case, we have that \(R_i ::= tk'_1 | \ldots | tk'_n \cdot tk''_1 | \ldots | tk''_n \), which is still Heap-CNF.
- \(P' = R_{2i} R_{2i+1} | tk'_1 | \ldots | tk'_n \) and \(P'' = tk''_1 | \ldots | tk''_n \). In this case, we have that \(R_i ::= R_{2i} R_{2i+1} \cdot tk'_1 | \ldots | tk'_n \cdot tk''_1 | \ldots | tk''_n \), which is still Heap-CNF.
- \(P' = tk'_1 | \ldots | tk'_n \) and \(P'' = R_{2i} R_{2i+1} | tk''_1 | \ldots | tk''_n \). In this case, we have that \(R_i ::= R_{2i} R_{2i+1} \cdot tk'_1 | \ldots | tk'_n \cdot tk''_1 | \ldots | tk''_n \), which is still Heap-CNF.
\[P' = R_{2i}R_{2i+1} | t_{k_1}' | \ldots | t_{k_n}' \text{ and } P'' = R_{2i}R_{2i+1} | t_{k_1}'' | \ldots | t_{k_n}''. \] In this case, we have that \(R_i ::= R_{2i}R_{2i+1} | t_{k_1}' | \ldots | t_{k_n}' \) and \(R_i ::= R_{2i}R_{2i+1} | t_{k_1}'' | \ldots | t_{k_n}'' \), which is still Heap-CNF.

Notice that if we have a token \(t_{k_x} \) that appears in both lists: \(t_{k_1}' | \ldots | t_{k_n}' \) and \(t_{k_1}'' | \ldots | t_{k_n}'' \), then this token will appear only once—by definition—in the corresponding list of the merged grammar.

Theorem 3. The procedure build_grammar (Fig. 2) constructs grammars in Heap-CNF.

Proof 4. The proof of Theorem 3 is the junction of two facts: (i) function fill_holes (Fig. 3) builds only grammars in Heap-CNF; and (ii) the merging of grammars (Def. 4) yields Heap-CNF grammars. To demonstrate Fact-i, notice that fill_holes only produces rules in the format \(R_i ::= \text{token} \), or \(R_i ::= R_{2i}R_{2i+1} \); hence, the grammar is in Heap-CNF. Fact-ii follows from Lemma 2.

Theorem 4. Let \(G_1, G_2, \ldots, G_n \) be the grammars constructed by function build_grammar (Fig. 2) for input strings \(t_1, t_2, \ldots, t_n \). Grammar \(G_i, 1 \leq i \leq n \) recognizes every input \(t_i \).

Proof 5. The proof works by induction on the number of examples \(t_i \). In the base case, build_grammar fails compulsorily in the attempt to parse \(t_1 \), because its current grammar recognizes only the empty string, i.e.: \(R_1 ::= \epsilon \). Failure happens in the conditional at Line 8 of Figure 2. A new grammar \(G_1 \) will be constructed for \(t_1 \) by routine expand_grammar, via function fill_holes. By Theorem 1, \(G_1 \) recognizes \(t_1 \). In the inductive step, we have a grammar \(G_k \), that recognizes every example \(t_1, \ldots, t_k \).

When build_grammar is given a new example \(t_{k+1} \), two scenarios are possible:

- \(G_k \) recognizes \(t_{k+1} \); hence, the conditional at Line 19 of Figure 2 is true.
- \(G_k \) fails to recognize \(t_{k+1} \). In this case, a new grammar \(G' \) will be constructed by fill_holes, and the resulting grammar \(G_{k+1} = \text{merge}(G_k, G') \) recognizes \(t_1, \ldots, t_{k+1} \), by Lemma 2.

We let \(\text{merge}(G_k, G') \) above be the grammar that results from merging \(G_k \) and \(G' \).
Lemma 3. Let G_n be the grammar constructed by function `build_grammar` (Fig. 2) after observing inputs t_1, t_2, \ldots, t_n. The size of G_n is $O(N)$, where N is the number of tokens in t_1, t_2, \ldots, t_n.

Proof 6. The `fill_holes` procedure only augments the rightmost node of a derivation tree. In other words, given a sentence of n tokens, `fill_holes` produces a grammar with:

- $2n - 1$ non-terminal symbols;
- $2n - 1$ production rules;
- n terminal symbols;

The `merge` routine never adds new terminals or non-terminals to a grammar; hence, it maintains its asymptotic size complexity.

Theorem 5. Let G_n be the grammar constructed by function `build_grammar` (Fig. 2) after observing inputs t_1, t_2, \ldots, t_n. G_n is not ambiguous.

Proof 7. As a consequence of Lemma 3, the rightmost derivation tree of a Heap-CNF grammar always has height $n - 1$ and $O(N)$ nodes. Only one rightmost derivation tree is possible, which Figure 5 illustrates. The rightmost token is always recognized by a production from non-terminal R_{2^n-1}.

Corollary 2. Let G_n be the grammar constructed by function `build_grammar` (Fig. 2) after observing inputs t_1, t_2, \ldots, t_n. G_n recognizes $t_i, 1 \leq i \leq n$ with $O(N)$ derivations, where N is the number of tokens in t_i.

Proof 8. This corollary follows from Lemma 3, plus the fact, already mentioned in the proof of Theorem 5, that only one rightmost derivation tree is possible. Thus, the grammar built by `fill_holes` recognizes a sentence with n tokens with $2n - 1$ derivations.

Theorem 6. Grammar G_e' produced by `markup` (Fig. 8) recognizes a subset of $\text{lang}(G_e)$ or the empty language.

\footnote{We treat s_e, the starting symbol of the event grammar, as a single token.}
Proof 9. The proof works by induction on the number of times Step 2 in Procedure markup runs. In the base case (Step 1), we have that G_e' recognizes the empty language. In the inductive step, we assume that G_e' recognizes a subset of $\operatorname{lang}(G_e)$ after n iterations of Step 2. In the next iteration, Steps 3 and 4 ensure that G_e'' recognizes a subset of $\operatorname{lang}(G_e)$. The junction of G_e' and G_e'' uses only production rules of G_e; hence, it must recognize a subset of the language that G_e recognizes. Furthermore, because these two grammars start with s_e, the initial symbol of G_e, the resulting grammar after the junction also starts with s_e.

Theorem 7. Any Heap-CNF grammar is LL(1).

Proof 10. This fact follows from the observation that Heap-CNF grammars are not recursive. Therefore, no left recursion is possible, and the language that these grammars recognize has a finite number of possible derivation trees. The one token of lookahead follows from Definition 3 and Corollary 1, because the position of a token in the derivation tree is uniquely determined by the position of that token in the input string.

Corollary 3. There are languages whose grammars cannot be synthesized by Zhefuscator.

Proof 11. A formal language is called an LL(k) language if it has an LL(k) grammar. The set of LL(k) languages is properly contained in that of LL($k+1$) languages, for each k greater than or equal to zero [53]. Therefore, there exist context-free languages that are not LL(1). This restriction means that even on the limit, Zhefuscator would not be able to synthesize perfect grammars for some languages. However, up to any number n of events, Zhefuscator will synthesize a grammar G_n that recognizes every t_1, \ldots, t_n, and potentially other strings, as discussed in Section 3.3.2.