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Abstract—Plant phenology studies recurrent plant life cycles
events and is a key component of climate change research.
To increase accuracy of observations, new technologies have
been applied for phenological observation, and one of the
most successful are digital cameras, used as multi-channel
imaging sensors to estimate color changes that are related to
phenological events. We monitored leaf-changing patterns of
a cerrado-savanna vegetation by taken daily digital images.
We extract individual plant color information and correlated
with leaf phenological changes. To do so, time series associated
with plant species were obtained, raising the need of using
appropriate tools for mining patterns of interest. In this paper,
we present a novel approach for representing phenological
patterns of plant species derived from digital images. The
proposed method is based on encoding time series as a
visual rhythm, which is characterized by image description
algorithms. A comparative analysis of different descriptors is
conducted and discussed. Experimental results show that our
approach presents high accuracy on identifying plant species.
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I. I NTRODUCTION

Plant phenology studies recurrent plant life cycles events
and is a key component of climate change research [1]. To
increase accuracy of observations, new technologies have
been applied for phenological observation, and one of the
most successful are digital cameras, used as multi-channel
imaging sensors to estimate color changes (RGB channels)
that are related to phenological events [2]–[4].

We have been monitored leaf-changing patterns of a
tropical cerrado-savanna vegetation by taken daily digital
images [5]. We extracted leaf color information from the
RGB channels and correlated the changes in pixel levels
over time with leaf phenology patterns. The image analysis
was conducted by defining regions of interest (ROI) based
on the random selection of plant species crowns identified in
the digital image. Time series associated with different ROI
were obtained, raising the need of using appropriate tools
for mining patterns of interest.

In this paper, we present a novel approach for capturing
phenological patterns from time series generated from digital
images and distinguishing the behavior of plant species.
It relies on encoding time series as a visual rhythm [6],
which is characterized by traditional and recently proposed
image description algorithms. This computationally simple
approach opens a new area of investigation related to the
use of image descriptors to identify and characterize pheno-
logical changes.

We evaluate the proposed algorithm on about 2,700 im-
ages, recorded during the main leaf flushing season [5].
Results from a detailed experimental comparison of several
descriptors show that our method presents high accuracy on
identifying regions in the images belonging to a same plant
species.

The remainder of this paper is organized as follows.
Section II discusses the methodology adopted for acquiring
time series. Section III presents our approach and shows how
to apply it to characterize time series. Section IV reports
the results of our experiments and compares our technique
with other methods. Finally, we offer our conclusions and
directions for future work in Section V.

II. T IME SERIESACQUISITION

The near-remote phenological system was set up in a 18m
tower in a Cerradosensu stricto, a savanna-like vegetation
located at Itirapina, S̃ao Paulo State, Brazil. A digital
hemispherical lens camera (Mobotix Q24) was setup at the
top of the phenology tower, attached in an iron arm facing
northeast.

The first data collection from the digital camera started
on 18th August 2011. We set up the camera to automatically
take a daily sequence of five JPEG images (at 1280× 960
pixels of resolution) per hour, from 6:00 to 18:00 h (UTC-3).
The present study was based on the analysis of over 2,700
images (Figure 1), recorded at the end of the dry season,
between August 29th and October 3rd 2011, day of year
241 to 278, during the main leaf flushing season [5].
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Figure 2. Regions of interest (ROIs) defined for the analysisof six plant species from the cerrado-savanna vegetation.
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Figure 1. Sample image of the cerrado savanna recorded by the digital
camera on October 15th, 2011; and the segmentation results forthe selected
scales in a subimage sample.

The image analysis was conducted by defining differ-
ent regions of interest (ROI), as described by Richard-
sonet al. [4], Richardsonet al. [2], and Ahrendset al. [3].
We defined six ROIs (Figure 2) based on the random
selection of six plant species identified in the hemispheric
image: (1) Aspidosperma tomentosum(Figure 2(a)), (2)
Caryocar brasiliensis(Figure 2(b)), (3)Myrcia guianensis
(Figure 2(c)), (4) Miconia rubiginosa (Figure 2(d)), (5)
Pouteria ramiflora (Figure 2(e)), and (6)Pouteria torta
(Figure 2(f)).

III. V ISUAL RHYTHM -BASED DESCRIPTION

Visual rhythms [6] are an effective way to analyze tempo-
ral properties from video data. It consists in an abstraction
of a video that encodes the temporal change of pixel
values along a specific sampling line [7], as illustrated in
Figure 3(a). A clear advantage of this approach is to reduce

the storage space of the extracted features. Therefore, it also
speeds up data processing.

V
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Figure 3. Visual rhythm: (a) simplification of a video content by mapping
each frame into one column of an image; (b) a real example producedby
sampling the central vertical line of the digital images.

Without loss of generality, a time series comprised of
images taken by digital cameras at fixed time intervals can
be viewed as a video of the vegetation. Thus, a visual
rhythm can be used to simplify a time series into a single
image, as illustrated in Figure 3(b). In this way, we can take
the advantage of existing image descriptors to identify and
characterize phenological changes.

The major problem with the current definition of visual
rhythms is to have been designed for the pixel sampling of
specific lines (e.g., diagonal, horizontal, and vertical) [8].
Here, we are interested in analyzing unshapely regions
related to plant species that are identified by phenology
experts (see Figure 2).
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Figure 4. An overview of the proposed method.

The novelty of this paper is to generalize the notion of
visual rhythms. From a generic point of view, this approach
relies on taking samples of the information to be analyzed
and then grouping them in an orderly manner. The key
contribution of our idea is the mapping function we design
to encode the temporal change of a ROI into a single image.
For clarifying this process, look at Figure 4.

Let S = {Idh}, d ∈ [1, D], h ∈ [1, H] be an image
sequence composed byD×H imagesIdh, with dimensions
WS ×HS , taken by the digital camera at the day of yeard

and the hourh; andM be a binary image, with the same
dimensions ofS, in which white pixels indicate a ROI.

Initially, we convert the binary imageM into a list of
Cartesian coordinatesLxy = {(x, y) | M(x, y) = 1}. After
that, we use this list to draw a sample of the pixels from
an input imageIdh. Finally, we extract a featureFdh that
uniquely characterizes the natural distribution of all those
pixels by calculating the color moments of this segmented
region. Here, we adopt the first-order moment, which is the
average color intensity, i.e.,

Fdh =

∑

(x,y)∈Lxy

Idh(x, y)

|Lxy|
.

Thus, we can define a visual rhythm as a mapping of an

image sequenceS into a single imageR, in which each
featureFdh is a pixel at the position(d, h), i.e.,

R(d, h) = Fdh, d ∈ [1,WR], h ∈ [1,HR],

whereWR = D and HR = H are its width and height,
respectively. Figure 5 presents the visual rhythms produced
by the pixel sampling of the digital images using each ROI
from Figure 2.

IV. EXPERIMENTS AND RESULTS

We carried out experiments to identify the plant species in
the image. For describing time series encoded into a visual
rhythm, we used six traditional and recently proposed image
descriptors: ACC [9], CCV [10], BIC [11], and GCH [12],
for encoding color information; GFD [13] and HWD [14],
for analyzing spectral properties. The distance function used
for feature comparison is the Manhattan (L1) distance. For
more details regarding those image descriptors, refer to [15].

Our strategy to evaluate image descriptors in the con-
text of time series description is based on assessing the
similarity among regions associated with individuals of the
same species. Regions are defined by using the hierarchical
segmentation based on the Guigues algorithm [16]. The
image used to obtain the hierarchy of segmented regions
was taken at noon on October 15th, 2011 (Figure 1). We
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Figure 5. Visual rhythms obtained for each ROI.

have selected 5 segmentation scales from the hierarchy to
perform feature extraction, as illustrated in Figure 1. The
finest scale is composed of27, 380 regions and the coarsest
scale contains8, 849 regions.

The similarity between two regions is computed as a
function of the distance between the feature vectors extracted
from their visual rhythms. An image descriptor is better
than another if it ranks more regions belonging to the same
ROI of an input region at the first positions. We consider
a given region as belonging to a ROI if at least 80% of its
size is overlapped by such a ROI. In our experiments, we
have used only regions from the coarsest scale, as they have
been shown the most effective ones to characterize plant
species [17], [18].

For each ROI, we randomly selected 20 percent of its total
number of regions to be used as queries. Five replications
were performed in order to ensure statistically sound results.
Presented results consider the average performance of the
evaluated image descriptors, which were computed based
on the mean and standard deviation of each replication.

We assess the effectiveness of each approach using the
metrics of Precision and Recall. Precision is the ratio of the
number of relevant regions retrieved to the total number of
irrelevant and relevant regions retrieved. Recall is the ratio of
the number of relevant regions retrieved to the total number
of relevant regions in the database. Here, a given region is
considered as relevant only if it belongs to the same ROI of
a query region.

However, there is a trade-off between Precision and Re-
call. Greater Precision decreases Recall and greater Recall
leads to decreased Precision. Therefore, we choose to report
the results using unique-value measurements: Mean Average
Precision (MAP), which is the mean of the precision scores
obtained at the ranks of each relevant region; and Precision
at 5 (P@5), which is the average precision after 5 regions are
returned. These metrics combine both Precision and Recall
into a single measure, which makes the comparison easier.

We compare the visual rhythm-based techniques with the

method proposed by Richardsonet al. [2], which is the
most popular approach and widely used by the phenology
community for characterizing phenological patterns of plant
species. It consists in analyzing each region in terms of the
variation of the relative (or normalized) brightness of the
primary colors (RGB channels).

In Figure 6, we compare the visual rhythm-based tech-
niques and the baseline method with respect to the MAP
and P@5 measures, respectively. MAP is a good indication
of the effectiveness considering all positions of obtained
ranked lists. P@5, in turn, focuses on the effectiveness
of the methods considering only the first positions of the
ranked lists. Those results indicate that the performance of
the different evaluated approaches is similar.

Paired t-tests were performed to verify the statistical
significance of those results. For that, the confidence in-
tervals for the differences between paired means of each
ROI were computed to compare every pair of approaches.
If the confidence interval includes zero, the difference is
not significant at that confidence level. If the confidence
interval does not include zero, then the sign of the difference
indicates which alternative is better.

Table I presents the 99% confidence intervals of the
differences between the baseline method and the visual
rhythm-based techniques for the MAP and P@5 measures,
respectively. Such analyses confirm that the visual rhythm-
based techniques and the baseline method exhibit similar
performance. Notice that the confidence intervals include
zero and, hence, the differences between those approaches
are not significant at that confidence level.

In Figure 7, we compare the individual scores obtained
for each ROI in terms of the MAP and P@5 measures,
respectively. It is interesting to note the differences in re-
sponsiveness of the different evaluated methods with respect
to each of the species individually. The main reason for
those results is the different patterns of the leaf color change
of each species. In general, different image descriptors are
designed to capture different visual features.
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Figure 6. MAP and P@5 scores obtained by each of the evaluatedapproaches.
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Figure 7. MAP and P@5 scores obtained for each ROI.

Table I
DIFFERENCES BETWEENMAP AND P@5SCORES OF THE DIFFERENT

APPROACHES.

MAP P@5Method
min. max. min. max.

RGB - ACC -0.063 0.312 -0.084 0.410
RGB - BIC -0.088 0.267 -0.047 0.319
RGB - CCV -0.049 0.277 -0.097 0.441
RGB - GCH -0.086 0.306 -0.090 0.362
RGB - GFD -0.179 0.142 -0.088 0.056
RGB - HWD -0.134 0.198 -0.135 0.159

The key advantage of our technique is its computational
efficiency. Table II presents the computational cost and
the space requirements (in terms of the lengthn of the
time series) of all the compared methods. In this way,
we can investigate the relative difference of performance
among different approaches. Clearly, the visual rhythm-
based techniques are much more efficient than the current
solution. This improvement makes our approach suitable for
long-term collections of image data.

Table II
COMPUTATIONAL COSTS AND SPACE REQUIREMENTS OF DIFFERENT

APPROACHES.

Computational CostMethod
Extraction Matching

Space Requirements

VR + ACC O(n) O(1) O(1)
VR + BIC O(n) O(1) O(1)
VR + CCV O(n) O(1) O(1)
VR + GCH O(n) O(1) O(1)
VR + GFD O(n logn) O(1) O(1)
VR + HWD O(n logn) O(1) O(1)

RGB O(n) Ω(n) Ω(n)

V. CONCLUSIONS

In this paper, we have presented a novel approach for
capturing phenological patterns from time series and dis-
tinguishing the behavior of plant species. Our technique
relies on encoding time series as a visual rhythm, which
is characterized by image descriptors. The improvement of
the computational efficiency makes our method suitable for
long-term temporal data.



We have validated our technique using about 2,700
images, taken from a tropical cerrado-savanna vegetation,
including a high diversity of plant species. Results from the
application of our method with several image descriptors
show that it presents high accuracy and computational speed
on identifying regions in the images belonging to a same
species.

Future work includes the evaluation of other visual fea-
tures for image retrieval (e.g., shape [19]). In addition, the
proposed method can be augmented to consider temporal
segmentation [20] and/or summarization methods [21]. Fi-
nally, we also plan to consider learning-to-rank methods
(e.g., genetic programming [22]) for combining different
descriptors.
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