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Abstract

Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating the

development of new technologies for phenological monitoring. Digital cameras or near remote systems have been

efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the RGB (Red,

Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of plant species.

In this scenario, texture information is a great ally for image analysis that has been little used in phenology studies.

We monitored leaf-changing patterns of a cerrado-savanna vegetation by taken daily digital images. We extract RGB

channels from digital images and correlated with phenological changes. Additionally, we benefit from the inclusion

of textural metrics for quantifying spatial heterogeneity. Our first goals are: (1) to test if the color change information

is able to characterize the phenological pattern of a group of species; (2) to test if the temporal variation in image

texture is useful to distinguish plant species; and (3) to test if individuals from the same species may be automatically

identified using digital images. In this paper, we present a machine learning approach based on multiscale classifiers to

detect phenological patterns in the digital images. Our results indicate that: (1) extreme hours (morning and afternoon)

are the best for identifying plant species; (2) different plant species present a different behavior with respect to the

color change information; and (3) texture variation along temporal images is a promising information for capturing

phenological patterns. Based on those results, we suggest that individuals from the same species and functional group

might be identified using digital images, and introduce a new tool to help phenology experts in the identification of

new individuals from the same species in the image and their location on the ground.
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1. Introduction

Phenology, the study of natural recurring phenomena

and its relation to climate (Schwartz, 2003), is a tradi-

tional science dedicated to the observation of the cycles

of plants and animals and relate mainly to local meteo-

rological data, as well as to biotic interactions and phy-

logeny (Staggemeier et al., 2010).

The leaf exchange patterns from leaf flush to senes-

cence are key events to understand a range of ecosystem

∗Corresponding author. Tel.: +55 19 3521-5887; Fax: +55 19

3521-5847

Email addresses: jurandy.almeida@ic.unicamp.br

(Jurandy Almeida), jsantos@ic.unicamp.br (Jefersson A. dos

Santos), bru.alberton@gmail.com (Bruna Alberton),

rtorres@ic.unicamp.br (Ricardo da S. Torres),

pmorella@rc.unesp.br (Leonor Patricia C. Morellato)

processes, considering its prominence on growth, water

status, gas exchange, and nutrient cycling (Negi, 2006;

Reich, 1995). The carbon balance and the productiv-

ity of terrestrial ecosystems are essentially defined by

the dynamics of plant growing seasons (Keeling et al.,

1996; Loustau et al., 2005; Rotzer et al., 2004), con-

trolling spatial and temporal patterns of carbon and wa-

ter exchange between forest and atmosphere (Schwartz

et al., 2002; White et al., 1999).

Plant phenology has gained importance as the sim-

plest and most reliable indicator of species responses

in the context of global change research, stimulating

the development of new technologies for phenologi-

cal observation (Parmesan and Yohe, 2003; Richardson

et al., 2009; Rosenzweig et al., 2008; Walther, 2004;

Walther et al., 2002). Digital cameras have been suc-
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cessfully used as multi-channel imaging sensors, and

the measurements of color change information (RGB

channels) from digital images allow to detect phenolog-

ical changes in plants (Ahrends et al., 2009; Ide and

Oguma, 2010; Kurc and Benton, 2010; Nagai et al.,

2011; Richardson et al., 2009, 2007).

After quantifying the color channels, it is possible

to estimate changes on phenological events, such as

leaf flushing when analyzing the green channel, or leaf

color change and senescence using values from the

red channel (Ahrends et al., 2009; Richardson et al.,

2009). However, image information from digital cam-

era is sparse for high diverse tropical forest, where one

image may encompass dozens to more than a hundred

species, compared to the low number of species on tem-

perate vegetations.

Another important feature that can be extracted from

digital images is the spatial arrangement of the pixel in-

tensities, known as texture (Torres and Falcão, 2006).

The appearance of texture can help an observer to deter-

mine whether different regions from a digital image of a

given vegetation have a same structure. Due to difficul-

ties in measurement and interpretation, texture has been

little used in phenology studies (Culbert et al., 2009).

We monitored a tropical cerrado savanna vegetation

to accesses the reliability of digital images to detect leaf

changes and validate the digital data with on the ground

direct phenological observation (Alberton et al., 2012).

In this paper, we investigate the use of machine learn-

ing based on multiscale classifiers to detect phenologi-

cal patterns in a cerrado savanna by using color and tex-

ture information of digital images. The key contribution

of this study is the analysis of intra-species variations.

The primary goal of our research is to determine how

good is the color change information to characterize the

phenological pattern of a group of species. Moreover,

we are interested in analyzing how promising is the tem-

poral variation in image texture to distinguish different

individuals that have similar spectral characteristics but

different spatial patterns. Finally, we use machine learn-

ing based on multiscale classifiers to find similar tex-

tures in the digital image and we checked if they corre-

spond to similar species or functional groups.

Based on those studies, we expect to open new venues

on the automatic identification of plants from the same

species or functional group using machine learning.

Most of existing methods for species identification have

focused on morphological features of a single organ

(mainly leaf, rarely flower), often considering ideal con-

ditions, such as noise-free images with a uniform back-

ground, taken at specific periods (Cope et al., 2012; Ku-

mar et al., 2012).

Unlike previous works in the literature, we address

the problem of identifying plant species by using phe-

nology instead of morphometrics. Our strategy inte-

grates a high degree of diversity in terms of locations,

periods, and illumination conditions, which is a prereq-

uisite to build modern plant identification systems.

A preliminary version of this work was presented at

eScience 2012 (Almeida et al., 2012). Here, we include

the analysis of texture information to characterize phe-

nological patterns. The new reported results show the

potential of texture change information for species iden-

tification.

The remainder of this paper is organized as follows.

Section 2 presents our learning strategy and shows how

to apply it to identify plant species. Section 3 describes

materials and methods of our experimental protocol.

Section 4 reports our experimental results and discuss

how they can be applied in phenology studies. Finally,

we offer our conclusions and directions for future work

in Section 5.

2. Machine Learning

In machine learning, classification is the task of as-

signing objects to one of several predefined classes.

The input data for a classification task is a collection of

records. Each record, also known as a sample, is char-

acterized by a tuple (F ,Y), where F is the attribute set

and Y is a special attribute, called label, which indicates

the class that belongs each sample (Tan et al., 2005).

The attribute set F , also known as a feature vector,

is a sequence of continuous or discrete values obtained

from measures over a given object and it is used for

computationally describe each sample concerning a spe-

cific property. The label, on the other hand, must be a

discrete attribute (Tan et al., 2005).

A detector or classifier is a systematic approach to

building classification models from an input data set.

Each technique employs a learning strategy to identify a

model that best fits the relationship between the feature

vector and label of the input data (Tan et al., 2005).

For that, a training set consisting of records whose

labels are known must be provided. The training set

is used to build a classification model, which is subse-

quently applied to predict the labels of records it has

never seen before (Tan et al., 2005). For more details

concerning machine learning concepts, refer to (Alpay-

din, 2010; Rostamizadeh and Talwalker, 2012).

In this paper, we use machine learning to detect phe-

nological patterns. For this purpose, we adopted the

multiscale classifier (MSC) approach (dos Santos et al.,
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2012b) to learn phenological patterns and build pheno-

logical pattern detectors. It was chosen due to its ability

of combining different features by weighting the ones

more suitable for each plant species. Moreover, it also

allows the combination of features from different seg-

mentation scales, which increases the power of the final

detector (dos Santos et al., 2012a).

2.1. Multiscale classifier

The multiscale classifier (MSC) (dos Santos et al.,

2012b) is a learning strategy based on boosting of weak

learners. It is based on the Adaboost algorithm pro-

posed by Schapire (1999), which builds a linear com-

bination of weak classifiers to compose a final strong

one. A weak learner is a classifier slightly better than the

random. Boosting-based classification strategies have

been extensively used in applications that need to com-

bine a large sets of different features or classifiers (Grab-

ner and Bischof, 2006; Lechervy et al., 2013; Viola and

Jones, 2001).

Let H be a hierarchy of segmented regions, Pλ is a

partition, which is the segmentation result at a given

scale λ. A partition P is obtained by cutting the hier-

archy H. In this sense, R ∈ P refers to any region R that

belongs to the partition P. The MSC aims at assigning a

label (+1, for relevant class; and −1, otherwise) to each

pixel p of P0 taking advantage of various features com-

puted on regions of various levels from a segmentation

hierarchy H. The final classifier is a linear combination

MS C(p) of T weak classifiers ht(p):

MS C(p) = sign
(

T
∑

t=1

αtht(p)
)

, (1)

where αt is the weight assigned to the weak classifier

ht(p) at the iteration t.

The training consists in testing weak learners in a se-

quence of rounds t = 1, . . . T . Each weak learner builds

a weak classifier that reduces the expected classification

error of the final classifier. For each round t, MSC se-

lects the weak classifier that most decreases the error.

The algorithm keeps a set of weights over the training

set. The weights can be understood as a measure of dif-

ficulty of each sample. The pixels starts with the same

weight. But along the rounds, the weights of the mis-

classified pixels are increased. Thus, the weak learners

are forced to focus on the most difficult samples. We

note Wt(p) the weight of pixel p in round t, and Dt,λ(R)

the misclassification rate of region R in round t at scale

λ which is the mean of the weights of its pixels:

Dt,λ(R) =
( 1

|R|

∑

p∈R

Wt(p)
)

. (2)

Algorithm 1 presents the training process of the

MSC. Let Yλ(R), the set of labels of regions R at scale λ,

be the training set. In a series of rounds t = 1, . . . T , for

all scales λ, the weight of each region Dt,λ(R) is com-

puted (line 3). The selection of regions is based on this

piece of information and to create a subset of labeled

regions Ŷt,λ (line 6).This subset is used to train weak

learners: each features F at scale λ (line 9). Each weak

learner produces a weak classifier ht,(F ,λ) (line 10). The

algorithm then selects the weak classifier ht that most

reduces the error Errht
(line 12). The level of error of

ht is used to compute the coefficient αt, which indicates

the degree of importance of ht in the final classifier (line

13). The selected weak classifier ht and the coefficient

αt are used to update the weights of the pixels W(t+1)(p)

which can be used in the next round (line 14).

Algorithm 1 Multiscale Classifier

Input:

Training labels Yλ(R) = labels of regions R at scale

λ

Initialize:

For all pixels p, W1(p) ← 1
|Y0|

, where |Y0| is the

number of pixels in the image level

1 For t ← 1 to T do

2 For all scales λ do

3 For all R ∈ Pλ do

4 Compute Dt,λ(R)

5 End for

6 Build Ŷt,λ (a training subset based on Dt,λ(R))

7 End for

8 For each pair feature/scale (F , λ) do

9 Train weak learners using features (F , λ) and

training set Ŷt,λ.

10 Evaluate resulting classifier ht,(F ,λ): compute

Err(ht,(F ,λ),W)) (Equation 3)

11 End for

12 Select weak classifier

ht = argminht,(F ,λ)
Err(ht,(F ,λ),Wt,λ)

13 Compute αt ←
1
2
ln
(

1+rt

1−rt

)

with rt ←
∑

p cY0(p)ht(p)

14 Update Wt+1(p)←
Wt(p) exp (−αtY0(p)ht(p))
∑

p

Wt(p) exp (−αtY0(p)ht(p))

15 End for

Output: Multi-Scale Classifier MS C(p)
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The training set labels Y0 corresponds to the samples

at the pixel level. The training sets labels Yλ with λ > 0

are defined according to the percentage of pixels that

belongs to each of the two classes (for example, at least

80% of one region). The learning is performed over a

training set Yλ corresponding to the same scale λ. The

weak learners use the subset Ŷt,λ for training and pro-

duce a weak classifier ht,(F ,λ).

The classification error of the classifier h is:

Err(h,W) =
∑

p|h(p)Y0(p)<0

W(p). (3)

2.2. SVM-based weak learner

In this work, we used a linear SVM (support vec-

tor machine) as weak learner, which is an SVM trainer

based on a specific feature type F and a specific scale

λ. Given the training subset labels Ŷλ, the method finds

the best linear hyperplane of separation, trying to maxi-

mize the data separation between the regions according

to their classes. The sample regions in the margin are

called support vectors and are found during the training.

Once the support vectors and the decision coefficients

(αi, i = 1, . . . ,N) are found, the SVM weak classifier

can be defined as:

S V M(F ,λ)(R) = sign
(

N
∑

i

yiαi( fR · fi) + b
)

, (4)

where b is a parameter found during the training. The

support vectors are the fi such that αi > 0, yi is the

support vector class and fR is the feature vector of the

region.

Only the most difficult regions are supposed to be

used for training. Thus, the training subset Ŷt,λ is com-

posed by n labels from Yλ with values of Dt,λ(R) larger

or equal to 1
|Y0|

.

3. Materials and Methods

3.1. Study Area and Camera Setup

The near-remote phenological system was set up in

a 18m tower in a Cerrado sensu stricto, a savanna-like

vegetation located at Itirapina (22◦ 10’ 49.18” S / 47◦

52’ 16.54” O), São Paulo State, Brazil. The cerrado

stricto sensu (Coutinho, 1978) is a savanna-like vegeta-

tion presenting a discontinuous canopy and woody com-

ponent reaching six to seven meters high and a contin-

uous herbaceous layer (Alberton et al., 2012). In some

parts, the vegetation is denser, with some trees reach-

ing up to 12 m high. The cerrado savanna study site is

about 260 ha, 610 m altitude and the regional climate is

Cwa type (i.e., humid subtropical climate) according to

Köppen classification.

The average climate (1972 to 2002) shows a mean

annual total rainfall of 1524 mm and mean temperature

of 20.7 ◦C, with one warm, humid season from October

to March (average of 22 ◦C and 78% of annual precipi-

tation) and one cool, dry season from April to Septem-

ber (average of 18 ◦C and 16% of annual precipitation).

During the year of study (2011) the climate seasonality

was similar to the average pattern, with a mean temper-

ature of 21.2 ◦C, but a higher annual total rainfall of

1891 mm due to a very humid January with precipita-

tion over 500 mm. Climatic data were obtained from

the Climatological Station of the Center for Water Re-

sources and Applied Ecology (CRHEA) of the Univer-

sity of Sao Paulo, located 4 km from the study site.

A digital hemispherical lens camera (Mobotix Q24)

was setup at the top of the phenology tower, attached

in an iron arm facing northeast (Figure 1). The camera

activity is controlled by a timer and the energy source is

a 12 V battery charged by a solar panel.

Figure 1: The cerrado-savanna phenology tower (18m tall) at Itirap-

ina, São Paulo, Southeastern Brazil, where the digital hemispherical

lens camera was set up (red arrow) attached in an iron arm facing

northeast.
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The first data collection from the digital camera

started on 18th August 2011. We set up the camera to

automatically take a daily sequence of five JPEG images

(at 1280 × 960 pixels of resolution) per hour, from 6:00

to 18:00 h (UTC-3). The present study was based on

the analysis of over 2,700 images (Figure 2), recorded

at the end of the dry season, between August 29th and

October 3rd 2011, day of year 241 to 278 (DOY), dur-

ing the main leaf flushing season (Alberton et al., 2012;

Reys, 2008). Sunrise, sunset, and solar elevation angle

were 6:03 h, 17:38 h, 58◦ (DOY 241); and 5:26 h, 17:48

h, 72◦ (DOY 278), respectively.

Figure 2: Sample image of the cerrado savanna recorded by the digital

camera on October 15th, 2011.

3.2. Image Analysis

3.2.1. Regions of Interest

The image analysis was conducted by defining differ-

ent regions of interest (ROI), as described by Ahrends

et al. (2009); Alberton et al. (2012); Richardson et al.

(2009, 2007). For each ROI, a binary image with the

same dimensions of the original image was created as a

mask. White pixels of a mask indicate the ROI, while

the remaining area was filled by black pixels. We de-

fined six ROIs (Figure 3) based on the random selection

of six plant species identified manually by phenology

experts in the hemispheric image: (1) Aspidosperma to-

mentosum (Figure 3(a)), (2) Caryocar brasiliensis (Fig-

ure 3(b)), (3) Myrcia guianesis (Figure 3(c)), (4) Mi-

conia rubiginosa (Figure 3(d)), (5) Pouteria ramiflora

(Figure 3(e)), and (6) Pouteria torta (Figure 3(f)).

According to the leaf exchange data from the on-the-

ground field observations on leaf fall and leaf flush at

our study site, those species were classified on three

functional groups (Alberton et al., 2012; Morellato

et al., 1989; Reys, 2008): (i) deciduous, Aspidosperma

tomentosum and Caryocar brasiliensis; (ii) evergreen,

Myrcia guianensis and Miconia rubiginosa; and (iii)

semideciduous, Pouteria ramiflora and Pouteria torta.

3.2.2. Color Features

We analyzed each ROI in terms of the contribution

of the primary colors (Red, Green, and Blue), as pro-

posed by Richardson et al. (2007). Initially, a custom

script was used to analyze each color channel and to

compute the average value of the pixel intensity. After

that, we calculated the relative (or normalized) bright-

ness of each color channel, as:

Totalavg. = Redavg. +Greenavg. + Blueavg.(5)

% o f Red =
Redavg.

Totalavg.

% o f Green =
Greenavg.

Totalavg.

% o f Blue =
Blueavg.

Totalavg.

where Redavg., Greenavg., and Blueavg. are the aver-

age pixel intensity of the red, green, and blue bands,

respectively. The normalization of those values re-

duces the influence of the incident light, decreasing the

color variability due to changes on illumination condi-

tions (Cheng et al., 2001).

Figure 4 shows the behavior of those values for each

ROI along the whole period, considering only the digital

images taken at the midday. Each line corresponds to a

time series for the variation of the normalized brightness

of each color channel. Notice the differences between

the behavior of each species individually, reflecting the

leaf color changes over the leaf life cycle or aging pro-

cess.

3.2.3. Texture Features

One of the most traditional techniques for extract-

ing and representing texture information is the Co-

occurrence matrix (Haralick et al., 1973). It describes

spatial relationships among pixel intensities in an im-

age. Each position (i, j) in this matrix indicates the

probability at which pixels of intensity values i and j

occur at a user specified distance and direction. There

are four commonly used directions: 0◦ (horizontal), 45◦

(right diagonal), 90◦ (vertical), and 135◦ (left diago-

nal). The distance parameter is typically set to 1, thus

comparing adjacent pixels. From this matrix, we can

compute properties such as contrast, entropy, and ho-

mogeneity.
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(a) Aspidosperma tomentosum (b) Caryocar brasiliensis (c) Myrcia guianesis

(d) Miconia rubiginosa (e) Pouteria ramiflora (f) Pouteria torta

Figure 3: Regions of interest (ROIs) defined for the analysis of cerrado-savanna digital images: (a) Aspidosperma tomentosum, (b) Caryocar

brasiliensis, (c) Myrcia guianesis, (d) Miconia rubiginosa, (e) Pouteria ramiflora, and (f) Pouteria torta.
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(e) Pouteria ramiflora
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(f) Pouteria torta

Red Green Blue

Figure 4: The variance of the normalized brightness of each color channel from the digital images taken at the midday, each Julian day (August

28th to October 3rd, 2011), in the cerrado savanna using different regions of interest (ROIs), as described in Figure 3.
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A simplification of the aforementioned method con-

sists in replacing the usual co-occurrence matrices by

their associated sum and difference histograms (Unser,

1986). The non-normalized sum s and difference d as-

sociated with a relative displacement (δ1, δ2) on the po-

sition (k, l) of an image I are defined as:

sk,l = Ik,l + Ik+δ1,l+δ2 , (6)

dk,l = Ik,l − Ik+δ1,l+δ2 .

Let D be a subset of indexes specifying a region to

be analyzed and G = {1, 2, . . . ,Ng} be the set of the

Ng pixel levels. The sum (hs) and difference (hd) his-

tograms for the intensity values i and j over the domain

D are defined by:

hs(i; δ1, δ2) = hs(i) = Card{(k, l) ∈ D, sk,l = i}, (7)

hd( j; δ1, δ2) = hd( j) = Card{(k, l) ∈ D, dk,l = j}.

The normalized sum (Ps) and differences (Pd) his-

tograms are given by

Ps(i) = hs(i)/N i = 2, . . . , 2Ng, (8)

Pd( j) = hd( j)/N j = −Ng + 1, . . . ,Ng − 1,

where N is the total number of counts,

N = Card{D} =
∑

i

hs(i) =
∑

j

hd( j). (9)

Statistical information can be extracted from those

histograms by computing quantities such as mean, vari-

ance, and entropy. Unser (1986) has presented a variety

of statistical measures that can be employed to extract

useful information from both sum and difference his-

tograms, as shown in Table 1. Such measures were com-

puted from the sum and difference histograms obtained

from the green color band by considering the domain D

defined by each ROI.

Table 1: Textural metrics extracted from each ROI.

Feature Formula

Mean µ = 1
2

∑

i i · Ps(i)

Contrast Cn =
∑

j j2 · Pd( j)

Homogeneity Hg =
∑

j
1

1+ j2
· Pd( j)

Variance σ2 = 1
2

(

∑

i(i − 2µ)2 · Ps(i) +
∑

j j2 · Pd( j)
)

Correlation Cr =
1
2

(

∑

i(i − 2µ)2 · Ps(i) −
∑

j j2 · Pd( j)
)

Entropy Hn = −
∑

i hs(i) · log Ps(i) −
∑

j Pd( j) · log Pd( j)

Maximum Mp = maxi Ps(i)

Figure 5 shows the behavior of those measures for

each ROI along the whole period, considering only the

digital images taken at the midday. Each line corre-

sponds to a time series for the variation of the normal-

ized value of each textural metric. The behavior of those

curves is equivalent for the different orientations. For

that reason, we report the average results of the all the

directions (0◦, 45◦, 90◦, and 135◦).

3.3. Classification

Figure 6 illustrates the steps of our MSC approach.

The first step is to build a hierarchy of regions H. We

have used Guigues algorithm (Guigues et al., 2006) to

perform the segmentation. In the remainder of this pa-

per, when we refer to regions of interest related to tree

crowns of plant species identified manually in the digi-

tal image, we use the acronym ROI; and when we refer

to segmented regions obtained from the segmentation

algorithm, we use the acronym SR.

The image used to obtain the hierarchy of segmented

regions (SR) was taken at noon on October 15th, 2011

(Figure 2). We have selected 5 segmentation scales from

the hierarchy to perform feature extraction. The finest

scale is composed of 27, 380 SRs and the coarsest scale

contains 8, 849 SRs. Figure 7 illustrates the segmented

scales in a subimage sample from Figure 2.

Original Scale 1 Scale 2

Scale 3 Scale 4 Scale 5

Figure 7: The segmentation results for the selected scales in a subim-

age sample.

The second step is the feature extraction, which is

carried out on the SRs at different segmentation scales.

For each plant species, we have tested 39 different color

features by considering the available periods during the

day (13 hours: from 6:00 to 18:00 h) and the color chan-

nels (3 bands: R, G, and B). Also, we have tested 91 dif-

ferent texture features by considering the available peri-

ods during the day (13 hours: from 6:00 to 18:00 h) and

the texture metrics (7 statistical measures: mean, vari-

ance, contrast, correlation, entropy, homogeneity, and

maximum probability). For each feature, we take the

average value obtained for the five images of each hour

of the day. Time series are obtained by computing those

values along the whole period (August 28th to October

3rd, 2011), forming the feature vector.

Finally, we use the MSC (Algorithm 1) to build a lin-

ear combination of weak classifiers, each of them re-

lated to a specific scale and feature. This step was per-

formed for each plant species by using their ROIs (Fig-

ure 3). To build a classifier for a given species, we used

the SRs from its corresponding ROI as positive samples

and from ROIs of the other species as negative samples.

At the end, the final classifier was applied to classify the

remaining SRs of the image.
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Figure 5: The variance of the normalized value of each textural metric from the digital images taken at the midday, each Julian day (August 28th to

October 3rd, 2011), in the cerrado savanna using different regions of interest (ROIs), as described in Figure 3.
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Figure 6: Steps of the multi-scale learning process. Adapted from dos Santos et al. (2012b).

3.4. Effectiveness Measures

We carried out experiments to classify the plant

species in the image. For that, we selected two species

from different functional groups: Aspidosperma tomen-

tosum (deciduous) and Miconia rubiginosa (evergreen).

Next, we built a classifier for each species using the ap-

proach described in Section 2.

Figure 8 shows the ROIs identified by phenology ex-

perts, which we used to build and analyze each of the

classifiers. In this figure, green areas indicate individ-

uals of the analyzed species, whose SRs obtained from

the segmentation were used as positive samples; while

red areas represent individuals from the other species,

whose the SRs were considered as negative samples.

To assess the effectiveness of each classifier, other in-

dividuals (yellow areas; Figure 8) from each of the ana-

lyzed species were chosen as a validation set. Then, we

used the SRs extracted from those ROIs as input sam-

ples for each classifier. Thus, we can measure the clas-

sification accuracy as the ratio of the number of samples

correctly classified as belonging to the analyzed species

to the total number of samples in the validation set.
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(a) Aspidosperma tomentosum (b) Miconia rubiginosa

Figure 8: Regions of interest (ROIs) used to build and analyze classifiers: green and red areas indicate individuals of plant species taken, respec-

tively, as positive and negative samples for training; whereas yellow areas indicate individuals of plant species chosen for validation.

4. Results and Discussion

4.1. Classification Accuracy

4.1.1. Color Change Information

Figure 9 shows the classification accuracy for each

of the color channels (3 bands: R, G, and B) along all

the available periods of the day (13 hours: from 6:00 to

18:00 h), totaling 39 different features for each of the

analyzed species.

Figure 10 shows a different view of those results, in-

cluding all feature combinations, totaling 56 different

possibilities. They are: (i) 1 hour of the day and 1 color

channel (39 combinations); (ii) 1 hour of the day and all

the color channels (13 combinations); (iii) all the hours

of the day and 1 color channel (3 combinations); and

(iv) all the hours of the day and all the color channels (1

combination). In order to make the comparison easier,

we sorted the results from higher to lower accuracy.

Observe that, with less sunshine (early in the morn-

ing and late in the afternoon), the classification accu-

racy is higher, characterizing better the analyzed species

for that particular day (Figure 9). It indicates that early

and late hours are better to characterize the phenological

pattern of plant species for the identification using ma-

chine learning. This finding disagrees with the general

suggestion of extracting color information from midday

hours for ecological studies (Ahrends et al., 2009; Ide

and Oguma, 2010; Richardson et al., 2009, 2007). Such

differences are related to the type of data analyses be-

ing conducted, once those research works are interested

in the variation among species (e.g., how different are

the phenological patterns of individuals from different

species), while the present study is focused on intra-

species variations (e.g., how similar are the phenologi-

cal patterns generated by different individuals of a same

species).

Notice also the differences between the behavior of

each of the species individually with respect to the

color channels, indicating different patterns of leaf color

change (Figure 10). This behavior reflects their con-

trasting leaf phenology (Alberton et al., 2012): the Mi-

conia rubiginosa is an evergreen species and, therefore,

the leaf senescence is a continuous process and color

changes are more subtle over time; in contrast, the As-

pidosperma tomentosum is deciduous, thus the color

change reflects the rapids leaf senescence and the flush

of new leaves.

As mentioned in Section 2.2, the MSC approach is

based on boosting weak learners. In this paper, each

weak learner is a linear SVM classifier using features

extracted from a given segmentation scale. In this way,

each of the color channels along all the available peri-

ods of the day at one of the scales are used as a distinct

feature. Table 2 presents the weak classifiers chosen by

MSC training algorithm for the Aspidosperma tomento-

sum and Miconia rubiginosa species.

Those results confirm that the extreme hours (morn-

ing, from 6:00 to 9:00 h; and afternoon, from 15:00 to

18:00 h) are better to characterize plant species. In addi-

tion, they also show that the Aspidosperma tomentosum

and Miconia rubiginosa species present a different be-

havior with respect to the color channels. Moreover, it

is interesting to note that coarse scales provide better

results than fine ones for the species identification.
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Figure 9: Classification accuracy for each of the color channels along all the available periods of the day.

10



R G B R + G + B

Hour(s)

A
cc

u
ra

cy
(%

)

0

20

40

60

80

100

6666 7777 8888 9999 1
0

1
0

1
0

1
0

1
1

1
1

1
1

1
1

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
5

1
5

1
5

1
5

1
6

1
6

1
6

1
6

1
7

1
7

1
7

1
7

1
8

1
8

1
8

1
8

6
to

1
8

6
to

1
8

6
to

1
8

6
to

1
8

(a) Aspidosperma tomentosum

R G B R + G + B

Hour(s)

A
cc

u
ra

cy
(%

)

0

20

40

60

80

100

6666 7777 8888 9999 1
0

1
0

1
0

1
0

1
1

1
1

1
1

1
1

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
5

1
5

1
5

1
5

1
6

1
6

1
6

1
6

1
7

1
7

1
7

1
7

1
8

1
8

1
8

1
8

6
to

1
8

6
to

1
8

6
to

1
8

6
to

1
8

(b) Miconia rubiginosa

Figure 10: Classification accuracy for each of the color channels along all the available periods of the day (among all the possible combinations).
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Table 2: Weak classifiers chosen by the MSC for each round t. The

classifier is composed by: color band, hour of the day and segmenta-

tion scale.

Aspidosperma Miconia rubiginosa

t Classifier Weight Classifier Weight

0 7h,R,λ1 3.9 18h,R,λ4 4.0

1 16h,B,λ2 1.0 18h,R,λ3 3.7

2 16h,B,λ4 4.1 18h,R,λ1 1.0

3 16h,R,λ1 1.0 18h,R,λ1 1.0

4 7h,B,λ4 4.6 18h,R,λ1 1.0

5 7h,B,λ1 1.0 18h,R,λ1 1.0

6 7h,B,λ2 1.0 18h,R,λ1 1.0

7 16h,B,λ2 5.2 18h,R,λ1 1.0

8 7h,B,λ2 1.0 18h,R,λ1 1.0

9 7h,B,λ1 6.3 18h,R,λ1 1.0

A detailed analysis of the effects of the scale of seg-

mentation on the descriptors is presented in dos Santos

et al. (2012a). As pointed out by the authors, all scales

are important in different ways: large regions offer more

power of description, and the small ones can be used to

refine the segmentation.

The reason for the different behavior between the two

species is probably related to the leaf change pattern

and species functional group. These divergent leafing

patterns indicated different behavior for the analyzed

species that need further in-depth analyses considering

their on-the-ground phenology (Alberton et al., 2012).

Based on those results, our analysis suggests that indi-

viduals from the same species and functional group can

be identified using digital images.

4.1.2. Texture Change Information

Figure 11 shows the classification accuracy for each

of the textural metrics (7 statistical measures: mean,

variance, contrast, correlation, entropy, homogeneity,

and maximum probability) along all the available peri-

ods of the day (13 hours: from 6:00 to 18:00 h), totaling

91 different features for each of the analyzed species.

Figure 12 shows a different view of those results, in-

cluding all the feature combinations, totaling 112 dif-

ferent possibilities. They are: (i) 1 hour of the day and

1 textural metric (91 combinations); (ii) 1 hour of the

day and all the textural metrics (13 combinations); (iii)

all the hours of the day and 1 textural metric (7 com-

binations); and (iv) all the hours of the day and all the

textural metrics (1 combination). In order to make the

comparison easier, we sorted the results from higher to

lower accuracy.

In general, the results indicate how promising is the

use of textural metrics for capturing phenological pat-

terns, achieving a high classification accuracy, compa-

rable to that from the color features. This opens up a

number of possibilities that deserve much deeper study,

but an immediate consequence is that the variation in

image texture contains important information which can

be explored in phenology studies.

As we can observe, the statistical measures of mean,

contrast, and variance achieve the best results for both

the Aspidosperma tomentosum and Miconia rubiginosa

species. In contrast, it is interesting to note the differ-

ences in responsiveness of each of the species individ-

ually with respect to those textural metrics, indicating

different patterns of temporal changes in their spatial

distribution. The contrast captured better the deciduous

leaf change pattern of the Aspidosperma tomentosum,

as previous described. On the other hand, the mean de-

scribed better the continuous process of leaf senescence

of the Miconia rubiginosa, an evergreen species.

The weak classifiers chosen by MSC training algo-

rithm for the Aspidosperma tomentosum and Miconia

rubiginosa species are presented in Table 2. Those re-

sults confirm that the statistical measure of mean is bet-

ter to characterize plant species. In addition, as for the

color features, they also show that coarse scales provide

better results than fine ones for the species identifica-

tion.

Table 3: Weak classifiers chosen by the MSC for each round t. The

classifier is composed by: textural metric, hour of the day and seg-

mentation scale.

Aspidosperma Miconia rubiginosa

t Classifier Weight Classifier Weight

0 8h,Variance,λ1 3.0 7h,Mean,λ1 1.9

1 7h,Mean,λ2 3.8 7h,Entropy,λ2 1.6

2 18h,Mean,λ1 2.9 17h,Variance,λ1 1.9

3 7h,Mean,λ1 4.5 6h,Mean,λ1 1.7

4 7h,Mean,λ1 1.0 6h,Mean,λ1 2.0

5 7h,Mean,λ1 1.0 6h,Mean,λ1 2.5

6 7h,Mean,λ1 1.0 15h,Mean,λ1 2.9

7 7h,Mean,λ1 1.0 6h,Mean,λ1 3.2

8 7h,Mean,λ1 1.0 6h,Mean,λ1 1.0

9 7h,Mean,λ1 1.0 18h,Mean,λ1 1.0

The strong fine-scale variation in the vegetation leads

to a high spectral variation, which is translated into

higher variation of textural measures. For that reason,

the temporal variation in image texture is an useful in-

formation to distinguish plant species.

4.2. Application in Phenology Studies

The species identification in the digital image is a

key issue for the near-remote phenological observation

of tree crowns, especially in tropical vegetations where

one single image may include a high number of species.

Usually, this task is very time-consuming since it has to

be done in the field, first by matching each crown in the
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Figure 11: Classification accuracy for each of the textural metrics along all the available periods of the day.
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Figure 12: Classification accuracy for each of the textural metrics along all the available periods of the day (among all the possible combinations).
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(a) Aspidosperma tomentosum (b) Miconia rubiginosa

Figure 13: Image maps produced for different species using the feature combination with the highest classification accuracy. Different color scales

were used to maximize the difference between the assigned labels: (i) a green scale, for similar pattens; (ii) a gray scale, for undefined patterns;

and (iii) a red scale, for inverted patterns.

image to the tree in the soil and then by identifying the

tree at species level.

In this sense, our framework can help phenology ex-

perts to find the species in the image, since we can

use the MSC approach to automatically identify simi-

lar ROIs (tree crowns), reducing the area on the ground

over which to look for similar species’ ROI, making

such a task much easier and faster.

For that, we use the MSC approach to classify seg-

mented regions from the digital images. Next, we create

an image map based on the assigned labels, indicating

graphically the areas where the probability of finding

individuals from a given species is higher.

Figure 13 presents the image maps produced for the

analyzed species using the feature combination that

achieved the highest classification accuracy (i.e., 6h/G,

for the Aspidosperma tomentosum; and 6-18h/RGB, for

the Miconia rubiginosa). Different color scales were

used to maximize the difference between the assigned

labels: (i) a green scale, for similar pattens (between

+1.0 and +0.3); (ii) a gray scale, for undefined patterns

(between +0.3 and -0.3); and (iii) a red scale, for in-

verted patterns1 (between -0.3 and -1.0).

In this figure, the green areas indicate the segmented

regions with a high probability of belonging to the same

species. Notice how the search efforts can be greatly

reduced by employing our approach. This opens up a

number of possibilities that deserve much deeper study,

but an immediate consequence is that we can help phe-

1For inverted patterns, we mean a behavior completely opposite of

the expected one.

nology experts with a new tool to identify plant species,

increasing their accuracy on defining the relationship

between phenology and climate.

The automatic identification of regions in the digital

image with similar phenological patterns have allowed

us to find more crowns of the analyzed species, which

were validated by the on site identification of the trees.

Also, from the point of view of phenology, it has helped

us to distinguish different regions in our study area re-

gardless of their individual species and to understand

the predominant phenology of a whole community.

5. Conclusions

We conclude that machine learning based on multi-

scale classifiers can be applied to detect phenological

patterns in the high diversity of the tropical cerrado sa-

vanna vegetation. Using a conventional tool to mea-

sure the color change information, we were able to de-

fine the best hours of the day for characterizing plant

species. Different from the suggestion of using mid-

day hours reported in ecological studies, the extreme

hours (morning and afternoon) have shown the best re-

sults for the species identification using machine learn-

ing. Moreover, the data validation at species level have

also revealed that different plant species present a differ-

ent behavior with respect to the color change informa-

tion. In this way, we were able to distinguish species

and functional groups of plants using digital images.

Another significant finding of our study was that tex-

tural measures exhibit a temporal-change pattern with

respect to phenological changes. The potential upside

15



of temporal variation in image texture is that texture

differences among multitemporal images contain use-

ful information to characterize plant species. Finally,

based on those results, we have introduced a new tool to

help phenology experts in the species identification on-

the-ground, making such a task much easier and faster.

Future work includes the evaluation of other visual fea-

tures (e.g., color (Almeida et al., 2013) and shape (Tor-

res et al., 2013)) and/or learning methods (e.g., genetic

programming (Andrade et al., 2012)).
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floresta de altitude e floresta mesófila semidecı́dua na serra do iapı́,

jundiaı́, são paulo. Brazilian Journal of Botany 12, 85–98.

Nagai, S., Maeda, T., Gamo, M., Muraoka, H., Suzuki, R., Nasahara,

K. N., 2011. Using digital camera images to detect canopy condi-

tion of deciduous broad-leaved trees. Plant Ecology and Diversity

4, 79–89.

Negi, G. C. S., 2006. Leaf and bud demography and shoot growth in

evergreen and deciduous trees of central himalaya, india. Trees 20,

416–429.

Parmesan, C., Yohe, G. A., 2003. A globally coherent fingerprint to

climate change impacts accross natural systems. Nature 421, 37–

42.

Reich, P. B., 1995. Phenology of tropical forests: Patterns, causes and

consequences. Canadian Journal of Botany 73, 164–174.

Reys, P., 2008. Estrutura e fenologia da vegetação de borda e interior

em um fragmento de cerrado Sensu Stricto no sudeste do brasil

(itirapina, são paulo). Ph.D. thesis, Bioscience Institute, Sao Paulo

State University, Rio Claro, SP, Brazil.

Richardson, A. D., Braswell, B. H., Hollinger, D. Y., Jenkins, J. P.,

Ollinger, S. V., 2009. Near-surface remote sensing of spatial and

temporal variation in canopy phenology. Ecological Applications

19, 1417–1428.

16



Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y.,

Ollinger, S. V., Smith, M. L., 2007. Use of digital webcam images

to track spring greep-up in a deciduous broadleaf forest. Oecologia

152, 323–334.

Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q.,

Casassa, G., Menzel, A., Root, T. L., Estrella, N., Seguin, B., Try-

janowski, P., Liu, C., Rawlins, S., Imeson, A., 2008. Attributing

physical and biological impacts to anthropogenic climate change.

Nature 453, 353–357.

Rostamizadeh, A., Talwalker, A., 2012. Foundations of Machine

Learning. Adaptive Computation and Machine Learning Series.

University Press Group Limited.

Rotzer, T., Grote, R., Pretzsch, H., 2004. The timing of bud burst and

its effect on tree growth. International Journal of Biometeorology

48, 109–118.

Schapire, R. E., 1999. A brief introduction to boosting. In: Dean,

T. (Ed.), International Joint Conference on Artificial Intelligence

(IJCAI’99). pp. 1401–1406.

Schwartz, M. D., 2003. Phenology: An Integrative Environmental

Science. Academic Publishers.

Schwartz, M. D., Reed, B. C., White, M. A., 2002. Assessing satellite

derived start-of-season measures in the coterminous. International

Journal of Climatology 22, 1793–1805.

Staggemeier, V. G., Diniz-Filho, J. F., Morellato, L. P. C., 2010. The

shared influence of phylogeny and ecology on the reproductive pat-

terns of Myrteae (Myrtaceae). Journal of Ecology 98, 1409–1421.

Tan, P.-N., Steinbach, M., Kumar, V., 2005. Introduction to Data Min-

ing. Addison-Wesley.

Torres, R. S., Falcão, A. X., 2006. Content-based image retrieval:

Theory and applications. Revista de Informática Teórica e Apli-
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