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Abstract. Hyperspectral images are one of the most important data
source for land cover analysis. These images encode information about
the earth surface expressed in terms of spectral bands, allowing us to pre-
cisely classify and identify materials of interest. An approach that has
been widely used is the combination of various classification methods
in order to produce a more accurate thematic map based on classifi-
cation of hyperspectral images. Our multi-objective remote sensed hy-
perspectral image classifier combiner (MORSHICC) approach uses a ge-
netic algorithm-based strategy for choosing the best subset of classifiers,
that is, the one which provides higher accuracy with the fewest possible
amount of classifiers. We propose to use combiners that linearly weigh
each classification approach through Genetic Algorithm (WLC-GA) and
Integer Linear Programming (WLC-ILP). For building the combiners, we
used three data representations and four learning algorithms, producing
twelve classification approaches such that the multi-objective approach
can select the best subset. Experimental results on well-known datasets
show that the MORSHICC approach with WLC-GA and WLC-IP not
only produces combiners with fewer classifier approaches but also im-
proves the final accuracy rates. Therefore, these combiners may produce
more accurate thematic maps for real and large datasets in a short time.

1 Introduction

Remote sensing data have been used as source of information for many applica-
tions such as urban planning, agriculture, and environmental monitoring. Most
of these applications require automatic pattern analysis, which enables great ad-
vances in the interpretation of the materials in the earth surface [3, 14, 18]. In
this context, the main step consists in classifying each pixel of the image [2]. In
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typical pattern recognition problems, the objective is to yield the best results in
terms of accuracy rates [13]. Given a scenario with a set of classifiers, the most
näıve strategy is to select the classifier that achieves the best performance as the
final solution for the classification problem.

However, it has been observed that among the non-selected classifiers, or
even including the best ones, the sets of misclassified patterns are not always
correlated. It suggests that different classifiers can provide some information to
improve the final results [11]. Thus, combination of classifiers have been widely
employed, with the goal of using all available information, when a single classifier
can not achieve the expected results [19].

Several works have proposed effective strategies to construct good ensembles
of classifiers [4, 17]. They state that the key issue for achieving the highest pos-
sible accuracy rates is to exploit the diversity among the classifiers. They make
errors on different instances. Hence, a combination of these classifiers can reduce
the total error [17]. In [4], the authors propose the concept of “good” and “bad”
diversity to the Majority Vote rule. The greater the “good” diversity value, the
smaller the Majority Vote error is.

Nonetheless, there is no a widely accepted definition for diversity. It is not
clear at this moment, what is the correlation between diversity and accuracy [7].
For instance, diversity is used in order to reduce the generalization error in [9].
As a conclusion, the authors pointed out that using only diversity measures is not
a good strategy to reach a suitable combination of classifiers. Also, dos Santos
et al. [7] noted that bad individual classifiers do not should be included in the
final ensemble even if it has high diversity in comparison with others.

The quality of an ensemble depends on the careful selection of classifiers to be
combined. One way to perform a suitable combination, i.e., how many and which
are the best classifiers, would be evaluate every possible combination given set of
classifiers. This task would require a high computational effort even for a small
number of classifiers/approaches, because there are 2n - 1 possible combinations
(for n = 12, 4095 combinations would be evaluated). Another option to deal with
this problem, due to the combinatorial nature of the search space, would be the
usage of algorithms that optimize combinatorial problems, such as Evolutionary
Algorithms. It is noteworthy that it is also interesting to get a combination with
a smaller set of classifiers. Therefore, the problem can be described as a search
for the accuracy maximization and minimization of the number of classifiers.

Having this context in mind, we propose in this paper the use of a multi-
objective approach for remote sensed hyperspectral image classifier combiner
(MORSHICC) based on genetic algorithm to determine the Pareto’s front (i.e.,
set of non dominated individuals) which represents the set of best combiners in
accord to two objectives: maximization of accuracy and minimization of the
number of classifiers used in the combiner. From our previous works, here,
we use linearly weighted combiners generated by Genetic Algorithms (WLC-
GA) [19], and Integer Linear Programming (WLC-ILP) [21]. For building the
combiners, we used three types of data representation and four well-known learn-
ing algorithms (Support Vector Machines (SVM) with linear and RBF kernels,



Backpropagation-based Multilayer Perceptron Neural Network (MLP) and K-
Nearest Neighbor (KNN)) generating twelve classification approaches. For more
details regarding the classification approaches, since the focus of this work is not
on them, we suggest the reader to see [19–21] for more details. Experiments were
carried out in well-known datasets: Indian Pines and Pavia obtained by AVIRIS
and ROSIS sensors, respectively [16].

2 Background

The main goal of combining multiple classifiers is to improve the performance
of the final classification in comparison with single classifiers. It comprises the
selection of the most suitable classifiers. In this section, we present the methods
for combination and search that were used in this work.

2.1 Combination Methods

The input for the combination methods we have employed in this paper is the
output of the single classifiers. For each class, the classifiers produce a soft value,
i.e., a certain degree of support [13]. These outputs can be fuzzy, posterior
probabilities, certainty, or possibility values [10]. Based on these soft outputs
one can build a Decision Profile (DP). Formally, a DP for a given sample x can
be defined as a L× C matrix, i.e., DP (x) = [D1(x), D2(x), ..., Dl(x), ..., DL(x)]
in which Dl(x) = [dl,1(x), dl,2, ..., dl,c, ..., dl,C(x)]T , L is the number of classifiers,
C is the number of classes, and dl,c(x) is the degree of support given by classifier
Dl to class c [10, 13], as illustrates Fig. 1. After building support degrees for
each input sample, a crisp value (the final label) can be assigned by using the
maximum support value in the set, for instance.

Fig. 1: Decison Profile. Adapted and modified from [13].

According to Kuncheva [13], combiners are methods that use all predictions
produced by two or more classifiers to build an accurate final decision. They can



be divided into “nontrainable” and “trainable” combiners. The “nontrainable”
combiners have no need of training any parameter. They perform some basic
operation (for instance: average, maximum, minimum and product) in the DP
to produce new support values and, hence, a final decision.

The purpose of the “trainable” combiners is to give more discriminant power
to classifiers that have greater accuracy [13] when classifiers have different out-
puts. Weighted Average, Weighted Majority Vote (WMV), and other weighted
approaches are based on this idea. In the following, we briefly describe the two
linearly weighted combiners used in our proposed selection method, which, in
turn, is described further.

In this work, in particular, we use weighted linear combiners, from our pre-
vious works [19,21]. Let us first define a Weighted Linear Combination (WLC).

Given a sample x, let µc(x) =
∑L

l=1 wl × dl,c(x) be the support for the class c,
wl be the weight of the l-th classifier and dl,c(x) be the support of l-th classifier
for the class c.

The task of finding the best weights can be seen as an Integer Linear Pro-
gramming (ILP) optimization problem, generated the WLC-ILP approach [21].
This problem requires the minimization (or maximization) of a linear form sub-
ject to linear inequality constraints. New supports for each class are built using
the WLC and the weights found by running the simplex method. Then, a label
is assigned, for a given sample x, as the index of the maximum support µc(x).
The IBM CPLEX solver [12], a state-of-art ILP solver, is used as optimization
routine.

In [19], predictions of classifiers are also combined using a weighted linear
combination of the DP, as stated above. However, the weights are found using
a global search performed by a GA named WLC-GA. The fitness function was
built based on the accuracy produced using the WLC in the dataset. A bit string
representation encode the weights in individual chromosomes. Each weight can
be a non-negative integer value between 0 and 127, which means that there are
7 bits in chromosome for each weight.

2.2 Search Methods

Many works have investigated methods for selecting subsets of classifiers rather
than combining all classifiers [7, 8, 19, 22]. This selection aims at improving the
performance of the combination, since it focuses on finding the subset of the
most relevant classifiers. From a set of classifiers Cl, we apply search algorithms
to select the subset of the best performing classifiers S, where |S| ≤ |Cl|. We
can notice two important aspects: the search algorithm and the search criterion.

Evolutionary Algorithms, such as Genetic Algorithms, attempt to find an op-
timal or near optimal global solution. More specifically Multi-Objective Genetic
Algorithms seem to be a better option to the classifier selection problem due to
the possibility of dealing with a population of solutions.

Another important aspect is the choice of the most appropriate search crite-
rion. Although there is no consensus, the role played by diversity is emphasized



in the literature. However, diversity and accuracy does not exhibit a strong re-
lationship [4] and the estimated accuracy can not be replaced by diversity [9].

Our approach exploits a Multi-Objective Genetic Algorithm for searching.
The search criteria used are the accuracy and the number of classifiers. We
intend to reduce the number of classifiers, but also increase the accuracy. The
final accuracy of the combination is the one obtained by either the WLC-ILP or
WLC-GA combiners using the selected subsets of classifiers.

3 Multi-Objective Optimization Approach

In this section, we present the multi-objective remote sensed hyperspectral im-
age classifier combiner (MORSHICC) based on genetic algorithm. We evolve a
population of classifier combiners aiming at accuracy maximization and mini-
mization of the number of classifiers. The latter objective searches for faster and
less expensive combiners to efficiently classify large datasets.

Each individual is a combiner which, in turn, is represented by a set of
classifiers and its weights computed by a method, e.g., WLC-ILP or WLC-GA.
The set of classifiers for combination contains twelve classification approaches as
shown in Tables 1 and 2. We use a binary chromosome representation, in which
each position (gene) on chromosome represents the presence (or absence) of a
classifier. The population successively evolves through the generations following
a tournament which randomly selects two individuals and then applies crossover
and mutation rules. The binary selection is run six times such that twelve (M)
child individuals are generated. We use the one-point crossover, e.g., a point
along the chromosome is randomly selected, then the pieces to the left of that
point are exchanged between the chromosomes, producing a pair of offspring
chromosomes as crossover operator, and bit inversion as mutation operator.

We start with a randomly chosen initial population of size M , e.g., the num-
ber of classifier combiners used, in which the number of classification approaches
in each individual also randomly varies. For each individual of the initial popu-
lation, a combiner (WLC-ILP or WLC-GA) is run, and based on the classifier
combiner generated, the pair (classification accuracy, number of classifiers) is
computed. Note that either the WLC-ILP or WLC-GA is adopted during the
optimization process.

The evolution step is defined in terms of two objectives: maximizing the
classification accuracy and minimizing the number of classifiers. This step relies
on the concept of dominance: a point is said to be dominated if it is worse than
another point in at least one objective, while not being better than that point
in any other objective. The Pareto-set is the set that contains no dominated
solution, thus it consists of points that are not simultaneously worse than any
other point in both objectives.

More specifically, a generation of the MORSHICC genetic algorithm works
as presented in Algorithm 1. Note that the initial population (generation zero)
is first evaluated (i.e., combiners’ computation). Then, it is submitted to the
Generation step. At the beginning of each generation, we create more M child



Algorithm 1 Generation step of our MORSHICC

1: input: current: set of M evaluated individuals
2: child← bin. select. on current and mutation & crossover
3: for each ind ∈ child do {evaluating every child}
4: (acc.,#class.)←WLC-ILP (or WLC-GA) of ind
5: current← current ∪ child {|current| = 2×M}
6: next← ∅
7: repeat {Pareto-set evaluation procedure}
8: best← non-dominance set from current
9: next← next ∪ best

10: current← current− best
11: until |next| ≤ M
12: remove extra individuals
13: output: next: set of M evolved and evaluated individuals

individuals using binary selection and crossover/mutation operators (lines 2).
The child individuals are evaluated (lines 3-4) and joined to the parent individ-
uals updating the so called current generation set to 2M individuals (line 5).
The next generation set (output) is composed of individuals that survive to
the recursive Pareto-set evaluation procedure (lines 6-11). The Pareto-set of the
current generation set (line 8) is inserted into the next generation set (line 9),
which is initially empty (line 6). The current Pareto-set (best) is removed from
the current generation set (line 10). The process of computing a new Pareto-set
of the remaining individuals is repeated (lines 8-10) until the next generation
set contains M individuals. If eventually the last Pareto-set collects individuals
that extrapolates the M size limit of the generation set, among the last inserted
individuals, the ones with highest accuracy standard deviation3 are removed, so
that the output set reach exactly M individuals (lines 12-13).

The evolution (generation) process is repeated until a predetermined maxi-
mum number of generations is reached. This procedure is similar to the “Non-
Dominated Sorting” selection operator, which is employed in the NSGA-II [6].
It is noticeable that the final subset of classifier combiners is reprocessed such
that only non-dominated solutions remain.

4 Experimental Results and Discussion

The classification approaches selected for combination should constitute a diverse
set and provide additional information. For such aim we used data representa-
tions such as: Pixelwise [15]; Extend Morphological Profile (EMP) [1]; and Fea-
ture Extraction by Genetic Algorithms (FEGA) [20]. For classification, we used
well-known learning algorithms such as Support Vector Machines (SVM) [15],
with Radial Basis Function (RBF) and Linear kernels, Multilayer Perceptron
Neural Network (MLP) [1], and k-Nearest Neighbor (KNN) [5]. The full set of

3 Each combiner is evaluated using several training/testing sets



Table 1: IP dataset: classification approaches.

Identifier Classification Train Accuracy (%)
Approaches 10% 15%

1 EMP RBF -SVM 88.77-(±0.39) 90.88-(±0.29)

2 PixelWise RBF -SVM 80.38-(±0.44) 83.51-(±0.29)

3 FEGA RBF -SVM 76.27-(±0.50) 78.99-(±0.34)

4 EMP MLP 81.60-(±0.76) 82.62-(±0.67)

5 PixelWise MLP 73.04-(±0.75) 76.83-(±0.48)

6 FEGA MLP 72.26-(±0.80) 75.14-(±0.64)

7 EMP kNN 83.94-(±0.34) 86.62-(±0.38)

8 PixelWise kNN 67.28-(±0.44) 69.40-(±0.33)

9 FEGA kNN 61.76-(±0.62) 63.66-(±0.38)

10 EMP linSVM 79.10-(±0.55) 80.14-(±0.43)

11 PixelWise linSVM 77.17-(±0.50) 80.55-(±0.39)

12 FEGA linSVM 72.96-(±0.59) 75.67-(±0.49)

classifiers used for combination contains twelve classification approaches (Ta-
bles 1 and 2).

Experiments were carried out in two training set scenarios, i.e., with 10% and
15% of samples using the well-know Indian Pines (IP) and Pavia University (PU)
datasets.

In both scenarios, the testing set were adjusted to 85% of unseen samples for a
fair comparison of the obtained effectiveness. During the MORSHICC evolution,
each individual (classifier combiner) was run 30 times using 30 different training
and testing sets randomly created. Mean and variances of these experiments
were used to compute the confidence intervals of each combiner using a 0.05
confidence level. For each run of each evaluated combiner, it is important to
note that 50% of the training data is used for initially train the classifiers and
the remaining 50% used for weights estimation in order to avoid biased and
specialized weights, and in a second training phase the classifiers are retrained
with the entire training set. Note that these all subsets (training+testing) were
initially created and then used in all experiments such that a fair comparison can
be performed. MORSHICC approach setup: We set the generation number
to 10 with a population of 12 individuals. We evaluated only 120 individuals
during the evolution process due to the high computation cost of our approach,
which took almost one week for both datasets using a personal computer with
Intel(R) Core(TM) i5-2450M processor and 4 GB of main memory with Ubuntu
12.04 Operating System. We used 12 bits to represent the presence/absence of
each classification approach in combination, and the probabilities of crossover
and mutation to 80% and 0.9%, respectively.



Table 2: PU dataset: classification approaches.

Identifier Classification Train Accuracy (%)
Approaches 10% 15%

1 EMP RBF -SVM 97.20-(±0.11) 97.56-(±0.08)

2 PixelWise RBF -SVM 93.17-(±0.13) 93.50-(±0.10)

3 FEGA RBF -SVM 90.87-(±0.22) 91.39-(±0.11)

4 EMP MLP 94.42-(±0.50) 94.48-(±0.74)

5 PixelWise MLP 92.43-(±0.20) 92.91-(±0.14)

6 FEGA MLP 89.70-(±0.27) 90.04-(±0.19)

7 EMP kNN 95.56-(±0.12) 96.23-(±0.08)

8 PixelWise kNN 84.99-(±0.17) 85.82-(±0.13)

9 FEGA kNN 88.31-(±0.18) 89.06-(±0.11)

10 EMP linSVM 90.72-(±0.16) 91.31-(±0.13)

11 PixelWise linSVM 90.96-(±0.18) 91.10-(±0.13)

12 FEGA linSVM 87.52-(±0.22) 87.61-(±0.13)

Table 3: Results for IP dataset using 10% training set.

training set Classifiers’ Number of Accuracy Confidence
10% ID Classifiers (%) Interval

WLC-ILP 1-2-3-4-5-6-7-8-9-10-11-12 12 89.57 0.80

WLC-GA 1-2-3-4-5-6-7-8-9-10-11-12 12 89.72 0.52

MORSHICC 1-2-4-5-7-11-12 7 90.15 0.46
in WLC-ILP

MORSHICC 1-2-4-6-7-8-10-11 8 91.12 0.29
in WLC-GA

Best Individual 1 1 88.77 0.39
Classifier

In the following, the analysis for claiming statistically significance takes into
account the confidence intervals and mean accuracies reported in Tables 3, 4, 5,
and 6. In these same tables, from the Pareto’s front combiners obtained for
MORSHICC in WLC-ILP and WLC-GA, we choose to report the best mean
accuracies obtained by the combiners which are the ones with the largest number
of classifiers.

For the IP dataset using 10% of training samples, in Table 3, it is shown that
our approaches achieved significantly better results than the best individual clas-



Table 4: Results for IP dataset using 15% of training set.

training set Classifiers’ Number of Accuracy Confidence
15% ID Classifiers (%) Interval

WLC-ILP 1-2-3-4-5-6-7-8-9-10-11-12 12 91.55 0.62

WLC-GA 1-2-3-4-5-6-7-8-9-10-11-12 12 91.63 0.54

MORSHICC 1-2-3-4-7-10-11 7 93.00 0.24
in WLC-ILP

MORSHICC 1-2-4-5-7-8-11 7 93.30 0.21
in WLC-GA

Best Individual 1 1 90.88 0.29
Classifier

sifier. Also observe that the MORSHICC approach in the WLC-ILP produced
statistically similar accuracy, and the MORSHICC approach in the WLC-GA
produced statically better accuracy when compared with their respective com-
biner using all classification approaches. Anyway in both cases MORSHICC
approach employed fewer classifier.

For the IP dataset using 15% of training samples, our approaches have also
achieved significantly better results than the best individual classifier accuracy
as shown in Table 4. Moreover, in this scenario, the MORSHICC approaches
produced significantly better accuracies with fewer classifiers when compared
to both the WLC-ILP and WLC-GA combiners using all classifiers. Note that
the classification accuracies obtained using 15% for training the classifiers are
significantly higher than when using 10%.

Figure 2 shows the graphs of the Pareto’s fronts produced by our MOR-
SHICC approach training in 10% and 15% of training samples and tested in
85% of samples. It is important to claim that the individual approach 1 (EMP+
RBF -SVM), which has higher accuracy, is present in most combinations that
generated the Pareto’s fronts. By observing and comparing the red points (com-
biners) of each graph of the Pareto’s front, it is possible to see that smaller
combiners (few classifiers) can also produce higher accuracies with no statisti-
cally difference to the best combiners. This information is useful when faster
combiners (with low computational cost) are required.

For the PU dataset, using 10% and 15% of training samples, Tables 5 and 6,
respectively, show that the MORSHICC approach in the WLC-GA combiner
achieved significantly better results than the best individual classifier. However
its result is not statistically better if compared with the one obtained by the
WLC-GA approach using all combiners. Moreover, the MORSHICC in the WLC-
ILP performed poorly than the best individual combiner and also with respect to
the WLC-ILP approach using all combiners. Notice that the accuracy improve-
ment obtained in this dataset is smaller if compared with the obtained results
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(a) WLC-ILP/Training Set: 10%.
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(b) WLC-ILP/Training Set: 15%.
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(c) WLC-GA/Training Set: 10%.
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(d) WLC-GA/Training Set: 15%.

Fig. 2: Pareto’s fronts for IP dataset. Blue bars stand for the confidence intervals.

for the IP dataset since here there is few room for improvement, i.e., the best
individual classifier produces less than 3% of error. As a possible consequence
of this fact, observe that the best results obtained for 15% (the MORSHICC
in the WLC-GA) is not significantly better than the one obtained for 10% (the
MORSHICC in the WLC-GA), even it is slightly higher.

Figure 3 shows the graphs of the Pareto’s front produced by our approach
for the PU dataset using 10% and 15% of training samples. We can observe the
same conclusions we had in Figure 2 (IP dataset), however here with higher
accuracies.

In general (both datasets), the MORSHICC approaches in the WLC-GA
combiner produces higher accuracies than the ones MORSHICC approaches in
the WLC-ILP method, although they are not necessarily better in terms of sta-
tistical significance. This negative result of the WLC-IP method can be justified
by the numerical instability faced by it for solving the optimization problem.
Nonetheless the WLC-ILP method is in average 20 times faster than the WLC-
GA combiner for estimating the final weights as shown in [21].



Table 5: Results for PU dataset using 10% of training set.

Approaches
Classifiers’ Number Accuracy Confidence

ID Classifiers (%) Interval

WLC-ILP 1-2-3-4-5-6-7-8-9-10-11-12 12 97.73 0.18

WLC-GA 1-2-3-4-5-6-7-8-9-10-11-12 12 97.55 0.62

MORSHICC 1-4-7-9-11 5 97.11 0.30
in WLC-ILP

MORSHICC 1-2-5-7-10-11-12 7 98.00 0.09
in WLC-GA

Best Individual 1 1 97.20 0.11
Classifier

Table 6: Results for PU dataset using 15% of training set.

training set Classifiers’ Number Accuracy Confidence
15% ID Classifiers (%) Interval

WLC-ILP 1-2-3-4-5-6-7-8-9-10-11-12 12 98.12 0.24

WLC-GA 1-2-3-4-5-6-7-8-9-10-11-12 12 97.87 0.11

MORSHICC 1-2-3-4-5-7-11 7 97.28 0.40
in WLC-ILP

MORSHICC 1-2-3-5-7-11 6 98.44 0.79
in WLC-GA

Best Individual 1 1 97.56 0.08
Classifier

5 Conclusions

In this paper, we have presented a multi-objective remote sensed hyperspectral
image classifier combiner (MORSHICC) approach based on genetic algorithm to
determine the Pareto’s front. Our aim is to use the Pareto’s front to determine
the set of best combiners. We have modeled the problem according to two ob-
jectives: maximization of accuracy and minimization of the number of classifiers
used in the combiner. Experimental analysis shows that MORSHICC not only
produces an ensemble with a very small set of classifiers but also improves the
final accuracy results. Furthermore, the obtained ensembles may achieve more
accurate thematic maps for real and large datasets in a short time. Future work
includes the application of the proposed techniques in real world problems, such
as automatic agricultural crop recognition.
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(a) WLC-ILP/Training Set: 10%.
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(b) WLC-ILP/Training Set: 15%.
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(c) WLC-GA/Training Set: 10%.
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(d) WLC-GA/Training Set: 15%.

Fig. 3: Pareto’s fronts for PU dataset. Blue bars stand for the confidence intervals.
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