Management of Wireless Sensor Networks

Antonio A. F. Loureiro¹ <loureiro@dcc.ufmg.br>
Linnyer Beatrys Ruiz² <linnyer@cpdee.ufmg.br>
José Marcos S. Nogueira¹ <jmarcos@dcc.ufmg.br>

¹Dept. of Computer Science
²Dept. of Electrical Engineering
Federal University of Minas Gerais, Brazil

Condensed version of tutorial presented at
IEEE/IFIP IM 2005 Nice, France, May 2005

Outline

Introduction to Management of WSN
Management Challenges
Management Dimensions
Conclusions
Wireless Sensor Networks (WSNs)

- A WSN tends to be composed of hundreds or thousand of sensor nodes, which are launched over an environment to form a wireless ad hoc network

- The goal of a WSN is to monitor and sometimes to control an environment
Wireless Sensor Nodes

![Diagram of Wireless Sensor Nodes]

Components:
- **Battery**
- **Radio**
- **Memory (RAM/ROM)**
- **Processor**
- **Sensors**
- **Operating System, Algorithms, Protocols**

Wireless Sensor Nodes

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio CC1000</td>
<td>Modulation: FSK, 300 to 1000 MHz, Throughput: 76.8 kbps</td>
</tr>
<tr>
<td>Processor Memory</td>
<td>ATMEGA128L, 8-bit, 128 Kbytes Flash, 4 Kbytes RAM, ADC: 10 bits, 2.7 to 3.6 V</td>
</tr>
<tr>
<td>Sensors</td>
<td>Thermistor, cell photo, audio, accelerometer, magnetometer</td>
</tr>
</tbody>
</table>
| **Battery** | 2 AA (2850 mA-hr) |}

*E*transmission >>> *E*processing

UFMG/Brazil

Sensornet Project MANNA
Wireless Sensor Nodes

Sensor nodes tend to be designed with small dimensions

Due to the small dimension, sensor nodes have strong HW and SW restrictions in terms of processing power, memory capacity, battery lifetime, and communication throughput.
Wireless Sensor Nodes

Wireless sensor nodes can be mobile

Potential WSN Applications

Environmental Monitoring

- Sensor nodes collecting different kinds of information
 - Flora and fauna (plants and animals)
 - Environment: fire risk, conditions at different heights
Potential WSN Applications
Environmental Monitoring

- Water quality, volume, throughput, etc
- Fire detection and prevention

Potential WSN Applications
Environment/Security

- Wireless Sensor Network for helping biologists to better understand the environment
- Wireless Sensor Network for monitoring intruders in a given perimeter
Potential WSN Applications
Disaster Recovery

WSN is application-specific

- Each application has its goal and management solution must help the application to find its goal
Goal

• Main WSN management goal is to promote resources productivity and to maintain the quality of the services provided
• WSN are application-dependent and the management solution design is affected

Developing management solutions

• The task of building management solutions for WSNs is not trivial
• This task becomes worse due to the physical restrictions of sensor nodes, in particular energy and bandwidth
• There are several significant differences in the management of traditional networks and WSNs
Traditional Networks vs. WSNs

Traditional networks:
• Are designed to accommodate a diversity of applications.
• Network elements are installed, configured, and connected in a way to provide different kinds of services.

WSNs:
• Are typically designed for a specific application.
• Network elements are configured to provide a specific service.

Traditional Networks vs. WSNs

Traditional networks:
• Maintenance of components or resources by technicians is a normal fact.
• Network tends to follow a well-established planning of resources available.
• Faults should not be a common fact.

WSNs:
• Often, there is no physical maintenance of nodes.
• It might be difficult to define a priori how resources will be spent in the network.
• Faults are a common fact.
Traditional Networks vs. WSNs

Traditional network:
- Different network elements might execute different applications.
- It is possible to have different security policies/mechanisms.

WSN:
- Nodes often execute a common application in a cooperative way, i.e., there is clearly a common goal in the overall network.
- It may be difficult to introduce a security mechanism. In general, sensor nodes are not tamper-proof.

Additional Information:
- Software are developed for a network element may have restrictions such as performance and response time.
- It is not common to have network elements with physical restrictions.

- Software are developed for a sensor node must consider its hardware limitations.
- Main physical restriction is energy available since batteries are often not recharged and all activities performed by the node must take into account the energy consumption.
Getting Started

- A good strategy is to deal with complex management situations by using management dimensions
 - Management levels
 - WSN functionalities
 - Management functional areas

Getting Started

Design Philosophy

- Traditional management plays an important role
 - Management Levels
 - Functional Areas
 - Revisited considering particularities of WSNs
- Novel dimension
 - WSN Functionalities
 - Helps to reason about special features of WSNs
Getting Started

The intersection of the three planes defines a cell
Getting Started

• Each cell contains a set of management functions
• The three management dimensions must be considered in
 – the definition of a management function
 – in the establishment of an information model
 – in service composition
 – in the development of management applications

Using the Management Cube

For example, the intersection of

<table>
<thead>
<tr>
<th></th>
<th>is concerned with the info that is required to manage how</th>
</tr>
</thead>
<tbody>
<tr>
<td>network management level, (Mgmt Level)</td>
<td>NE entities (both physically and logically) are related</td>
</tr>
<tr>
<td>configuration management, (Functional area) and</td>
<td>and configured to provide connectivity</td>
</tr>
<tr>
<td>communication (WSN functionality)</td>
<td></td>
</tr>
</tbody>
</table>

Sensomet Project MANNA
Management Levels

- Business Management
- Service Management
- Network Management
- Network Element Management
- Network Entities

Management Levels

Business Management

- Requirements that characterize a sensor network come from the objectives defined in the business management layer

- Design of WSNs depends on applications
Management Levels

Service Management

- A network service is defined by a set of parameters which determine the service level
 - Delay, accuracy, energy consumption
- The larger the number of monitored parameters, the larger the energy consumption and the lower the network lifetime
- Basic WSN services are
 - Sensing
 - Processing
 - Dissemination
- A WSN produces and transports its own data
 - It is self-service

Management Levels

Network Management

- Aims to manage a network as a whole, which is typically distributed over an extensive geographical area
- The relationships among sensor nodes are to be considered: collaboration, connectivity, and correlation
Management Levels
Element Management

• Basic functions are
 – power management: how a sensor node uses its energy
 – mobility management: plans, runs and registers the movement of sensor nodes
 – state management: how a sensor node manages the three management states defined for a node (operational, administrative, and usage)

Management Levels
Network Element

• Represents the physical and logical components of a managed element
• Physical resources include sensor or actuator nodes which include power supply, processor, memory, sensor device, and transceiver
• Logical resources include communication protocols, application programs, correlation procedures, operating systems, and network services
WSN Functionalities

- Looking at the characteristics of various WSN applications, five main WSN functionalities are established:
 - Configuration
 - Sensing
 - Processing
 - Communication
 - Maintenance

WSN Functionalities

Configuration Functionality

Considering the *network management level*, there are some aspects to characterize the WSN:

- Composition
 - Homogeneous: when all nodes have the same hardware capabilities
 - Heterogeneous: when the WSN is comprised of nodes with different capabilities

- Organization
 - Flat: when the nodes are not organized in groups
 - Hierarchical: when the nodes are organized in groups
WSN Functionalities
Configuration Functionality

Considering the *element management level*, there are some kinds of elements:

- Sink or Monitoring Node
- Source Sensor Node
- Cluster head

WSN Functionalities
Sensing Functionality

Considering the data gathering, a WSN can be classified as:

- Continuous: when sensor nodes collect data continuously along the time
- Reactive: when it answers to an observer's query or gather data corresponding to specific events occurring in the environment
WSN Functionalities
Communication Functionality

Considering the dissemination data, a WSN can be classified as:

- Continuous: when sensor nodes send their data to an observer continuously along the time
- On demand: when it answers to an observer's query
- Event-driven: when sensor nodes send data referred to specific events occurring in the environment
- Programmed: when nodes send data according to conditions defined by the application

WSN Functionalities
Processing Functionality

- Typically, there are two kinds of processing in WSNs:
 - Basic signal processing (e.g., simple translations based on calibrating data or threshold filters)
 - Correlation (consists of the conceptual interpretation of multiple data, leading to the attribution of a new meaning to the original data)
WSN Functionalities
Maintenance Functionality

• It is used in WSNs which can reconfigure, protect, optimize and heal themselves without intervention of human operators
Management Functional Areas

• There are several significant differences in the management of traditional networks and WSNs
• In this sense, management functional areas must be rethought considering WSNs features

Management Functional Areas

• An error in the configuration or an unconsidered requisite during the planning may compromise all the functionalities of all other areas
The fault, security, performance and accounting management functional areas are extremely dependent on the configuration functional area.

Management Functional Areas

Configuration Management

- The configuration management must provide basic features
 - Self-organization: is the property which the wireless sensor nodes must have to organize themselves to form the network
 - Self-configuration: nodes setup and network boot up must occur automatically
Fault Management

- Faults in WSNs are not an exception and tend to occur frequently, thus fault management is a critical function.

- This is one of the reasons that make WSN management different from traditional network management.

Fault Management must provide basic functionalities such as
- Self-diagnostic: the network monitors itself and finds faulty or unavailable nodes
- Self-healing: the network prevents disruptions or that acts to recover itself or the node after the self-diagnostic
Management Functional Areas
Performance Management

• The challenge in performance management is to perform this task without adversely consuming network resources
 – There is a trade-off to be considered: the higher the number of managed parameters, the higher the energy consumption and the lower the network lifetime
 – On the other hand, if enough parameter values are not obtained, it may not be possible to manage the network appropriately

Management Functional Areas
Security Management

• Security functionalities for WSNs are intrinsically difficult to be provided because of their ad hoc organization, intermittent connectivity, wireless communication and resource limitations

• A WSN is subject to different safety threats: internal, external, accidental, and malicious
Management Functional Areas

Accounting Management

- It includes functions related to the use of resources and corresponding reports
- It establishes metrics, quotas and limits that can be used by functions of other functional areas
- It must provide self-sustaining functionalities

Self-Management Functional Areas (proposed by Manna)

- Self-Healing
- Self-Service
- Self-Organization
- Self-Sustaining
- Self-Protection
Self-Management Functional Areas (proposed by Manna)

- The WSN management must be autonomic, i.e., self-managed (self-organizing, self-healing, self-optimizing, self-protecting, self-sustaining, and self-diagnostic), with a minimum of human interference, and robust to changes in the network states while maintaining the quality of the services.

Conclusions

- Management can promote resource productivity and QoS.
- Energy management is, probably, the most important aspect:
 - Network lifetime depends on energy rational use.
- Management can improve the performance of WSNs with various configurations and offer to the observer relevant information.
Management of Wireless Sensor Networks

Antonio A. F. Loureiro1 <loureiro@dcc.ufmg.br>
Linnyer Beatrys Ruiz2 <linnyer@cpdee.ufmg.br>
José Marcos S. Nogueira1 <jmarcos@dcc.ufmg.br>

1Dept. of Computer Science
2Dept. of Electrical Engineering
Federal University of Minas Gerais, Brazil

Research projects related to this tutorial:
http://www.sensornet.dcc.ufmg.br
http://www.mannasim.dcc.ufmg.br

Partially funded by
CNPq – Brazilian Research Agency

Biography

Linnyer Beatrys Ruiz is an Associate Professor of Electrical Engineering at the Federal University of Minas Gerais (UFMG), Brazil. Her areas of interest and research include computer networks, telecommunications and computer network management, and wireless sensor networks. She received a Ph.D. degree in Computer Science from UFMG, an M.S. degree in Electrical Engineering and Industrial Information from the Federal Center of Technological Education of Paraná (CEFETPR), Brazil, in 1996, and a B.S. degree in Computer Engineering from PUCPR. She held a post-doctoral position at the UFMG, 2004. She is an expert in telecommunications management network (TMN). Since 1993 she has participated and coordinated research groups on TMN. Currently, she is coordinating the WSN group in the Electrical Engineering Department of UFMG and is leading the Manna research team.
Some References From Our Research Group on Management of WSNs

Some References From Our Research Group on Management of WSNs

