UF771G DEPARTMENT OF COMPUTER SCIENCE

— FEDERAL UNIVERSITY OF MINAS GERAIS, BRAZIL

SloT — Securing the Internet of Things
through Distributed System Analysis

Fernando A. Teixeira Gustavo V. Machado Fernando M. Q. Pereira
~ UFMG, Brazil ~ UFMG, Brazil UFMG, Brazil
teixeira@dcc.ufmg.br gvieira@dcc.ufmg.br fernando@dcc.ufmg.br
Hao Chi Wong José M. S. Nogueira Leonardo B. Oliveira
Intel Corporation, CA . UFMG, Brazil UEMG, Brazil
hao-chi.wong@intel.com jmarcos@dcc.ufmg.br leob@dcc.ufmg.br

Introduction
Goal
Solution
Results
Conclusion

Agenda

UFMmMG

Introduction
Goal
Solution
Results
Conclusion

Agenda

UFMmMG

Introduction

—loT

— Clanguage

— Buffer Overflow
Goal

Solution

Results

Conclusion

Agenda

UFMmMG

Introduction

— loT

— Clanguage

— Buffer Overflow
Goal

Solution

Results

Conclusion

Agenda

UFMmMG

) @m‘t‘ 1;96\&;\8{?)

: I f“/.SC'!en things.) f
I el W
)) & A
:) <
(' e °
Wi D

Ll

* Capabilities
— It’s made up with constrained devices
 Computing Paradigm

— A distributed system and usually exchange a large
number of messages

* Programming language
— Apps are often written in C, which is inherently unsafe

UFMmMG

loT

* Capabilities
— It’s made up with constrained devices
 Computing Paradigm

— A distributed system and usually exchange a large
number of messages

* Programming language
— Apps are often written in C, which is inherently unsafe

C is unsafe because it does not check array-bounds

Introduction

—loT

— Clanguage

— Buffer Overflow
Goal

Solution

Results

Conclusion

Agenda

UFMmMG

Java

Q: What happens when we run this Java program?

public class P {
final static int SIZE = 4;

static void copyAndPrint(byte[] v) {
byte[] buf = new byte[SIZE];
for (inti=0; i< vlength; i++) {
buf[i] = v[i];
System.out.printin("->" + buf[i]);
}
}

public static void main(String args|[]) {
byte[] v={0, 1, 2, 3, 4};
copyAndPrint(v);

}

M) O Terminal — bash — 37x10

*ception in thread "main" java. lang.
Array Index0ut0f BoundsException: 4
ot P.copwAndPrint(P.jav

~4]

at P.main(F.jova:l4)

e

C language

Q: What about this C program?

#include <stdio.h> ™) ™) Terminal — bash — 37x10

~4 .Sa.out

H#define SIZE 4

void copyAndPrint(char v[], int n) {
char buf[SIZE];
inti;
for (i=0;i<n;i++){
buf[i] = v[i];
printf("-> %d\n", bufli]);
}
}

int main() {
charv[] ={0, 1, 2, 3, 4};
copyAndPrint(v, SIZE + 1);
}

Q: Why is that?

Watch out! It's
overflowing!

=

Next time I'LL go fo
a qgas station that
has auto shutoff.

No, Dr. Ritchie, you
know you'll be back
at this gas station.

:}\

Because it's chea
and fast. And that's
worth an occasional
overflow.

g../

Someday,
we'll all

regref it.
~7

Buffer Overflow.

icanbarelydraw.com ccsyncnbp 30

11

C unsafety: Outcomes

e Morris worm

— Buffer over-write that compromised around 10% of
computers connected to the Internet back in 1988

e Heartbleed

— Buffer over-read that compromised half a million web
servers in 2014

* |oT vulnerability

— Due the unsafe nature of C, loT apps are vulnerable
to buffer overflow attacks, too

12 UEMG

C unsafety: Outcomes

e Morris worm

— Buffer over-write that compromised around 10% of
computers connected to the Internet back in 1988

e Heartbleed

— Buffer over-read that compromised half a million web
servers in 2014

* |oT vulnerability

— Due the unsafe nature of C, loT apps are vulnerable
to buffer overflow attacks, too

Buffer Overflow?

13 UEMG

Introduction

—loT

— Clanguage

— Buffer Overflow
Goal

Solution

Results

Conclusion

Agenda

14

UFMmMG

Buffer Overflow

* A buffer overflow happens when the memory space
that guides the execution flow is overwritten

* The idea is to manipulate arrays w/o bound checks

#include <stdio.h>

int main(int argc, char **xargv) {
char buf[8]; // creates 8-byte block memory

gets(buf); // reads unlimited number of bytes

return 0;

15

UFMmMG

BOF (Cont.)

be or not () /bin/sh
bottom of top of
memory memory
[s][&sfp] [&ret] [a]
buffer
top of bottom of

stack stack

BOF (Cont.)

be or not () /bin/sh
bottom of top of
memory memory
[sssss][&sfp] [&ret] [a]
buffer
top of bottom of

stack stack

BOF (Cont.)

be or not () /bin/sh
bottom of top of
memory memory

[sssssssss] [&sfp] [&ret] [a]
buffer

top of bottom of
stack stack

BOF (Cont.)

be or not () /bin/sh
bottom of top of
memory memory

[sssssssssssé&sfp] [&ret] [a]
buffer

top of bottom of
stack stack

BOF (Cont.)

be or not () /bin/sh
bottom of top of
memory memory

[sssssssssssssssssé&ret] [a]
buffer

top of bottom of
stack stack

BOF (Cont.)

be or not () /bin/sh
bottom of top of
memory memory

[sssssssssssssssssé&ret’] [a]
buffer

top of bottom of
stack stack

BOF (Cont.)

be or not () /bin/sh
bottom of top of
memory memory

[sssssssssssssssssé&ret’] [a]
buffer

top of bottom of
stack stack

Ok, | got it! loT apps are written and C and
then they’re particularly vulnerable to BOFs.

There are a bunch of BOF prevention
mechanisms out there, though.

Can’t we just pick out one and apply in loT?

No! Because they are inadequate as-is to loT.

23

BOF Prevention: existing proposals

* There are many proposals for BOF prevention in the
context of Internet

— E.g. SAFECode, SoftBounds, AddressSanitizer, etc.

* They are effective in that they protect memory
accesses (Load/store) via Array-Bound Checks

UFMmMG

BOF Prevention: existing proposals

* There are many proposals for BOF prevention in the
context of Internet

— E.g. SAFECode, SoftBounds, AddressSanitizer

* They are effective in that they protect memory
accesses (Load/store) via Array-Bound Checks

Problem
* They tend to slow down the programs too much

* E.g. AddressSanitizer (Serebryany et al. 2012) incurs on
average 73% of overhead in a conventional machine

UFMmMG

BOF Prevention: existing proposals

* There are many proposals for BOF prevention in the
context of Internet

— E.g. SAFECode, SoftBounds, AddressSanitizer

* They are effective in that they protect memory
accesses (Load/store) via Array-Bound Checks

Problem
* They tend to slow down the programs too much

* E.g. AddressSanitizer (Serebryany et al. 2012) incurs on
average 73% of overhead in a conventional machine

Constrained devices like things cannot afford this overhead

Q: How do existing proposals for preventing
BOF work?

27

How to protect code against BOFs

* Many of the existing proposals to secure code against
BOFs have three phases

1. They first find buffers reachable from untrusted
sources, at compiling time

28 UEMG

Stage 1: buffers reachable from untrusted sources

Sink
An untrusted source . . .
, oy AN © A path connecting the A sink using untrusted data
e.g.: scanf("%d”, &i) . -)
source and the sink e.g.: array index (buffer[i])
_ J _ J _ J

’ \\\ _ -
Y} S
7
Tainted flow

UFMmMG

How to protect code against BOFs

* Many of the existing proposals to secure code against
BOFs have three phases

1. They first find buffers reachable from untrusted
sources, at compiling time

2. They thus guard buffers by inserting Array Bounds
Checks (ABCs) prior to buffers use

30 UEMG

Stage 2: ABC insertion

Vulnerable code

ABC-protected code

int main(int argc, char
**argv) {

int buffer[BUFSIZE];
int a,i,J;

for (i;i<d;i++) {

buffer[i]

ay

int main(int argc, char
**argv) {

int buffer [BUFSIZE];
int a,1i3j,;

for(i;i<j;i++) {

if((i >= 0)&&(1i < BUFSIZE))
buffer[i] = a;

31 UEMG

How to protect code against BOFs

* Many of the existing proposals to secure code against
BOFs have three phases

1. They first find buffers reachable from untrusted
sources, at compiling time

2. They thus guard buffers by inserting Array Bounds
Checks (ABCs) prior to buffers use

3. If an ABC is not satisfied at execution time, they
then abort programs

32 UEMG

Stage 3: lllegal memory access is aborted

void foo(const char =xarg) {
char buffer[100];
if (strlen(arg) >= sizeof (buffer))
abort();
strcpy(buffer, arg);

33

Introduction
Goal
Solution
Results
Conclusion

Agenda

34

UFMmMG

Goal

* Our goal is to come up with a BOF prevention
mechanism tailor-made for loT

* Solutions must therefore be
1. Secure against BOFs
2. Light enough to be run in battery-powered devices

35 UEMG

Introduction
Goal
Solution
Results
Conclusion

Agenda

36

UFMmMG

Introduction
Goal

Solution

— Conception
— Refinement
— Development
Results
Conclusion

Agenda

37

UFMmMG

Introduction
Goal

Solution

— Conception
— Refinement
— Development
Results
Conclusion

Agenda

38

UFMmMG

Assumptions/Attack Model

 Nodes run authentic programs

— E.g. they could employ Trusted Platform Module (TPM)

* The communication channel is secure

— Crypto solutions like DTLS (Kothmayr et al.), TinyPBC
(Oliveira et al.), or SPINS (Perrig et al.) could be adopted

A CRYPTO NERD'S
1 IMAGINATION -

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR
CLUSTER To CRACK \T-

NO GooD! IT'S
U096 -BIT RSA\
B{_P\ST‘ OUR

EVIL PLAN
1S FOILED! \EQQ/Q

| ACTUALLY HAPPEN:

WHAT WOULD

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TELLS U5 THE PASSWORD.

GOT' T,

%’/ﬁ

33 UEMG

Assumptions/Attack Model (Cont.)

* Attackers have control over the input data that the
nodes receive from its environment

— This includes data captured by the sensors or input
from the user interfaces

— But excludes data coming from network interfaces as
we assume a secure communication channel.

How to lose weight?

SloT challenge #1

41

ldea

* Recall existing proposals find buffers reachable from
(untrusted) sources

 They analyze programs of a distributed system as
disjoint/independent programs
— E.g., they end up analyzing a client and its respective
server programs individually

* Therefore the list of untrusted sources include not only
conventional (e.g. get) and network (e.g. recv) sources

42 UEMG

ldea (Cont.)

* The higher the number of untrusted sources, the higher
the number of reachable arrays

* And the higher the number of reachable arrays, the
higher the number of ABCs and thus the overhead

43 UEMG

ldea (Cont.)

* The higher the number of untrusted sources, the higher
the number of reachable arrays

* And the higher the number of reachable arrays, the
higher the number of ABCs and thus the overhead

So, what if we decrease the number of untrusted sources?

44 UEMG

How can we turn untrusted sources into
something else, though?

45

SloT key contribution #1

e Look at a distributed system programs from another
perspective

46

Programs A and B: sources

Program A Program B
{ }
s{ca r!f argv s{ca r!f z{5|rg\}/

send recv
recv send

48

UFMmMG

Distributed System AB: sources

Single System AB

Program A Program B
{ }
s{ca r!f argv s{ca r!f irg\}/

@ >]

send recv
recv send

50 UEMG

Distributed System AB: sources

Single System AB

Program A Program B
{ }
s{car!f argv s{car!f z{;‘|rg\}/
® >@®
send recv
@ < ®
recv send
51

UFMmMG

Distributed System AB: sources

!

lllllll

Program B

{} U}

scanf argv

Program A

{} LU}

scanf argv

® > @
send recv
@ < ®
recv send

52

UFMmMG

Distributed System AB: sources

anf

argv

Single System AB

Program B

{} L)

scanf argv

recv send buffer[i]

>3 UEMG

(a)

Distributed System AB

Program A
1 send(1l);
2 ack = recv()
3 1if (ack == 1) {
4 s = getc();
5 while (s != '\N0') {
6 send(s)
7 ack = recv();
8 if (ack != 1) {
9 break:;
10 } else {
11 s = getc();
12 }
13 }
14 send(s);
15}

No longer considered a vulnerability

1
2
3
4
5
il
-
a8
9

10
11
12
13
14

msg
if

Program B

= recv();
(msg == 1) {
send(1l);
do {
msg = recvi()
putc(msqg);
if (msg !=
send(1l);
else
break;
} while (1);

} else {

}

send(0);

-
r

1\01

)

Introduction
Goal

Solution

— Conception
— Refinement
— Development
Results
Conclusion

Agenda

56

UFMmMG

SloT challenge #2

* Face the lack of data-structures to analyze distributed
systems

* Control Flow Graphs (CFGs) are the core data-structure
in program analysis

* CFGs are not expressive enough to represent programs
that communicate over a network, though

— E.g., they do not handle message exchange between
nodes

57 UEMG

SloT key contribution #2

e Distributed Control Flow Graph (DCFG)

 DCFGs are data structures able to bind together the
CFGs of all individual programs that constitute a system

58 UEMG

CFG

(a)

R R = T R o

—_ e e
[VT S =]

send(1l);
ack = recv()

s = gete()

if (ack == 1) {
s = getc();
while (s != '\0') {
send(s)
ack = recv();
if (ack != 1) {
break;
} else {
s = getc();
¥
h
send(s);
}
>| send(l) |———| ack=recv()

v

s =gefc() |

(ack=1)?

Y

(s '="0?

'

send(s)

l

ack = recv()

l

(ack '=1)?

@

(b)

ms
if

L I] =J [=.} LS T = LVl (] et

—
=]

11
12}
13

14}

g = recv();
(msg == 1) {
send(1l);
do {

msg = recv();

putc(msg);

if (msg != '\0")

send (
else
break;
} while (1);
else {
send(0);

1);

o
=
7
1
I
o}
k
-~
-
Y

(msg=—1)7

<« send(1)

putc(msg)

send(0)

(msg '="0"?

-

send(1)

DCFG

(a)

R R = T R o

—_ e e
[VT S =]

send(1l);
ack = recv()

s = gete()

if (ack == 1) {
s = getc();
while (s != '\0') {
send(s)
ack = recv();
if (ack != 1) {
break;
} else {
s = getc();
¥
h
send(s);
}
>| send(l) |———| ack=recv()

v

s =gefc() |

(ack=1)?

Y

(s '="0?

'

send(s)

l

ack = recv()

l

(ack '=1)?

@

(b)

ms
if

L I] =J [=.} LS T = LVl (] et

—
=]

11
12}
13

14}

g = recv();
(msg == 1) {
send(1l);
do {

msg = recv();

putc(msg);

if (msg != '\0")

send (
else
break;
} while (1);
else {
send(0);

1);

o
=
7
1
I
o}
k
-~
-
Y

(msg=—1)7

<« send(1)

putc(msg)

send(0)

(msg '="0"?

-

send(1)

DCFG

(a)

L= == B R = L L

—_ e e
[R = PR R o L =]

send(1l);

ack = recv()
if (ack == 1) {
s = getc();
while (s != '\0") {
send(s)
ack = recv();
if (ack != 1) {
break;
} else {
s = getc();
}
}
send(s);
} = = =
»| send(1) —>| ack=reev)

s = gete()

Y

s =gefc() |

(ack=1)?

Y

(s 1="0"?

'

send(s)

l

ack = recv()

l

(ack '=1)?

(b)

msg
if

o oo =J [=.} LS T = LVl [E] Ll

—
=]

= xecv();
(msg == 1)
send(1);
de {

{

msg = recv();

putc(msg);

if (msg != '\0")
send(1);

else

break;
} while (1);
12 } else {

send(0);

| msg = recv()
v

> (msg=—1)?

It’s not that easy, though

62

SloT challenge #3

* To build a DCFG, we have to link the sends of a program
A with the recvs of a program B and vice-versa

// node #1
n = 3

while (a™n + b™n != ¢™n)
a update(a);
b update(b); -
c = update(c);.--""

} =

x = read() “

{

-

-
-

-

/S node #2
write(y);

How to find out which sends linktoa recv?

63 UFMG

SloT key contribution #3

* Elevator, an algorithm to selectively link sends/recvs
1. Elevator assigns levels to sends and recvs

2. Program A’s sends and Program B’s recvs in the
same level are thus linked together

64 UEMG

Elevator: lllustration

Consider the Echo Client and Server programs

(a) Echo Client (b) Echo Server
1 send(1);
r ack = recvi() | msg = recv();
3 if (acl_': == 1) { 2 if (msg == 1) |
4 5 = getc(); 3 send(1l);
5 while (s != "\0') { d do {
6 send(s) 5 msg = recv();
7 ack = recv(); & putc(msg);
8 if (ack != 1) { 7 if (msg != '\0")
9 break; 3 send(1);
10 } else { 9 else
11 8 = getc(); 10 break;
12 } 1 } while (1);
13 } 12 } else {
14 send(s); 3 send(0);
15} — 14}

65 UEMG

@ | A send()

Echo Client CFG

CFG - Echo Client

.

s = getc()

B: ack = recv()
v

s = getc() |« (ack==1)7?
(s I=\0)?

v
C: send(s)

v E: send(s)

D: ack = recv()

v

(ack 1=1)?

==

i I =T~ S

b e

10
11

12

14
15

(a) Echo Client

send(1l);
ack = recv()
if (ack == 1
& = getc
while (s
send
ack
if |
} el
}
}
send(s);

) A
()i

1= '\NO")
(s)
= recv();
ack != 1) {
break;
se |
g = getc();

66

Extract Echo Client’s Send-Graph

CFG - Echo Client (a) Echo Client
: ol B ack = 1 send(1);
.—> A: send(1) B: ack = recv() , ack = recv()
v 3 1f (ack == 1) {
- oetc() |« ack == 1) ? 4 & = getc();
s = getcl) () 5 while (s != "\0') {
i 6 send(s)

ack = recv();

(s 1=\0)? g if (ack != 1) {
v 9 break;
C: send(s) 1o } elsa

11 & = getc();

s = getc() v E: send(s)

D: ack = recv I; }
Il 14 send(s);
15
(ack 1=1)? }

67

Extract Echo Client’s Send-Graph

CFG - Echo Client

SG — Send-Graph

A: send(1

)

._’ A:send(1) —> B:ack =recv()
v o
s = getc() |« (ack==1)7?

y

| >~]

(s 1=1\0)?

C: send(s)

E: send(s)

.

s = getc()

v

C: send(s)

y

E: send(s)

D: ack = recv

v

/

(ack 1=1)?

T ME

68

Extract Echo Client’s Receive-Graph

CFG - Echo Client

SG - Send-Graph

A: send(1

)

._> A:send(1) > B: ack =recv()
v o
s = getc() |« (ack==1)7?

y

| >~]

(s 1=1\0)?

C: send(s)

E: send(s)

.

s = getc()

v

C: send(s)

v

E: send(s)

D: ack = recv

v

/

(ack 1=1)?

T ME

69

Extract Echo Client’s Receive-Graph

CFG - Echo Client

SG - Send-Graph

A: send(1

)

._’ A:send(1) > B:ack=recv()
v o
s = getc() |« (ack==1)7?

y

| >~]

(s 1=1\0)?

C: send(s)

E: send(s)

.

s = getc()

v

C: send(s)

v

E: send(s)

D: ack = recv

v

/

(ack 1=1)?

T ME

70

Extract Echo Client’s Receive-Graph

CFG - Echo Client

.—> A:send(1) > B:ack =recv
v
s = getc() |« (ack==1)7?
(s I=\0)?
/ : \?}
C: send(s)
s = getc() v E: send(s)

v

D: ack = recvﬂ/
(ack 1=1)?

SG - Send-Graph

—> | C:send(s) » E:send(s)
I

RG - Receive-Graph

o

B: ack = recv

\ 4

—_
D: ack =recv

I

71

Ditto for Echo Server

CFG - Echo Server

'—» F:msg=recv() P (msg==1)?

/

H: msg = recv() [«

T

G: send(1)

putc(msg) J: send(0)

y

(msg 1=\0)?

| —

I:send(1)

\C‘)

SG - Send-Graph

J: send(0)

=~

RG - Receive-Graph

@ —| r: msg=recv()
A\ 4
»| H: msg =recv()

_,O

73

Level Assighment

Echo Client: Send-Graph

@ | A:send(1) @®

Elevator (Graph G) /* toy version*/
start.level :=0
While { sets are different }
For each vertex vin G
If v is reachable from u
then v.level := (u.level+1)

end
»| C:send(s) — E: send(s) end
I end
end
level(mg,0) = {start}

level(mg, n)

{v|ub € mgAu € level(mg,n — 1)}

Level Assighment

SG — Echo Client

»| C:send(s) > E: send(s)

I

Level of Senders:
level set

0 { start }

Elevator (Graph G) /* toy version*/
start.level :=0
While { sets are different }
For each vertex vin G
If v is reachable from u
then v.level := (u.level+1)
end
end
end
end

Level Assighment

Echo Client: Send-Graph Elevator (Graph G) /* toy version*/
start.level :=0
While { sets are different }
For each vertex vin G
O If v is reachable from u
I then v.level := (u.level+1)

end

|

»| C:send(s) E: send(s) end

] end

end

A

Level of Senders:
level set

0 { start }
1 {A}

Level Assignment

Echo Client: Send-Graph

—>

I

Level of Senders:

level
0

1
2

set

{ start }

{A}
{CE}

Elevator (Graph G) /* toy version*/
start.level :=0
While { sets are different }
For each vertex vin G
If v is reachable from u
then v.level := (u.level+1)
end
end
end
end

Level Assignment

Echo Client: Send-Graph

—

]

Level of Senders:

level
0

1
2
3

set

{ start }
{A}

{CE}
{CE}

Elevator (Graph G) /* toy version*/
start.level :=0
While { sets are different }
For each vertex vin G
If v is reachable from u
then v.level := (u.level+1)
end
end
end
end

Level Assignment

Echo Client: Send-Graph Elevator (Graph G) /* toy version*/
start.level :=0
While { sets are different }
For each vertex vin G
O If v is reachable from u
then v.level := (u.level+1)

end
. end
| end
end
Level of Senders:
level set
0 { start }
1 {A} the algorithm halts whenever sets
2 {CE} stop changing
3 {CE}

Level Assignment

Echo Client: Send-Graph

Level of Senders:

level set
' 0 { start } :
I
"1 {A} |
I
) {C,E} |

Elevator (Graph G) /* toy version*/
start.level :=0
While { sets are different }
For each vertex vin G
If v is reachable from u
then v.level := (u.level+1)
end
end
end
end

Level Assighment: Ditto for Recv-Graph

Echo Client: Send-Graph

@ | A:send(1)

NN

Echo Server: Recv-Graph

o F: msg = recv()

A 4

»| C:send(s) > E: send(s)
]

Level of Senders:

level set
1 0 { start } :
I
1 Y.

I

12 ___{GE}

3 {C,E}

»| H: msg=recv() —’©
|

Level of Receivers:

level___s_et___
OE {root} I

|
10 {F}
2 | {H} |
3 {H}

DCFG construction final step

* Link Client’s sends with Server’s recvs if they are

belong to the same level, and vice-versa

Echo Client: Send-Graph

Echo Server: Recv-Graph

—___———————__-
— —
-— ~~

— @ A: send (1) {L1}

._'I_F'msg ecv“ {L1}

| -oSmammmmmmme e o

C: send(s) {L2}

E: send(s) {L2}

— — = — =% H: msg =recv() {L2}

l

82

UFMmMG

Introduction
Goal

Solution

— Conception
— Refinement
— Development
Results
Conclusion

Agenda

83

UFMmMG

Core —

S ——— Merging -

SloT I [It |
Coding | Program_1..2.bc Merge
Setup: Send/Recvs |

' | Functions Names DistSytem.bc

- > Elevator

| Send-Graphs L / DistDepGraph |

| Receive-Graphs DCFG DDG

BOF case study =
DistVulArrays
/\
DistVulArrays DistVulArrays
Graph Statistics

SloT is publicly available

eCO0SO0C

Software security with low energy consumption

Project Home Wiki Issues Source Administer Export to GitHub
New page| Search Current pages |o for Search Edit| | Delete
SloT

Updated Feb 11, 2015 by teixeiracl

SloT is a framework to analyze networked systems.

SloT

SloT is a framework to analyze networked systems. SloT'’s key insight is to look at a distributed system as a single body, and not as separate
programs that exchange messages. By doing so, we can crosscheck information inferred from different nodes. This crosschecking increases the
precision of traditional static analyses. To construct this global view of a distributed system we introduce a novel algorithm that discovers inter-
program links efficiently. Such links lets us build a holistic view of the entire network, a knowledge that we can thus forward to a traditional tool.

SloT was implemented on top of LLVM.

Access the SloT code, see the README to getting start and enjoy it!

https://code.google.com/p/ecosoc/wiki/SloT

85 UEMG

Introduction
Goal
Solution
Results
Conclusion

Agenda

86

UFMmMG

Evaluation

 We have compared SloT against the state-of-the-art
approach

— Tainted flow analysis followed by ABCs insertion
— We called this approach Baseline

— Our hypothesis was that SloT would insert less ABCs
than Baseline and thus end up being more efficient

e We have used real loT code in our evaluation
— l.e., ContikiOS applications

SloT Static Analysis

* It takes on average 66s and consumed 170 MB of RAM
— InaIntel Corei7 2.2GHz laptop
— Memory obtained via Valgrind
— Time taken through Unix time
* It's done offline and does not represent a burden to nodes

Application Instructions Time (s) Memory (MB)
netdb client/server 57.877 66.24 210.03
ping / new-1pv6 47,422 63.58 167.36
ipv6-rpl-collect udp-sender/sink 48,800 80.08 173.37
ipv6-rpl-udp client/server 48,226 66.31 169.90
udp-1pv6 client/server 48,800 80.08 167.39
coap-client / rest-server 51,258 54.36 179.68
88

UFMmMG

ABCs Insertion

e SloT reduces the number of ABCs insertion by around 10x
compared to Baseline in our benchmark

Applicati M A ABCs inserted % ABCs Reduction
ppLCAtions CIMOLY ACCESSES Baseline SIoT SIoT vs Baseline
netdb client/server 22,819 172 16 90.70%
ping6 / new-ipv6 16,871 166 14 91.57%
ipv6-rpl-collect udp-sender / sink 17,301 168 14 91.67%
ipv6-rpl-udp client/server 17,162 170 14 91.76%
udp-ipv6 client/server 16,945 212 14 93.40%
coap-client / rest-server 18,693 214 14 93.46%
89

UFMmMG

Experiment Setup

Iris sensor
node

UFMmMG

SloT Dynamic Analysis

31.18%

Energy savings compared to Baseline

3.55%

1.74% 2.92% 1.67%

netdb-client udp-client rpl-upd-client coap-client udp-sender

24.83%

ping6

UFMmMG

Introduction
Goal
Solution
Results
Conclusion

Agenda

92

UFMmMG

Conclusions

SloT

1. Sees and analyze individuals programs of a distributed
system as a single system

2. Protects loT code around 20% more energy-efficiently
than state-of-the-art approach

3. Is publicly available

Besides, we came up with

1. Distributed Control Flow Graphs — DCFGs

2. Elevator, an alg. that is able to link sends/recvs

93 UEMG

Thanks

www.ecosoc.dcc.ufmg.br

leonardo.barbosa@dcc.ufmg.br

Algorithm 1: Elevator

Input: CFGs {C;,Cy}, Send-Graphs {S;, S»} and Receive-Graphs {RR1, Ro}.
Output: a DCFG D

> Set the SEND and RECV levels
foreach G; € {51, 8} U{R{,R>} do
n <+ 0
Lg, n + {root}
> While the new generated set Lg,, is unique
while Lo, # 0 and Lg, ,, # Lg,0.n 1 do
foreach veriex v in Lg, ,, do
Ssuces < successors of v
LGi,n—H — LGQ-._-H-—I U S.suc.cs
n+<n-+1

> Link SENDs and RECVs of the same level
D+ C1 UCs
for k. «— 1tondo
foreach v, € Ls, . and v, € Lg, ;. do
add an edge from v, to v, in D
foreach v, € Lz, and v; € Ls, ;. do
add an edge from v, to v, in D

95 UEMG

Elevator Asymptotic Complexity

e Runtime as a function of the number of CGFs vertices
* In practice, O(n”3) where n is the number of vertices

60 /

50 Y.
_. 40 |
@
w 30
=
= 20

10

0 e

10 16 20 30 32 40 50 60 64 70 80 90 100110120128 130 140 150160
—Mean Time Polinomial —— Exponencial
y = 0.0073x3 - 0.0429x2 + 0.1997x - 0.0366
R? = 0.99547
96

UFMmMG

Related Work

* There are works that already focused on loT software
correctness and security

— Cooprider et al. Safe TinyOS (Sensys'07)
— Li and Regehr. Kleenet. (IPSN'10)
— Sasnauskas et al. T-Check. (IPSN'10)

* These works don’t look at loT as a single system and we
believe ours is complementary to their strategies

— l.e., SloT can potentially improve their numbers

97 UEMG

ABC Cost

98

ABCs’ Computational Cost

buffer[i] = a;, —

mrmovl -12(%ebp), Y%eax Load 7
mrmovl -4(%ebp), %edx

rrmov| %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx, -2060(%edi)

99

UFMmMG

ABCs’ Computational Cost

buffer[i] = a;, —

mrmovl -12(%ebp), Y%eax Load 7
mrmovl -4(%ebp), %edx Load ‘@’
rrmov| %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx, -2060(%edi)

100 UFmG

ABCs’ Computational Cost

buffer[i] = a;, —

mrmovl -12(%ebp), Y%eax Load 7

mrmovl -4(%ebp), %edx Load ‘@’

rrmovl %eax, %edi

sall $2, %edi Adjust base register
addl %ebp, %edi

rmmovl %edx, -2060(%edi)

101 UFmG

ABCs’ Computational Cost

buffer[i] = a;, —

mrmovl -12(%ebp), Y%eax Load 7

mrmovl -4(%ebp), %edx Load ‘@’

rrmovl %eax, %edi

sall $2, %edi Adjust base register
addl %ebp, %edi

rmmovl %edx, -2060(%edi) Move

102 UFmG

ABCs’ Computational Cost

 mrmovl -12(%ebp), %edi Load T’
iIrmovl $0, %ebx

subl %ebx, %edi

__JsL3

— mrmovl -12(%ebp),%edi Load 1’
iIrmovl $511, %ebx

subl %ebx, %oedi

__Jg L3

[mrmovl -12(%ebp), %eax Load
mrmovl -4(%ebp), %edx Load ‘@’
rrmov| %eax, %edi

sall $2, %edi Adjust base register

addl %ebp, %edi
rmmovl %edx, -2060(%edi) Move

if((i>=0) —

(i< BUFFERSIZE)) —

buffer[i] = a;, —

103

UFMmMG

ABCs’ Computational Cost

 mrmovl -12(%ebp), %edi Load T’

irmovl! $0, %ebx Load lower index
subl %ebx, %edi

__JsL3

— mrmovl -12(%ebp),%edi Load I’

irmovl $511, %ebx Load upper index
subl %ebx, %edi

__Jg L3

[mrmovl -12(%ebp), %eax Load

mrmovl -4(%ebp), %edx Load ‘@’

rrmov| %eax, %edi

sall $2, %edi Adjust base register

addl %ebp, %edi
rmmovl %edx, -2060(%edi) Move

if((i>=0) —

(i< BUFFERSIZE)) —

buffer[i] = a;, —

104 UFmG

ABCs’ Computational Cost

 mrmovl -12(%ebp), %edi Load T’

(5= 0) — irmovl $0, %ebx Load lower index
subl %ebx, %edi
is L3 Compare
— mrmovl -12(%ebp),%edi Load I’
. < BUFFERSIZE)) — irmovl $511, %ebx Load upper index
() subl %ebx, Y%ed|
ig L3 Compare

—

mrmovl -12(%ebp), Y%eax Load 7

mrmovl -4(%ebp), %edx Load ‘@’

rrmovl %eax, %edi

sall $2, %edi Adjust base register
addl %ebp, %edi

rmmovl %edx, -2060(%edi) Move

buffer[i] = a;, —

105 UFmG

Full BOF example

106

Vulnerable Code

#include <stdio.h>
void foo (FILE *badfile) {
char buffer[12];

fread (buffer,sizeof (char) ,517,badfile) ;

return 1;

int main() {
FILE *badfile;
badfile = fopen(“file”,”r”);
foo (badfile) ;
fclose (badfile) ;

return 1;

} 107

UFMmMG

foo:

pushl $ebp bfffe764
movl Sesp, %ebp

esp
subl $40, %esp

movl 8 ($ebp) , %edx
movl %edx, 12 (%esp)
movl $517, 8 (%esp)
movl $1, 4 (%esp)
movl %Yeax, (%esp)
call fread

movl $1, %eax

leave
ret

main:

movl %eax, (%esp)

call foo

$1, %eax

leave

ret

106

foo:

pushl %ebp

movl ¥esp, %ebp Parameter badfile

subl $40, %esp

bfffe764
bfffe760

esp

movl 8 (%¥ebp) , %edx
movl %edx, 12 (%esp)
movl $517, 8 (%esp)
movl $1, 4 (%esp)
movl %eax, (%esp)
call fread

movl $1, %eax

leave
ret

main:

movl $eax, (%esp)

call foo

$1, %eax
leave

ret

105

foo:

pushl %ebp . :
movl ¥esp, %ebp arameter badfile

subl $40, %esp Return address 080483dc

bfffe764

bfffe760
bfffe75c

movl 8 (%¥ebp) , %edx
movl %edx, 12 (%esp)
movl $517, 8 (%esp)
movl $1, 4 (%esp)
movl %eax, (%esp)
call fread

movl $1, %eax

esp

leave
ret

main:

movl ¥eax, (%esp)

call foo

$1, %eax
leave

ret

110

foo:

pushl %ebp bfffe764

bfffe760

movl $esp, %ebp Parameter badfile

subl $40, %esp Return address 080483dc
bfffe75c

‘cos Old ebp bfffe768

movl 8 (%ebp) , %edx bfffe758
movl $edx, 12 (%esp) e;9///7 R\\\35P
movl $517, 8 (%esp)

movl $1, 4 (%esp)
movl $eax, (%esp)

call fread
movl $1, %eax

leave

ret
main:

movl $eax, (%esp)

call foo

$1, %eax
leave

ret

111

foo:

pushl %ebp bfffe764

bfffe760
bfffe75c

movl $esp, %ebp Parameter badfile

subl $40, %esp Return address 080483dc

L Old ebp bfffe768
movl 8 ($ebp) , %edx

fffe758
movl $edx, 12 (%esp) ebp
movl $517, 8 (%esp)
movl $1, 4 (%esp)
movl $eax, (%esp)
call fread
movl $1, %eax
leave
ret
main:
movl $eax, (%esp)
call foo
- bfffe730
$1, %eax e/59///7
leave
ret

117

foo:

pushl %ebp bfffe764

bfffe760
bfffe75c
fffe758
ebp

movl $esp, %ebp Parameter badfile

subl $40, %esp Return address 080483dc

.. Old ebp bfffe768
movl 8 ($ebp) , %edx

movl %edx, 12 (%esp)
movl $517, 8 (%esp)
movl $1, 4 (%esp)
movl %eax, (%esp)
call fread

movl $1, %eax
leave

ret

badfile

main:

movl %eax, (%esp)
call foo

. bfffe730
$1, %eax
leave 659///ﬂ

ret

115

foo:

pushl %ebp bfffe764

bfffe760
bfffe75c

movl $esp, %ebp Parameter badfile

subl $40, %esp Return address 080483dc

L Old ebp bfffe768
movl 8 ($ebp) , %edx

fffe758
movl $edx, 12 (%esp) ebp
movl $517, 8 (%esp)
movl $1, 4 (%esp)
movl $eax, (%esp)
call fread
movl $1, %eax
leave

 ret badfile
main:
517

movl $eax, (%esp)
call foo
- bfffe730
$1, %eax e/59///7
leave
ret

T17

foo:

pushl %ebp
movl Sesp, %ebp
subl $40, %esp

movl 8 ($ebp) , %edx
movl %edx, 12 (%esp)
movl $517, 8 (%esp)
movl $1, 4 (%esp)
movl %eax, (%esp)
call fread

movl $1, %eax
leave

ret

main:

movl %eax, (%esp)
call foo

$1, %eax

leave

ret

Parameter

Return address
Old ebp

badfile
080483dc
bfffe768

badfile
917
1

115

bfffe764

bfffe760
bfffe75c
fffe758
ebp

bfffe730

foo:

pushl %ebp
movl Sesp, %ebp
subl $40, %esp

movl 8 ($ebp) , %edx
movl %edx, 12 (%esp)
movl $517, 8 (%esp)
movl $1, 4 (%esp)
movl %eax, (%esp)
call fread

movl $1, %eax
leave

ret

main:

movl %eax, (%esp)
call foo

$1, %eax

leave

ret

Parameter

Return address
Old ebp

buffer <

Parameters —

badfile
080483dc
bfffe768

badfile
517
1
buffer

116

bfffe764

bfffe760
bfffe75c
fffe758
ebp

bfffe730

foo:

pushl %ebp bfffe764

bfffe760
bfffe75c

movl $esp, %ebp Parameter badfile

subl $40, %esp Return address 080483dc

L Old ebp bfffe768
movl 8 ($ebp) , %edx

fffe758
movl $edx, 12 (%esp) ebp
movl $517, 8 (%esp)
movl $1l, 4 (%esp)
movl $eax, (%esp) ’—
call fread
movl $1, %eax buffer —
leave
o ret badfile
main:
517
Parameters —
movl $eax, (%esp) 1
call foo buffer
. — SR0AE bfffe730
$1, %eax 2 bfffe72C

leave
ret esp

117/

foo:

pushl %ebp
movl Sesp, %ebp
subl $40, %esp

movl 8 ($ebp) , %edx
movl %edx, 12 (%esp)
movl $517, 8 (%esp)
movl $1, 4 (%esp)
movl %eax, (%esp)
call fread

movl $1, %eax
leave

ret

main:

movl %eax, (%esp)
call foo

$1, %eax
leave
ret

Parameter

Return address
Old ebp

buffer <

Parameters —

bfffe764
badfile
bfffe760
080483dc
bfffe75c
bfffe768
fffe758
ebp
) 90.9.9.¢
) 9.9.9.¢
) 90.9.9.¢
badfile
517
1
buffer
STV bfffe730
2 bfffe72C

1ls

foo:

pushl %ebp
movl Sesp, %ebp
subl $40, %esp

movl 8 ($ebp) , %edx
movl %edx, 12 (%esp)
movl $517, 8 (%esp)
movl $1, 4 (%esp)
movl %eax, (%esp)
call fread

movl $1, %eax
leave

ret

main:

movl %eax, (%esp)
call foo

$1, %eax
leave
ret

Parameter

Return address
Old ebp

buffer <

Parameters —

XXXX

XXXX
XXXX
badfile
517
1
buffer
0804841c

1159

bfffe764

bfffe760
bfffe75c
fffe758
ebp

bfffe730
bfffe72C

