
SIoT – Securing the Internet of Things
through Distributed System Analysis

DEPARTMENT OF COMPUTER SCIENCE

FEDERAL UNIVERSITY OF MINAS GERAIS, BRAZIL

Agenda

• Introduction

• Goal

• Solution

• Results

• Conclusion

2

Agenda

• Introduction

• Goal

• Solution

• Results

• Conclusion

3

Agenda

• Introduction

– IoT

– C language

– Buffer Overflow

• Goal

• Solution

• Results

• Conclusion

4

Agenda

• Introduction

– IoT

– C language

– Buffer Overflow

• Goal

• Solution

• Results

• Conclusion

5

IoT

• Capabilities

– It’s made up with constrained devices

• Computing Paradigm

– A distributed system and usually exchange a large
number of messages

• Programming language

– Apps are often written in C, which is inherently unsafe

6

IoT

• Capabilities

– It’s made up with constrained devices

• Computing Paradigm

– A distributed system and usually exchange a large
number of messages

• Programming language

– Apps are often written in C, which is inherently unsafe

7

C is unsafe because it does not check array-bounds

Agenda

• Introduction

– IoT

– C language

– Buffer Overflow

• Goal

• Solution

• Results

• Conclusion

8

Java

Q: What happens when we run this Java program?

public class P {
final static int SIZE = 4;

static void copyAndPrint(byte[] v) {
byte[] buf = new byte[SIZE];
for (int i = 0; i < v.length; i++) {

buf[i] = v[i];
System.out.println("-> " + buf[i]);

}
}

public static void main(String args[]) {
byte[] v = {0, 1, 2, 3, 4};
copyAndPrint(v);

}
}

#include <stdio.h>

#define SIZE 4

void copyAndPrint(char v[], int n) {
char buf[SIZE];
int i;
for (i = 0; i < n; i++) {

buf[i] = v[i];
printf("-> %d\n", buf[i]);

}
}

int main() {
char v[] = {0, 1, 2, 3, 4};
copyAndPrint(v, SIZE + 1);

}

C language

Q: What about this C program?

Q: Why is that?

11

C unsafety: Outcomes

• Morris worm

– Buffer over-write that compromised around 10% of
computers connected to the Internet back in 1988

• Heartbleed

– Buffer over-read that compromised half a million web
servers in 2014

• IoT vulnerability

– Due the unsafe nature of C, IoT apps are vulnerable
to buffer overflow attacks, too

12

C unsafety: Outcomes

• Morris worm

– Buffer over-write that compromised around 10% of
computers connected to the Internet back in 1988

• Heartbleed

– Buffer over-read that compromised half a million web
servers in 2014

• IoT vulnerability

– Due the unsafe nature of C, IoT apps are vulnerable
to buffer overflow attacks, too

13

Buffer Overflow?

Agenda

• Introduction

– IoT

– C language

– Buffer Overflow

• Goal

• Solution

• Results

• Conclusion

14

Buffer Overflow

• A buffer overflow happens when the memory space
that guides the execution flow is overwritten

• The idea is to manipulate arrays w/o bound checks

15

BOF (Cont.)

top of

memory

bottom of

memory

top of

stack

bottom of

stack

[sssssssss][&sfp][&ret’][a]

[2][3]buffer

c

be_or_not() /bin/sh

BOF (Cont.)

top of

memory

bottom of

memory

top of

stack

bottom of

stack

[sssssssss][&sfp][&ret’][a]

[2][3]buffer

be_or_not() /bin/sh

BOF (Cont.)

top of

memory

bottom of

memory

top of

stack

bottom of

stack

[sssssssss][&sfp][&ret’][a]

[2][3]buffer

be_or_not() /bin/sh

BOF (Cont.)

top of

memory

bottom of

memory

top of

stack

bottom of

stack

[sssssssssss&sfp][&ret’][a]

[2][3]buffer

be_or_not() /bin/sh

BOF (Cont.)

top of

memory

bottom of

memory

top of

stack

bottom of

stack

[sssssssssssssssss&ret’][a]

[2][3]buffer

be_or_not() /bin/sh

BOF (Cont.)

top of

memory

bottom of

memory

top of

stack

bottom of

stack

[sssssssssssssssss&ret’][a]

[2][3]buffer

be_or_not() /bin/sh

BOF (Cont.)

top of

memory

bottom of

memory

top of

stack

bottom of

stack

[sssssssssssssssss&ret’][a]

[2][3]buffer

be_or_not() /bin/sh

Ok, I got it! IoT apps are written and C and
then they’re particularly vulnerable to BOFs.

There are a bunch of BOF prevention
mechanisms out there, though.

Can’t we just pick out one and apply in IoT?

No! Because they are inadequate as-is to IoT.

23

BOF Prevention: existing proposals

• There are many proposals for BOF prevention in the
context of Internet

– E.g. SAFECode, SoftBounds, AddressSanitizer, etc.

• They are effective in that they protect memory
accesses (load/store)via Array-Bound Checks

Problem

• They tend to slow down the programs too much

• E.g. AddressSanitizer (Serebryany et al. 2012) incurs on
average 73% of overhead in a conventional machine

BOF Prevention: existing proposals

• There are many proposals for BOF prevention in the
context of Internet

– E.g. SAFECode, SoftBounds, AddressSanitizer

• They are effective in that they protect memory
accesses (load/store)via Array-Bound Checks

Problem

• They tend to slow down the programs too much

• E.g. AddressSanitizer (Serebryany et al. 2012) incurs on
average 73% of overhead in a conventional machine

BOF Prevention: existing proposals

• There are many proposals for BOF prevention in the
context of Internet

– E.g. SAFECode, SoftBounds, AddressSanitizer

• They are effective in that they protect memory
accesses (load/store)via Array-Bound Checks

Problem

• They tend to slow down the programs too much

• E.g. AddressSanitizer (Serebryany et al. 2012) incurs on
average 73% of overhead in a conventional machine

Constrained devices like things cannot afford this overhead

Q: How do existing proposals for preventing
BOF work?

27

How to protect code against BOFs

• Many of the existing proposals to secure code against
BOFs have three phases

1. They first find buffers reachable from untrusted
sources, at compiling time

2. They thus guard buffers by inserting Array Bounds
Checks (ABCs) prior to buffers use

3. At execution time, ABCs abort programs if accesses
past the end of buffers are about to happen

28

Stage 1: buffers reachable from untrusted sources

A path connecting the
source and the sink

Source Sink

A sink using untrusted data
e.g.: array index (buffer[i])

An untrusted source
e.g.: scanf("%d”, &i)

Tainted flow

How to protect code against BOFs

• Many of the existing proposals to secure code against
BOFs have three phases

1. They first find buffers reachable from untrusted
sources, at compiling time

2. They thus guard buffers by inserting Array Bounds
Checks (ABCs) prior to buffers use

3. At execution time, ABCs abort programs if accesses
past the end of buffers are about to happen

30

31

ABC-protected codeVulnerable code

Stage 2: ABC insertion

int main(int argc, char

**argv){

int buffer[BUFSIZE];

int a,i,j;

...

for(i;i<j;i++){

...

buffer[i] = a;

...

}

...

}

int main(int argc, char

**argv){

int buffer[BUFSIZE];

int a,ij,;

...

for(i;i<j;i++){

...

if((i >= 0)&&(i < BUFSIZE))

buffer[i] = a;

...

}

...

}

How to protect code against BOFs

• Many of the existing proposals to secure code against
BOFs have three phases

1. They first find buffers reachable from untrusted
sources, at compiling time

2. They thus guard buffers by inserting Array Bounds
Checks (ABCs) prior to buffers use

3. If an ABC is not satisfied at execution time, they
then abort programs

32

Stage 3: Illegal memory access is aborted

33

Agenda

• Introduction

• Goal

• Solution

• Results

• Conclusion

34

Goal

• Our goal is to come up with a BOF prevention
mechanism tailor-made for IoT

• Solutions must therefore be

1. Secure against BOFs

2. Light enough to be run in battery-powered devices

35

Agenda

• Introduction

• Goal

• Solution

• Results

• Conclusion

36

Agenda

• Introduction

• Goal

• Solution

– Conception

– Refinement

– Development

• Results

• Conclusion

37

Agenda

• Introduction

• Goal

• Solution

– Conception

– Refinement

– Development

• Results

• Conclusion

38

Assumptions/Attack Model

• Nodes run authentic programs

– E.g. they could employ Trusted Platform Module (TPM)

• The communication channel is secure

– Crypto solutions like DTLS (Kothmayr et al.), TinyPBC
(Oliveira et al.), or SPINS (Perrig et al.) could be adopted

39

Assumptions/Attack Model (Cont.)

• Attackers have control over the input data that the
nodes receive from its environment

– This includes data captured by the sensors or input
from the user interfaces

– But excludes data coming from network interfaces as
we assume a secure communication channel.

40

How to lose weight?

SIoT challenge #1

41

Idea

• Recall existing proposals find buffers reachable from
(untrusted) sources

• They analyze programs of a distributed system as
disjoint/independent programs

– E.g., they end up analyzing a client and its respective
server programs individually

• Therefore the list of untrusted sources include not only
conventional (e.g. get) and network (e.g. recv) sources

42

Idea (Cont.)

• The higher the number of untrusted sources, the higher
the number of reachable arrays

• And the higher the number of reachable arrays, the
higher the number of ABCs and thus the overhead

43

Idea (Cont.)

• The higher the number of untrusted sources, the higher
the number of reachable arrays

• And the higher the number of reachable arrays, the
higher the number of ABCs and thus the overhead

44

So, what if we decrease the number of untrusted sources?

How can we turn untrusted sources into
something else, though?

45

SIoT key contribution #1

• Look at a distributed system programs from another
perspective

46

Programs A and B: sources

48

scanf argv

recv

recv

scanf argv

Program A Program B

send

send

Distributed System AB: sources

50

scanf argv

recv

recv

scanf argv

Program A Program B

send

send

Single System AB

Distributed System AB: sources

51

send recv

recv send

scanf argv scanf argv

Program A Program B

Single System AB

Distributed System AB: sources

52

send recv

recv send

scanf argv scanf argv

Program A Program B

Single System AB

Distributed System AB: sources

53

send recv

recv send

scanf argv scanf argv

Program A Program B

Single System AB

buffer[i]

i

Distributed System AB

Program A Program B

No longer considered a vulnerability

Agenda

• Introduction

• Goal

• Solution

– Conception

– Refinement

– Development

• Results

• Conclusion

56

SIoT challenge #2

• Face the lack of data-structures to analyze distributed
systems

• Control Flow Graphs (CFGs) are the core data-structure
in program analysis

• CFGs are not expressive enough to represent programs
that communicate over a network, though

– E.g., they do not handle message exchange between
nodes

57

SIoT key contribution #2

• Distributed Control Flow Graph (DCFG)

• DCFGs are data structures able to bind together the
CFGs of all individual programs that constitute a system

58

DCFG

DCFG

DCFG

It’s not that easy, though

62

SIoT challenge #3

• To build a DCFG, we have to link the sends of a program
A with the recvs of a program B and vice-versa

63

How to find out which sends link to a recv?

SIoT key contribution #3

• Elevator, an algorithm to selectively link sends/recvs

1. Elevator assigns levels to sends and recvs

2. Program A’s sends and Program B’s recvs in the
same level are thus linked together

64

Elevator: Illustration

• Consider the Echo Client and Server programs

65

(a) Echo Client (b) Echo Server

Echo Client CFG

66

CFG - Echo Client

A: send(1)

s = getc()

B: ack = recv()

(ack == 1) ?

(s != ‘\0’)?

C: send(s)

E: send(s)

D: ack = recv()

s = getc()

(ack != 1)?

(a) Echo Client

Extract Echo Client’s Send-Graph

67

CFG - Echo Client

A: send(1)

s = getc()

B: ack = recv()

(ack == 1) ?

(s != ‘\0’)?

C: send(s)

E: send(s)

D: ack = recv()

s = getc()

(ack != 1)?

(a) Echo Client

Extract Echo Client’s Send-Graph

68

CFG - Echo Client

A: send(1)

s = getc()

B: ack = recv()

(ack == 1) ?

(s != ‘\0’)?

C: send(s)

E: send(s)

D: ack = recv()

s = getc()

(ack != 1)?

SG – Send-Graph

A: send(1)

C: send(s) E: send(s)

Extract Echo Client’s Receive-Graph

69

CFG - Echo Client

A: send(1)

s = getc()

B: ack = recv()

(ack == 1) ?

(s != ‘\0’)?

C: send(s)

E: send(s)

D: ack = recv()

s = getc()

(ack != 1)?

SG - Send-Graph

A: send(1)

C: send(s) E: send(s)

Extract Echo Client’s Receive-Graph

70

CFG - Echo Client

A: send(1)

s = getc()

B: ack = recv()

(ack == 1) ?

(s != ‘\0’)?

C: send(s)

E: send(s)

D: ack = recv()

s = getc()

(ack != 1)?

SG - Send-Graph

A: send(1)

C: send(s) E: send(s)

Extract Echo Client’s Receive-Graph

71

CFG - Echo Client

A: send(1)

s = getc()

B: ack = recv()

(ack == 1) ?

(s != ‘\0’)?

C: send(s)

E: send(s)

D: ack = recv()

s = getc()

(ack != 1)?

RG - Receive-Graph

B: ack = recv()

D: ack = recv()

SG - Send-Graph

A: send(1)

C: send(s) E: send(s)

Ditto for Echo Server

73

H: msg = recv()

F: msg = recv()

G: send(1)

I: send(1)

J: send(0)

SG - Send-Graph

RG - Receive-Graph

CFG - Echo Server

H: msg = recv()

F: msg = recv()

G: send(1)

I: send(1)

J: send(0)

(msg != ‘\0’)?

(msg == 1)?

putc(msg)

Level Assignment

Echo Client: Send-Graph

A: send(1)

C: send(s) E: send(s)

Elevator (Graph G) /* toy version*/
start.level := 0
While { sets are different }

For each vertex v in G
If v is reachable from u

then v.level := (u.level+1)
end

end
end

end

Level Assignment

SG – Echo Client

A: send(1)

C: send(s) E: send(s)

Level of Senders:
level set

0 { start }

1 { A }

2 { C, E }

3 { C, E }

Elevator (Graph G) /* toy version*/
start.level := 0
While { sets are different }

For each vertex v in G
If v is reachable from u

then v.level := (u.level+1)
end

end
end

end

Level Assignment

A: send(1)

C: send(s) E: send(s)

Level of Senders:
level set

0 { start }

1 { A }

2 { C, E }

3 { C, E }

Elevator (Graph G) /* toy version*/
start.level := 0
While { sets are different }

For each vertex v in G
If v is reachable from u

then v.level := (u.level+1)
end

end
end

end

Echo Client: Send-Graph

Level Assignment

A: send(1)

C: send(s) E: send(s)

Level of Senders:
level set

0 { start }

1 { A }

2 { C, E }

3 { C, E }

Elevator (Graph G) /* toy version*/
start.level := 0
While { sets are different }

For each vertex v in G
If v is reachable from u

then v.level := (u.level+1)
end

end
end

end

Echo Client: Send-Graph

Level Assignment

A: send(1)

C: send(s) E: send(s)

Level of Senders:
level set

0 { start }

1 { A }

2 { C, E }

3 { C, E }

4 { nil }

Elevator (Graph G) /* toy version*/
start.level := 0
While { sets are different }

For each vertex v in G
If v is reachable from u

then v.level := (u.level+1)
end

end
end

end

Echo Client: Send-Graph

Level Assignment

A: send(1)

C: send(s) E: send(s)

Level of Senders:
level set

0 { start }

1 { A }

2 { C, E }

3 { C, E }

4 { nil }

Elevator (Graph G) /* toy version*/
start.level := 0
While { sets are different }

For each vertex v in G
If v is reachable from u

then v.level := (u.level+1)
end

end
end

end

the algorithm halts whenever sets
stop changing

Echo Client: Send-Graph

Level Assignment

A: send(1)

C: send(s) E: send(s)

Level of Senders:
level set

0 { start }

1 { A }

2 { C, E }

3 { C, E }

4 { nil }

Elevator (Graph G) /* toy version*/
start.level := 0
While { sets are different }

For each vertex v in G
If v is reachable from u

then v.level := (u.level+1)
end

end
end

end

Echo Client: Send-Graph

Level Assignment: Ditto for Recv-Graph

A: send(1)

C: send(s) E: send(s)
H: msg = recv()

F: msg = recv()

Echo Server: Recv-Graph

Level of Senders:
level set

0 { start }

1 { A }

2 { C, E }

3 { C, E }

Level of Receivers:
level set

0 { root }

1 { F }

2 { H }

3 { H }

Echo Client: Send-Graph

DCFG construction final step

• Link Client’s sends with Server’s recvs if they are
belong to the same level, and vice-versa

82

A: send(1) {L1}

C: send(s) {L2} E: send(s) {L2} H: msg = recv() {L2}

F: msg = recv() {L1}

Echo Server: Recv-GraphEcho Client: Send-Graph

Agenda

• Introduction

• Goal

• Solution

– Conception

– Refinement

– Development

• Results

• Conclusion

83

DCFG

Elevator
DistDepGraph

DDG

Send-Graphs

Receive-Graphs

Linking

SIoT
Coding Program_1..2.bc Merge

DistSytem.bc
Setup: Send/Recvs
Functions Names

DistVulArrays

DistVulArrays
Graph

Merging
Core

DistVulArrays
Statistics

BOF case study

SIoT is publicly available

85

https://code.google.com/p/ecosoc/wiki/SIoT

Agenda

• Introduction

• Goal

• Solution

• Results

• Conclusion

86

Evaluation

• We have compared SIoT against the state-of-the-art
approach

– Tainted flow analysis followed by ABCs insertion

– We called this approach Baseline

– Our hypothesis was that SIoT would insert less ABCs
than Baseline and thus end up being more efficient

• We have used real IoT code in our evaluation

– I.e., ContikiOS applications

87

SIoT Static Analysis

• It takes on average 66s and consumed 170 MB of RAM
– In a Intel Core i7 2.2GHz laptop
– Memory obtained via Valgrind
– Time taken through Unix time

• It’s done offline and does not represent a burden to nodes

88

ABCs Insertion

• SIoT reduces the number of ABCs insertion by around 10x
compared to Baseline in our benchmark

89

Experiment Setup

DAQ

Iris sensor
node

Shunt resistor

SIoT Dynamic Analysis

Energy savings compared to Baseline

Energy savings compared to Baseline

Agenda

• Introduction

• Goal

• Solution

• Results

• Conclusion

92

Conclusions

SIoT

1. Sees and analyze individuals programs of a distributed
system as a single system

2. Protects IoT code around 20% more energy-efficiently
than state-of-the-art approach

3. Is publicly available

Besides, we came up with

1. Distributed Control Flow Graphs – DCFGs

2. Elevator, an alg. that is able to link sends/recvs

93

Thanks

www.ecosoc.dcc.ufmg.br

leonardo.barbosa@dcc.ufmg.br

95

Elevator Asymptotic Complexity

• Runtime as a function of the number of CGFs vertices
• In practice, O(n^3) where n is the number of vertices

96

Related Work

• There are works that already focused on IoT software
correctness and security

– Cooprider et al. Safe TinyOS (Sensys'07)

– Li and Regehr. Kleenet. (IPSN'10)

– Sasnauskas et al. T-Check. (IPSN'10)

• These works don’t look at IoT as a single system and we
believe ours is complementary to their strategies

– I.e., SIoT can potentially improve their numbers

97

ABC Cost

98

mrmovl -12(%ebp), %eax

mrmovl -4(%ebp), %edx

rrmovl %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx, -2060(%edi)

buffer[i] = a;

mrmovl -12(%ebp), %edi

irmovl $0, %ebx

subl %ebx, %edi

js L3

if((i>= 0)

&& (i < BUFFERSIZE))

mrmovl -12(%ebp),%edi

irmovl $511, %ebx

subl %ebx, %edi

jg L3

Load ‘i’

Load lower index

Load ‘i’

Load ‘a’

Adjust base register

Move ‘a’ to the memory

address

Compare

Load ‘i’

Load upper index

Compare

ABCs’ Computational Cost

99

mrmovl -12(%ebp), %eax

mrmovl -4(%ebp), %edx

rrmovl %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx, -2060(%edi)

buffer[i] = a;

mrmovl -12(%ebp), %edi

irmovl $0, %ebx

subl %ebx, %edi

js L3

if((i>= 0)

&& (i < BUFFERSIZE))

mrmovl -12(%ebp),%edi

irmovl $511, %ebx

subl %ebx, %edi

jg L3

Load ‘i’

Load lower index

Load ‘i’

Load ‘a’

Adjust base register

Move ‘a’ to the memory

address

Compare

Load ‘i’

Load upper index

Compare

ABCs’ Computational Cost

100

mrmovl -12(%ebp), %eax

mrmovl -4(%ebp), %edx

rrmovl %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx, -2060(%edi)

buffer[i] = a;

mrmovl -12(%ebp), %edi

irmovl $0, %ebx

subl %ebx, %edi

js L3

if((i>= 0)

&& (i < BUFFERSIZE))

mrmovl -12(%ebp),%edi

irmovl $511, %ebx

subl %ebx, %edi

jg L3

Load ‘i’

Load lower index

Load ‘i’

Load ‘a’

Adjust base register

Move ‘a’ to the memory

address

Compare

Load ‘i’

Load upper index

Compare

ABCs’ Computational Cost

101

mrmovl -12(%ebp), %eax

mrmovl -4(%ebp), %edx

rrmovl %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx, -2060(%edi)

buffer[i] = a;

mrmovl -12(%ebp), %edi

irmovl $0, %ebx

subl %ebx, %edi

js L3

if((i>= 0)

&& (i < BUFFERSIZE))

mrmovl -12(%ebp),%edi

irmovl $511, %ebx

subl %ebx, %edi

jg L3

Load ‘i’

Load lower index

Load ‘i’

Load ‘a’

Adjust base register

Move

Compare

Load ‘i’

Load upper index

Compare

ABCs’ Computational Cost

102

mrmovl -12(%ebp), %eax

mrmovl -4(%ebp), %edx

rrmovl %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx, -2060(%edi)

buffer[i] = a;

mrmovl -12(%ebp), %edi

irmovl $0, %ebx

subl %ebx, %edi

js L3

if((i>= 0)

&& (i < BUFFERSIZE))

mrmovl -12(%ebp),%edi

irmovl $511, %ebx

subl %ebx, %edi

jg L3

Load ‘i’

Load lower index

Load ‘i’

Load ‘a’

Adjust base register

Move

Compare

Load ‘i’

Load upper index

Compare

ABCs’ Computational Cost

103

mrmovl -12(%ebp), %eax

mrmovl -4(%ebp), %edx

rrmovl %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx, -2060(%edi)

buffer[i] = a;

mrmovl -12(%ebp), %edi

irmovl $0, %ebx

subl %ebx, %edi

js L3

if((i>= 0)

&& (i < BUFFERSIZE))

mrmovl -12(%ebp),%edi

irmovl $511, %ebx

subl %ebx, %edi

jg L3

Load ‘i’

Load lower index

Load ‘i’

Load ‘a’

Adjust base register

Move

Compare

Load ‘i’

Load upper index

Compare

ABCs’ Computational Cost

104

mrmovl -12(%ebp), %eax

mrmovl -4(%ebp), %edx

rrmovl %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx, -2060(%edi)

buffer[i] = a;

mrmovl -12(%ebp), %edi

irmovl $0, %ebx

subl %ebx, %edi

js L3

if((i>= 0)

&& (i < BUFFERSIZE))

mrmovl -12(%ebp),%edi

irmovl $511, %ebx

subl %ebx, %edi

jg L3

Load ‘i’

Load lower index

Load ‘i’

Load ‘a’

Adjust base register

Move

Compare

Load ‘i’

Load upper index

Compare

ABCs’ Computational Cost

105

Full BOF example

106

#include <stdio.h>

void foo(FILE *badfile){

char buffer[12];

...

fread(buffer,sizeof(char),517,badfile);

...

return 1;

}

int main() {

FILE *badfile;

badfile = fopen(“file”,”r”);

foo(badfile);

fclose(badfile);

return 1;

}

Vulnerable Code

107

esp

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe764

108

bfffe760
Parameter

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe764

esp

109

bfffe75c

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe760

bfffe764

esp

Return address

Parameter

110

bfffe758
Old ebp

ebp

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe75c

bfffe760

bfffe764

esp

Return address

Parameter

111

bfffe758
Old ebp

ebp

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe75c

bfffe760

bfffe764

esp

Return address

Parameter

bfffe730

112

bfffe758
Old ebp

ebp

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe75c

bfffe760

bfffe764

esp

Return address

Parameter

bfffe730

113

bfffe758
Old ebp

ebp

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe75c

bfffe760

bfffe764

esp

Return address

Parameter

bfffe730

114

bfffe758
Old ebp

ebp

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe75c

bfffe760

bfffe764

esp

Return address

Parameter

bfffe730

115

bfffe758
Old ebp

ebp

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe75c

bfffe760

bfffe764

esp

Return address

Parameter

Parameters

buffer

bfffe730

116

bfffe758
Old ebp

ebp

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe75c

bfffe760

bfffe764

esp

Return address

Parameter

Parameters

buffer

bfffe730

bfffe72C

117

bfffe758
Old ebp

ebp

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe75c

bfffe760

bfffe764

esp

Return address

Parameter

Parameters

buffer

bfffe730

bfffe72C

118

bfffe758
Old ebp

ebp

foo:

pushl %ebp

movl%esp, %ebp

subl$40, %esp

...

movl8(%ebp), %edx

movl%edx, 12(%esp)

movl$517, 8(%esp)

movl$1, 4(%esp)

movl%eax, (%esp)

callfread

movl$1, %eax

leave

ret

main:

...

movl%eax, (%esp)

callfoo

...

$1, %eax

leave

ret

bfffe75c

bfffe760

bfffe764

esp

Return address

Parameter

Parameters

buffer

bfffe730

bfffe72C

119

