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ABSTRACT

The Internet of Things (IoT) is increasingly more relevant. This
growing importance calls for tools able to provide users with cor-
rect, reliable and secure systems. In this paper, we claim that tradi-
tional approaches to analyze distributed systems are not expressive
enough to address this challenge. As a solution to this problem, we
present SIoT, a framework to analyze networked systems. SIoT’s
key insight is to look at a distributed system as a single body, and
not as separate programs that exchange messages. By doing so,
we can crosscheck information inferred from different nodes. This
crosschecking increases the precision of traditional static analyses.
To construct this global view of a distributed system we introduce a
novel algorithm that discovers inter-program links efficiently. Such
links lets us build a holistic view of the entire network, a knowl-
edge that we can thus forward to a traditional tool. We prove that
our algorithm always terminates and that it correctly models the se-
mantics of a distributed system. To validate our solution, we have
implemented SIoT on top of the LLVM compiler, and have used
one instance of it to secure 6 ContikiOS applications against buffer
overflow attacks. This instance of SIoT produces code that is as
safe as code secured by more traditional analyses; however, our
binaries are on average 18% more energy-efficient.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distributed Sys-
tems—Distributed applications; D.4.6 [Software]: Operating Sys-
tems—Security and Protection; D.4.6 [Software]: Software Engi-
neering—7Testing and Debugging
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Security
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1. INTRODUCTION

The Internet of Things (IoT) may be thought of as the epithet
of Ubiquitous Computing. In IoT, the user environment is replete
of devices working collaboratively [2,3]. These devices range from
computing elements such as RFID tags and biochip transponders on
farm animals to smartphones and automobiles with built-in sensors.
Equipments like these are known by the name of “things™ [2, 3].

Ensuring the security of such systems is a problem of increas-
ing relevance [17]. In fact, DARPA has elected security the cen-
tral point in its Cyber Grand Challenges call'. Two main factors,
however, make IoT security even more critical. First, things act
as bridges between user’s physical and cyber worlds, and their ex-
ploitation can potentially have more impact on users’ daily lives.
Secondly, the nature of things makes the scale of attacks even larger.
For instance, a botnet made up by one hundred thousand things was
recently launched”. Such bot had targets like home routers, set-top
boxes, smart TVs, and smart appliances.

IoT faces a plethora of security problems [17]. It suffers from
the same security issues as traditional Internet-based and/or wire-
less systems, including jamming, spoofing, replay, and eavesdrop-
ping [4,17]. In addition, it is more prone (as compared to traditional
systems) to other issues such as out-of-bound memory accesses.
IoT’s increased vulnerability to out-of-bound memory accesses is
due to a few factors. Notably, IoT costs must be kept as low as pos-
sible, and to meet this requirement, they are usually endowed with
the least amount of resources necessary to accomplish their duties.
Accordingly, applications for IoT are commonly developed using
lightweight languages such as C. This strategy turns out to be a
double-edged sword. On the one hand, applications may run more
efficiently, allowing for better end-user response time and slower
power depletion. On the other hand, the use of C in code develop-
ment also makes applications more vulnerable to attacks.

C is an inherently unsafe language [8]. For instance, its seman-
tics allows out-of-bound memory accesses. It is worth recalling
that an array access in C or C++, such as ali], is safe if the variable
¢ is greater than or equal to zero, and its value is less than the maxi-
mum addressable offset starting from the base pointer a. This type
of accesses are dangerous because they give room to buffer over-
flow attacks [10]. A buffer overflow takes place whenever a system
allows data to be accessed out of the bounds of an array. The Mor-
ris worm® and the Heartbleed flaw* illustrate how effective these
attacks can be. Back in 1988, the former made use of the then-

! http://cgc.darpa.mil

2http://slashdot.org/lopic/datacenter/ 100k-thingbot-net- shows-risk-of-smart-devices/
3http://en.wikipedia.org/wiki/Morris_worm
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#define BUFSIZE 512 #define BUFSIZE 512
int main(int argc,
char xxargv) {
int buffer[BUFSIZE];
int aj;
int 1i,3;

int main(int argc,
char xxargv) {
int buffer[BUFSIZE];
int a;
int 1i,3;

for(i;i<j;i++) { for(i;i<j;i++) {

buffer[i] = if((i >= 0)&&(i < BUFSIZE))

a;
buffer[i] = a;
} .
.. }
} .
}
Figure 1: Vulnerable (left-hand-side) and ABC protected

(right-hand-side) C code.

novel technique of buffer over-write to compromise around 10% of
computers connected to the Internet. The latter exploited a buffer
over-read vulnerability, compromising half a million web servers

Much work has already been done to turn C into a safer lan-
guage (e.g. SAFECode [13] and AddressSanitizer [35]). Existing
proposals resort to Array-Bound Checks (ABCs), which are tests
done at runtime to ensure that a particular array access is safe —
Fig. 1. These proposals work in a two-pass fashion. They first
scan programs’ assembly representation to find code snippets con-
taining vulnerabilities; in a second step, they return to the poten-
tial vulnerabilities and insert ABCs. While effective in preventing
out-out-bound memory accesses from taking place, these proposals
impose a significant overhead on compiled programs, and are thus
inadequate as-is to IoT. As an example, AddressSanitizer is known
to slowdown programs by over 70%, and to increase their memory
consumption by over 200%. It is therefore paramount to develop
more efficient techniques that can be used to protect IoT.

The goal of this paper is to describe a general framework for
analysis and optimization of distributed systems, which we can use
to implement an efficient solution to counter buffer-overflow at-
tacks in IoTs. We call our framework SIoT, short for Secure Inter-
net of Things. Our key insight is to look at a distributed system as a
single entity, rather than as multiple separate message-exchanging
programs. Using a novel algorithm, we can infer the communi-
cation links between different programs that converse through a
network. This knowledge lets us model how data flows across dis-
tributed programs; hence, it gives us a holistic view of the entire
system. Such a view can be coupled with traditional static analysis
tools to improve their precision.

To validate our claims, we have used our framework to pro-
tect IoT systems against buffer overflow attacks. More specifi-
cally, we applied tainted flow analysis [5] on the model we pro-
posed, and sanitized C programs against out-of-bound memory ac-
cesses. Tainted flow analysis tracks potentially malicious data (i.e.,
data that can be influenced by attackers) flows across the program.
Memory indexed by tainted data can then be guarded against in-
valid access during runtime using ABCs. Because the analysis has
a holistic view of the entire system, it produces a smaller number of
false-positives than if each module of the system were analyzed in-
dividually. This extra precision yields a smaller runtime overhead.
Notice that this framework is general enough to support a wider
range of analysis. The solution for out-of-bound memory accesses
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presented in this paper is just an instance of it.

Our contribution. This paper brings forth both theoretical and
practical contributions. On the theoretical side, we propose a way
to model distributed systems as single entities. More specifically:

1. We propose an extension to the standard Control Flow Graphs
(CFGs) [1], called Distributed Control Flow Graph (DCFG),
that is expressive enough to model the control flow spanning
multiple programs that communicate over a network.

2. We propose an algorithm that infers communication links
between different programs from a distributed system, and
prove that the algorithm (i) never misses possible commu-
nication paths between programs; and (ii) always reaches a
fixed point, and hence always terminates.

On the practical side, we have implemented our algorithm, and
showed that it can protect [oTs against buffer overflows, and can do
so more efficiently than traditional approaches. More specifically:

1. We have implemented our algorithm and its companion dis-
tributed tainted flow analysis in the LLVM compiler [20].
(Our implementation is publicly available’.)

2. We have applied this analysis on 6 applications present in
ContikiOS [14], and the results show that our proposal is
18% more energy-efficient than existing solutions.

Organization. The remainder of this paper is structured as fol-
lows. Section 2 describes programming language concepts, secu-
rity definitions, and the attack model used in this paper. Section 3
presents our solution. Section 4 describes the implementation of
SIoT. Section 5 evaluates SIoT in terms of energy-efficiency. In
Section 6 we discuss related work. We conclude in Section 7.

2. BACKGROUND AND ASSUMPTIONS

In this section, we describe the fundamental concepts of system
security and the attack model used in this paper. We start (Sec-
tion 2.1) with a brief description of language-base techniques to
deal with BOFs. We then (Section 2.2) describe two data structures
used to code analyses — CFG and Dependence Graph (DG). Finally,
we present (Section 2.3) the assumptions and the attack model used
in this paper.

2.1 Language-Based Techniques for Address-
ing Buffer Overflow Vulnerabilities

Software code can harbor different types of security vulnerabil-
ities, and those susceptible to buffer overflow attacks are the most
exploited. Solutions to address this class of vulnerabilities have
long existed, and are largely based on static analysis [8], dynamic
analysis [35], or a combination of both.

In static analysis [8] (also known as code analysis), analysis is
performed without actually running the program; instead either the
source code or the object code is inspected, and vulnerabilities
flagged. The advantage of this approach is that it does not incur
runtime overhead. Its downside is that the analysis is not able to
use information that is only available at runtime, which can de-
termine more accurately whether a code fragment indeed harbor a
vulnerability. Left without runtime information to help with the
decision, static analysis usually flags more vulnerabilities, many of
them false-positives.

Dynamic analysis [35], on the other hand, is performed during
system executions, and takes advantage of information that is avail-
able only at runtime. Armed with runtime information, it is then

5https://code. google.com/p/ecosoc



able to accurately flag problems in actual runs of the system. (Of-
ten, with the same code, a system in execution may or may not end
up in an exploitable or insecure state, depending on its input.) Dy-
namic analysis generates fewer false-positives, but incurs a higher
runtime cost, and the results are applicable to only those runs that
were analyzed.

Due to their complementary nature, it is common to use hybrid
analysis, i.e., the combination of static and dynamic techniques.
Usually, static analysis is used first, to identify potential vulnerabil-
ities; the vulnerable stretches are then instrumented and monitored
at runtime by dynamic analysis. Note that the higher the number
of — potential — vulnerabilities flagged by static analysis, the higher
the overhead incurred at runtime. Thus, for efficiency, it is crucial
that static analysis flag as few false-positives as possible.

2.2 Code Analysis Using CFG and DG

The Control Flow Graph (CFG) [1] is used to model the control
flow of computer programs. The CFG of a program P is a directed
graph defined as follows. For each instruction ¢ € P, we create a
vertex v;; we add an edge from v; to vj if it is possible to execute
instruction j immediately after instruction ¢. There are two addi-
tional vertices, start and exit, representing the start and the end of
control flow. Fig. 2 shows two examples of CFG.

One class of potential buffer overflow vulnerabilities we might
be interested in flagging is variables assignments where the data
being assigned are originated externally from user or environment
input. If we assume that neither the data sent over the network,
nor the executable of the various distributed modules can be tam-
pered with (see Section 2.3 for a discussion of these assumptions),
then we would see the assignments in lines 1 and 5 (Fig. 2) differ-
ently. Even though they both involve data coming from the network
(through the RECV function), we would deem the one in line 5 as
vulnerable, but not the one in line 1. The assignment in line 5 is vul-
nerable because the data being assigned to msg comes from getc
(line 4, Fig. 2a), which could provide malicious data from attackers
(msg has been used in buffer access). The first assignment in server
program (line 1, Fig. 2b) is not vulnerable because the data being
assigned is a hard-coded constant from the client program (line 1,
Fig. 2a).

In their standard form, CFGs are unable to model the overall
control flow of programs that span multiple distributed processes.
Thus, they do not provide support to distinguish the two assign-
ments mentioned above. To be safe, both assignments are usually
flagged as vulnerable, yielding one true-positive (line 5, Fig. 2b)
and one false-positive (line 1, Fig. 2b). We present a proposal that
addresses this shortcoming in Section 3.

The Dependence Graph (DG) [27] is a data structure frequently
used with the CFG. While CFGs model the control flow of a pro-
gram, DGs focus on the data flow, i.e., dependences between in-
structions and data. Given a program in a format known as Static
Single Assignment form [11] (where each variable has a single def-
inition site), a DG has a node for each variable and each operation
in the program. There is an edge from variable v to operation ¢ if ¢
denotes an instruction that uses v. Similarly, there is an edge from
i to v if 7 defines variable v. Just like standard CFGs, standard DGs
are unable to model the data flow in programs that span multiple
distributed processes. This is another issue that this paper solves.

2.3 System Assumptions & Attack Model

For the purpose of this work, we assume networks of distributed
and embedded nodes, organized as IoT systems. Each node can
interact with its environment through sensors, actuators, or user in-
terfaces. We assume that both the system running at each node and
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the communication between different nodes is protected against
tampering. Different security mechanisms can be used to imple-
ment such protections. For example, Trusted Plataform Module
(TPM) [18] can be employed to ensure the integrity of nodes sys-
tems and cryptographic solutions like [19, 26, 30] can be used to
establish a secure communication channel.

Attackers have control over the input data that the nodes receive
from its environment. This includes data captured by the sensors
or input from the user interfaces , but excludes data coming from
network interfaces (we assume a secure communication channel).

Though limited in the type of attacks they can launch, such at-
tackers can potentially cause security problems if the code running
on the nodes harbors certain types of vulnerabilities. For example,
if the code does not check array bounds, certain inputs may cause
buffer overflows. Attackers can then manipulate the environment
(to produce spurious sensor readings) or provide spurious user in-
put to launch a buffer overflow attack, leading the nodes to denial of
service or malicious behavior. Because these nodes are connected
to the Internet, misbehaving nodes can be used as a proxy to attack
other nodes in the network. Note that malicious input injection
attacks can be most effectively exploited if the attacker has infor-
mation of vulnerabilities in the code. This information is readily
available in case of open source programs, and can also be obtained
from code reverse engineering, and program fuzzing exercises.

3. SlIoT

In this section, we present our proposal on analysis of distributed
programs, and then show how this framework can be used to mit-
igate buffer overflow attacks against IoT systems implemented in
C. We start (Section 3.1) by introducing the concepts of DCFG
and DDG, two data structures that would enable us to model con-
trol flow and data flow across different programs in a distributed
system. We then (Section 3.2) formalize the level assignment algo-
rithm briefly described in Section 3.1, and prove that the algorithm
terminates, and is correct.

3.1 DCFG and DDG

CFGs model the control flow of individual programs. To an-
alyze an entire distributed system, we need to work with control
flow graphs that transcend program boundaries. We propose the
notion of DCFG for this purpose, and describe how they are built
below. Each DCFG models the communication between two pro-
grams in a system. If the system contains more than two programs,
a DCFG is necessary to model the relationship between each pair
of them. Let {C1,C2} be a pair of CFGs that constitute a system
and D the resulting DCFG. D contains C; and C as a subgraph.
Inter-program edges connecting C; and Cs are then added to D: for
each pair of SEND and RECV vertices (each from the two different
CFGs) that may communicate, we add an edge from the former to
the latter. That is, for each pair of vertices s; € Cy and r; € Ca,
if there is an execution sequence in which a message issued by s;
reaches r;j, we add to D an inter-program edge from s; to ;. And,
for each pair of vertices s, € C2 and r: € Cy, if there is an execu-
tion sequence in which a message issued by sy reaches 7, we add
to D an inter-program edge from sy, to 7.

In principle, we can add inter-program edges linking every send
vertex in one of the CFGs to every receive vertex in the other CFG
in the system. However, the resulting DCFG would have inter-
program edges linking sends and receives that could not be the
matching ends of a communication. For instance, in Fig. 2, sends
from vertex A are not received by vertex H; every send from A
will be received by F' before H has a chance to execute. To define



(a) 1 send(1l);
2 ack = reev()
3 if (ack == 1) {
4 s = getc();
5 while (s != '\0") {
6 send(s)
7 ack = recv();
8 if (ack != 1) {
9 break;
10 } else {
11 s = getc();
12 }
13 }
14 send(s);
15 3}

.—>| A: send(1) |—>| B: ack = recv() |

!
s = getc() |4—| (ack ==1)? |
!

(s 1="0?

(ack 1= 1)?

(b) 1 msg = recv();
2 if (msg == 1) {
send(1);
do {
msg = recv();
putc(msg);
if (msg != '\0")
send(1);
else
break;
} while (1);
} else {
send(0);

w

.—>| F: msg = recv() |—>| (msg == 1)?

| H: msg = reev() |<—| G: send(1) |

[ puctmse) | | 55ena0) |

(msg 1="0"?

I: send(1)

Figure 2: Echo application’s programs and their respective CFGs. (a) Echo client. (b) Echo server.

A: send(1) (b)

| E: send(s) |«—] C: send(s) |<:|

®

Figure 3: (a) Send-Graph and (b) Receive-Graph for echo
client (Fig. 2a).

a DCFG that better model the workings of a system, we introduce
the notions of Send-Graph, Receive-Graph, and levels.

Given a CFG C of a program, we define its associated Send-
Graph S and Receive-Graph R as follows. For each vertex v € C
labeled with a send operation, we add a vertex v’ to S. We also
add start’ and exit’ vertices, which correspond to start and exit in
C. Edges in S correspond to paths between sends in the original

C. For every pair of vertices u,v € C, we add an edge W to S
if, and only if: (i) there exists a path p from « to v in C, and (ii)
p does not contain any other sends. We create R in a similar way,
replacing sends by recvs in the procedure described above. Fig. 3
shows the S and R derived from the CFG in Fig. 2a.

Next, we move on to the concept of level. Given a Send-Graph,
its level O contains the start vertex. Level 1 contains the sends that
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are reachable, in one step, from the root. More generally, level
n + 1 contains the immediate successors of vertices in level n. The
procedure is complete when the vertices in the just-generated level
do not have successors, or the just-generated level is a duplicate of
a previously existing one. The concept of level can be similarly
defined for Receive-Graphs. We show an example in Fig. 4.

Consider echo client program Send-Graph (Fig. 4 left-hand-side).
Its level O contains the root of the graph. Its level 1 contains the im-
mediate successors of root node, i.e., { A}. Its level 2 contains the
immediate successors of each send node of level 1, ie., {C, E}.
The successors of C'is {C, E'}, and E does not have successors.
We find ourselves in a cycle, and the traversal can now stop. The
levels for echo server Receive-Graph can be similarly determined.

Given the CFGs in Fig. 2, their resulting DCFG can be built by
linking the send vertices in one CFG with the receive vertices of
the same level in the other. Links are established between SENDs
and RECVs that have the same level because they model matching
ends of message exchanges. Fig. 5 shows the links between the
SENDs and RECVs in our example. Links between the sends in
echo server and the receives in echo client are omitted for simplic-
ity. The steps describe above are captured in the Elevator Algorithm
(Algorithm 1).

Distributed Dependence Graph (DDG) can be built following
similar steps. We first create the DG of each program in the dis-
tributed system. For each instruction that accesses the network, we
create a vertex in the graph to represent this operation. Finally, we
used the levels defined in the Send-Graph and Receive-Graph to
decide which edges should be inserted between SENDs and RECVs
in the similar way previous described. Thus, the final graph con-



@———| A:send(])

ord  level
0 R&Sé{}’;
1A
® 2 {CE}
] 3 CE
4 {C,E}
| E: send(s) |<—| C: send(s) | 5

level of Senders:

level of Receivers:

F: ack = recv() |<—.

ord  level
0 {{root}]
1HE
2
3o
4 {H}

H: msg = recv()

Figure 4: Levels for echo client’s SENDs (left-hand-side) and echo server’s RECVs (right-hand-side). Dashed boxes delineate 7. when
solution(L) is true. The predicate solution is defined by Rule [SOL] in Fig. 6.

| E:send {2} | | C:send {2} |. ________ :| H:ME—»O
(l) D: recv 1: send

Figure 5: Links between echo client’s SENDs and echo sever’s
RECVs of our running example. Numbers next to vertices de-
note their respective levels.

tains the dependences of all the programs of the distributed system
as if it were a single program system. The DDG can be used for
different security analysis like the detection of buffer overflow or
integer overflow [32] vulnerabilities. For instance, in Section 5 we
describe how we have used the DDG to find dependences between
user or environment inputs and memory accesses that can be used
for buffer overflow attacks and how to mitigate false positives due
to network access.

3.2 Formalization of Elevator Algorithm

Equation 1 defines the levels of either a Send-Graph or Receive-
Graph graph, named here as Message-Graph mg as follows:

{start}
{v|wb € mg Au € level(mg,n — 1)}
)]
Equation 1 gives us a way to generate levels, which we formal-
ize in Fig. 6. To produce all the levels of a program, we continually
generate new levels, until we produce a set that has been created
before. Rule [SucC] constructs the successor of a level, following
Equation 1. Rules [LVR] and [LVN] determine a recurrence rela-
tion that generates levels. The first rule, [LVR], gives us the base
case. The second rule, [LVN], gives us the inductive step. Finally,
Rule [SOL] defines a solution to the problem of producing levels to
messages graphs. According to this rule, we stop generating levels
as soon as we produce a set of nodes that we had generated before.
As we prove later, in Lemma 3.6, this algorithm always terminates.
If solution(L) is true, we number the levels of a program ac-

level(mg, 0)
level(mg, n)
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Algorithm 1: Elevator

Input: CFGs {C1,C2}, Send-Graphs {S1, S2} and
Receive-Graphs {R1, R2}.
Output: DCFG - D

> Set the SEND levels
foreach S; do
n <0
SiL,, < {root}
while S; L,, # () and not repeat a level set do
foreach node s in S; L,, do
Ssuces < successors of s
S’LLTL+1 — S’LLTL+1 U Ssuccs
n<n—+1

> Set the RECV levels likewise

> Build the DCFG
D+ C1 UCq
for k < linn do
foreach SEND € S1L;, and RECV € RoL;. do
add an edge from SEND to RECV in D
foreach RECV € R1 Ly and SEND € Sz L, do
add an edge from SEND to RECV in D

VoeV, (ves < 3Jue S, ubeE)

(suel suces (S, S")

[LVR] level([start])

[LVN] levels([L2 | L]) suces(La, L)
levels([L1, L2 | L])

(SoL] levels([L1 | L]) L €L

solution (L)

Figure 6: The fixed point computation of levels for a Message-
Graph mg = (V, E). We use Prolog syntax: [H,, Hy | T| de-
notes a list of elements F; (first), H> (second) and 7" (tail).

cording to the rules below:

[ZER] ord([],0)

ord(L, N)

[NUMm] ord([L1 | LLN + 1)




In other words, the last element of L is given number zero, and the
first is given number N — 1, given that L has N elements. This
numbering is consistent with that used in Equation 1. Fig. 4 (a)
shows the sets of levels for the Send-Graph in the echo client of
our running example. Fig. 4 (b) shows the levels for the Receive-
Graph of the echo server.

Correctness.

The essential property that we want to ensure with the idea of
levels is the invariant that only SENDs and RECVs in the same
level can communicate. To prove that our algorithm deliver us this
property, we define the semantics of a toy language that abstracts
message exchange between two processes.

Core Language.

Fig. 7 shows the semantics of a simple language [25], that al-
lows us to define communication protocols between two programs.
These two programs, P; and P» share two integer counters, N
and N2, where N; simulates the input queue of P;. Our language
has five different instructions: send, recv, choose, jump and
halt. A program is a list of such instructions, which is indexed by
an integer, henceforth called pc. The first instruction, send, lets
P; increase the counter N1 _;; hence, simulating the transit of data
from P; to its peer process P1—;. The command recv gives pro-
cess P; the opportunity to read data, which we, concretely, trans-
late to a decrement of N;. We do not simulate “waiting" in our
language: if a process tries to read an empty counter, e.g., N = 0,
then the program is stuck. Given our simple communication model,
the correctness proofs that we present in the rest of this section re-
quire only the existence of one execution in which no process is
stuck. We incorporate control flow in our language via instructions
choose and jump. The former is a non-deterministic branch,
the latter is an unconditional jump. A program terminates once it
reaches instruction halt. When both programs reach this instruc-
tion, we say that the entire application terminates.

Essential Properties.

To prove that only SENDs and RECVs in the same level can ex-
change messages, we introduce the notion of distance, which we
define as follows:

DEFINITION 3.1. Given a Send-Graph (or a Receive-Graph)
mg, a node v has distance d if there exists a path from start to
v passing through d — 1 nodes. The same node might have several
distances.

If mgs is the Send-Graph inferred from a program P, written in
our core language, and s; € mgs is the node that corresponds to
send operation ¢ in P, we shall refer to them as the pair i/s;. The
distance of s; determines how many messages have been sent by
P once i is evaluated. We state this property in Lemma 3.2. There
exists an analogous result for receivers, which we omit, for the sake
of brevity.

LEMMA 3.2. Let mgs be the Send-Graph of program P, such
that i/s; is a pair. If s; has distance d, then there exists an execu-
tion of P in which i is evaluated after d messages are sent.

Proof: The proof is by induction on d.

Base case: then vs = start, which corresponds to the point before
any instruction of P. Because there is no send before the first in-
struction of P, the lemma is vacuously true.

Induction hypothesis : the lemma is true until distance d.
Induction step : If a node s has distance d + 1, then it is preceded
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by a node s’ of distance d, by the definition of distance. If i’ € P
corresponds to s’, by induction it is reached after d messages are
sent. Because instruction ¢ € P, that corresponds to s, is the first
send after ', the lemma is true. [

There exists a very close relationship between levels and dis-
tances. Lemma 3.3 makes this relationship explicit. According to
this lemma, if two nodes belong into the same level, then there exist
paths of same length linking these nodes back to the start vertex. In
other words, the idea of levels group vertices that share common
distances. Notice that the same node can have different distances.
As an example, node C in Fig. 3 (a) has infinite different distances,
as it is part of a loop. Thus, it is possible to have the same node in
different levels.

LEMMA 3.3. Ifv € level(mg,n), then there is a path of dis-
tance n from v to start.

Proof: The proof is by induction on n.

Base case: by the first case of Equation 1, only szart is in level(mg, 0).

The distance of start to start is zero.
Induction hypothesis : the lemma is true until level n.
Induction step : All the nodes in level(mgs,n + 1) are succes-
sors of nodes in level(mgs, n), by the second case of Equation 1,
which, by induction, can be reached after n hops. From the defini-
tion of distance, we conclude that nodes in level(mgs,n + 1) can
be n + 1 hops distant from start. [

The concept of distance is key to prove the correctness of our
method to build distributed graphs, because only nodes with the
same distance can communicate, as we state in Lemma 3.4.

LEMMA 3.4. Given a Send-Graph mgs, a Receive-Graph mgy.,
node s € mgs and node v € mgy, ifis/s and ir/r are pairs, then
ir can receive a message sent by is if, and only if, s and r share a
common distance.

Proof: From Lemma 3.2, we know that the distance of a sender s
corresponds to the number of messages sent before ¢ is executed.
Similar result applies to the pair 4, /7. Necessity: If r and s do not
share a common distance, then any path from starts, the start of
mgs to s will cause the issuing of a number &k of messages that is
different than the number of messages that can be received in any
path from start,, the start of mg, to r.

Sufficiency: If s and r share a common distance d, then there
exists a path (starts,si,...,Sa—1,5) in mgs, and another path
(starty,r1,...,74—1,7) in mg, in which d messages are sent from

senders corresponding to s; to receivers corresponding to r;.
U

As a corollary of Lemma 3.4, we have that two nodes can com-
municate only if they belong into the same level. We state formally
this property in Theorem 3.5.

THEOREM 3.5. Given a Send-Graph mgs and a Receive-Graph
mgr, and pairs is/s, - /r, is can send a message to i, if, and only
if, s and r belong into the same level.

Proof: Sufficiency: From Lemma 3.3, we know that two nodes
at the same level have a common distance, and by Lemma 3.4 we
know that they can communicate.

Necessity: still by Lemma 3.4, if two nodes do not share a common
distance, then they cannot communicate. []

The Computation of Levels Terminates.
Equation 1 gives us an algorithmic way to compute the set of
levels of messages graphs. We can construct a level n from the
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Figure 7: The semantics of our message passing language.
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definition of levels 1...,n — 1. Eventually we will get two levels,
e.g., n and n 4 1 which are the same. In this case, we know that
we will have a cycle of known levels, as we state in Lemma 3.6.

LEMMA 3.6. Iflevels n and n+ k are the same, then the levels
n + 1 and n + k + 1 are the same.

Proof: According to the recurrence relation seen in the second
part of Equation 1, level(k + 1) is totally defined by level(k). [

Lemma 3.6 gives us an interactive way to build levels for a Send-
Graph (or a Receive-Graph) graph: it is enough to solve Equation 1
successively, until we find two levels that are the same. This pro-
cess is guaranteed to terminate, as we prove in Theorem 3.7.

THEOREM 3.7. The iterative construction of levels terminate.

Proof: The number of levels is finite, because a graph with N
nodes might have at most 2N different levels. Thus, successive
applications of Equation 1 will eventually produce two levels that
are the same. From Lemma 3.6, we know that we have found a
cycle, and no new level will be discovered. [

Complexity.

The complexity of our algorithm is the sum of the complexities
of Rules LVN and SOL. The number of levels is upper bounded
by 2N where N is the number of vertices — SEND or RECV —
the messages graph (Send-Graph or Receive-Graph). The compu-
tation of successors, via Rule SUC, in Fig. 6 has an O(N 2) worst
case. Hence, Rule LVN might have an O(2" x N?) worst case.
The pertinence test, performed in Rule SoL is O(2Y) x O(N),
i.e., maximum number of levels multiplied by the time to check if
two levels are the same. Therefore, our algorithm might have expo-
nential complexity. We emphasize that we have not found a graph
that gives us the exponential number of levels, although we can
construct graphs that gives us a quadratlc number For instance,

mg = ({start,b,c,d, e}, {start b, bc cd de estart et}) has
five vertices and yields 16 levels. As we show empirically (Sec-
tion 5.4), our algorithm seems to be polynomial in practice.

4. IMPLEMENTATION DETAILS

SIoT is a template for deriving static analyses tools, which we
have implemented on top of the LLVM compiler [20]. A tool de-
rived from SIoT is composed of two parts: one application inde-
pendent, and other application dependent. Fig. 8 shows this archi-
tecture. The part of SIoT that is application independent is the same
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for any static analysis. We call it the SIoT Core. The second part
contains libraries that a user of SIoT must create to implement a
specific static analysis — we call it the SIoT instance. The bridge
between these two worlds, core and instance, is the Distributed De-
pendence Graph — DDG. SIoT always builds the DDG for a pro-
gram in the same way, independent on how this structure will be
used later. Each instance process this graph in a particular way.

The Architecture of the SloT Core.

SIoT process files written in the LLVM IR. The LLVM IR is a
low-level programming language, formed by three-address instruc-
tions called bytecodes, which manipulate typed operands. Usual
types are integers of several different sizes, floating-point numbers,
program labels, bitvectors and arrays. From a set of files, in this
format, SIoT builds the DDG, through a process that we further di-
vide into two phases: merging and linking. Merging joints several
bytecode files into a single file. During this phase we must resolve
name conflicts, i.e., different files may define the same names. We
solve such conflicts through renaming. In the linking phase we ex-
tract the Send-Graph and Receive-Graph for each program, and,
using the Elevator algorithm, we define the level of each SEND and
RECV and produce the DCFG.

Merging different bytecode files only requires the names of SEND
and RECV functions. Our tool analyzes all the network functions
present in each bytecode file, based on usual libraries of the C lan-
guage. If necessary, the user can modify the setup file to change or
add others network functions. Based on the network functions in-
formation, SIoT adds special tags to the LLVM bytecode files, iden-
tifying SEND and RECV. The annotated bytecodes are then merged
into a single unit to facilitate subsequent analyses.

During the linking stage, Elevator assigns levels to functions
marked as SEND or RECV. This step is described in Section 3.1.
After determining levels, SIoT creates the DCFG (Distributed Con-
trol Flow Graph). From the DCFG, a third pass, DistDepGraph,
builds the DDG. This data structure is then passed to possible in-
stances of SIoT.

Case Study: Buffer Overflow Vulnerabilities.

As a case study, we analyze the dependences between inputs and
memory operations in order to detect potential vulnerabilities to
buffer overflow attacks. We say that an array is vulnerable if it
can be indexed through data that is a function of some untrusted
input. An untrusted input is any function that may interact with
the user or the environment, with the file system, sensors or with



Core

Merging |-

Merge

Program_1..2.bc

Setup: Send/Recvs

Functions Names System.bc

g

\ Linking %

/

DCFG

Send-Graphs II
¥
Receive-Graphs

Instance

DistDepGraph
Du

v
DistVulArrays
DistVulArrays DistVulArrays
Graph Statistics

Figure 8: SIoT Architecture.

the serial port. A malicious user that controls an untrusted input
can try to force out-of-bounds memory accesses. The DDG lets us
track the flow of information throughout the program, giving us a
way to point out vulnerabilities. To detect program vulnerabilities,
we feed the DDG and the input list to DistVulArrays, the LLVM
pass that implements our analysis. This pass searches for paths,
within the DDG, between untrusted inputs and memory access op-
erations. After analyzing a program, DistVulArrays produces the
following outputs: (i) the number of true-positives, and potential
false-positives (if we had analyzed each program of a system inde-
pendently); and (ii) the graph of vulnerable paths in the program.

S. EVALUATION

Array-Bound Checks — ABCs [8] — are an effective technique to
prevent attacks that exploit buffer overflows. However, ABCs have
a cost, in terms of code size, runtime and energy consumption. We
have used the instance of SIoT described in Section 4 to eliminate
these checks from applications taken from the ContikiOS operating
system [14]. In the present section we describe these results. Sec-
tion 5.1 describes a case study: the implementation of udp—-ipv6
that ContikiOS uses. This application lets us illustrate how false
positives can be avoided by our approach. Section 5.2 compares
the number of ABCs eliminated by SIoT versus other approaches.
Section 5.3 discusses the energy budget of the code that SIoT helps
us to produce. Finally, Section 5.4 deals with the cost of the static
analysis that we have implemented in SIoT and the complexity of
the Elevator algorithm.

5.1 Case Study: udp-ipvé

Udp-ipv6® is a public example of application that runs in Con-
tikiOS. It implements a UDP 6LoWPAN’ client and server. In the
UDP Server, (Fig. 9 — left-hand-side), messages are received via
network by function uip_newdata () (line 4), and are used to

6http://github.com/contiki— os/contiki/tree/master/examples/udp-ipv6
7http://tools.ielf.org/html/rfc6282
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index the uip_appdata array. Traditional tools are likely to con-
sider this array vulnerable, in which case they must introduce an
ABC to protect it. Similar approaches would also lead to the in-
sertion of ABCs to protect the arrays accesses of the client module
(line 4 and 5, Fig. 9 — right-hand-side).

On the other hand, once we analyze these two programs as a
single body, we can observe that none of these array accesses are
vulnerable. This observation stems from the fact that messages
prepared by the client have no dependency from any external data
source (Fig. 9 — right-hand-side, lines 10-14). Because such mes-
sages are not tainted at their origin, according to our attack model
(Section 2.3), they are not vulnerable at their destination. Simi-
larly, the messages that the server sends to the client do not depend
on any input data (Fig. 9 — left-hand-side, lines 8-11). Thus, it is
not necessary to insert ABCs on the client side. In other words,
any alarm triggered by a traditional static analysis would be a false
positive in this example.

5.2 On the Number of ABCs that we insert

The holistic program view that SIoT gives to a static analysis lets
it consider network channels as links between modules instead of
input operations. Therefore, all the ABCs that depend exclusively
on the network and do not reach user inputs can be eliminated. The
end result of this extra precision is more efficient executable code.
To validate this claim, we have used SIoT to improve the code that
AddressSanitizer (ASan) [35] generates. To give the reader some
perspective on our results, we compare SIoT to a hypothetical tra-
ditional tainted flow analysis, i.e., a technique that treats distributed
system separate programs, and not as a single entity. Henceforth,
we refer to this technique as Baseline.

We perform the experiments into 6 pairs of ContikiOS applica-
tions (Table 1). Each pair consists on a client and a server. For
each of these pairs, we compare the number of ABCs that ASan
inserts without any optimization against the number of ABCs that
the Baseline and the SloT-based approaches insert. Table 1 com-
pares performance of ASan, TFA and SIoT using the number of
ABCs necessaries in each approach. This table shows that ASan
introduces between 3,736 ABCs (udp-ipv6 client/server) and 7,453
ABCs (ping6 / new-ipv6). This number is less than the total number
of memory accesses because LLVM, the compiler on top of which
ASan exists, already eliminates some redundant guards as a result
of classic code optimization.

The Baseline approach reduces ASan’s numbers substantially,
because in this case we are eliminating every guard that is not in-
fluenced by data coming from an external function. In this case, the
number of ABCs varies between 170 (ipv6-rpl-udp client/server)
and 214 (rest-server/coap-client). SloT can further reduce this
number one order of magnitude more. In this case, contrary to what
is done by the Baseline approach, network functions are no longer
marked as dangerous, unless they read data that comes from gen-
uine inputs. Notice that both, the Baseline and the SIoT approaches
are a form of tainted flow analysis, as we explain in Section 6. We
conclude from these experiments that the automatic inference of
links between distributed programs improves the precision of static
analyses tools in non-trivial ways.

5.3 On Energy Saving

Each ABC that we eliminate represents a small saving in terms
of energy consumption. To back up this observation with actual
data, we performed an experiment with 6 ContikiOS applications.
We have modified the client side of each one of these applications
to initiate execution, send 6,000 messages within an interval of one
minute, and then stop. We tested three versions of each applica-



static void tcpip_handler (void) {

static void tcpip_handler (void) {

1 1
2 static int seqg_id; 2 char =*str;
3 char buf[MAX PAYLOAD_LEN]; 3 if (uip_newdata()) {
4 if (uip_newdata()) { 4 str = uip_appdata;
5 ((char x)uip_appdata) [uip_datalen()] = 0; 5 str[uip_datalen()] = ’"\0’;
6 PRINTF ("Server received: ’%s’ from ", 6 printf ("Response from the server: ’%s’\n",
(char x)uip_appdata); hilightstr);
7 - 7 }
8 uip_ipaddr_copy (&server_conn->ripaddr, 8}
&UIP_IP_BUF->srcipaddr) ; 9 static void timeout_handler (void) {
9 PRINTF ("Responding with message: "); 10 static int seq_id;
10 sprintf (buf, "Hello from the server! (sd) ", 11 printf ("Client sending to: ");
++seq_id); 12 PRINT6ADDR (&client_conn->ripaddr) ;
11 PRINTF ("%$s\n", buf); 13 sprintf (buf, "Hello %d from the client", ++seq id);
12 uip_udp_packet_send(server_conn, buf, 14 printf (" (msg: %s)\n", buf);
strlen (buf)); 15 uip_udp_packet_send(client_conn, buf,
13 UIP_APPDATA SIZE);
14 } 16
15} 17}
Figure 9: ContikiOS udp-ipv6 server (left-hand-side) and client (right-hand-side) code snippets.
Table 1: ABCs inserted by ASan, Baseline, and SIoT as function of applications characteristics.
Applications Arrays  Memory Accesses ABCs inserted % ABCs Reduction
ASan Baseline SIoT SloT vs ASan SloT vs Baseline
netdb client/server 6,181 22,819 4,641 172 16 99.66% 90.70%
ping6 / new-ipvo 4,683 16,871 7,453 166 14 99.81% 91.57%
ipv6-rpl-collect udp-sender / sink 4,786 17,301 3,831 168 14 99.63% 91.67%
ipv6-rpl-udp client/server 4,760 17,162 3,787 170 14 99.63% 91.76%
udp-ipv6 client/server 4,701 16,945 3,736 212 14 99.63% 93.40%
coap-client / rest-server 5,195 18,693 4,032 214 14 99.65% 93.46%

tion: (i) without ABCs; (ii) with the ABCs inserted by the Baseline;
and (iii) with the ABCs inserted by SIoT. To carry on this experi-
ment, we have installed the applications in IRIS XM2110 sensors®
and have measured the amount of energy that they consume. Each
application was executed 10 times. This number of repetitions is
enough to give us a confidence interval of 95% in every sample.

To determine the amount of energy consumed, we rely on a sim-
ple, yet robust methodology, which we adapted from the work of
Singh et al [36]. The main difference between our approach and
Singh et al.’s is in terms of electronics: we probe small sensors;
they work on Intel’s Atom board. We use a DAQ’ (NI USB-6009)
power meter to measure the instantaneous current between the load
and the ground ports (Fig. 10). We then send the signal to a soft-
ware that runs on a separate PC. Since the tension in the embedded
system is constant, this software is able to calculate the instanta-
neous power and, by integrating it, the total amount of energy that
the program consumes.

We manipulate this data using a signal processing software of
our own craft. This tool filters the electric signal, identifies the
time when execution starts and ends, and calculates the energy con-
sumed by the application with a given confidence interval. Our tool
is able to discriminate multiple executions of the same application
by sending signals to the sensor that we are sampling. These signals
markthe moment when each execution starts and finishes.

Our results (Table 2 and Fig. 11) show that SIoT outperforms
Baseline for all applications. The SIoT’s savings range from 2.14%
(ping) to 31.58% (ipv6-rpl-collect udp-sender). On average SIoT
is 18% more energy efficient than Baseline. The amount of energy
consumed is proportional to ABCs inserted that are executed.

8 http://www.memsic.com/wireless- sensor-networks/
9http://en.wikipeclia.org/wiki/DateLacquisition

Figure 10: Energy Measurement Setup.

5.4 On Asymptotic Complexity

To estimate the asymptotic complexity of the algorithm that we
propose in Section 3, i.e., the “Elevator", we have run it on hun-
dreds of C programs that we have generated randomly. We generate
these programs by successive applications of three rewriting rules.
These rules work on program points. Each program point contains
either a SEND or a RECV function. Our rewriting rules may trans-
form a program point into: (i) a sequence of two program points;
(i1) an “if-then-else" with a point in the “then" path and a point in
the “else" path; (iii) a “while" loop with one program point in its
body. We always generate two programs in tandem, a client and a
server, in such a way that there exists a valid path linking SENDs
and RECVs. The randomized pieces of code with RECVs come in
nests of “while" and “if-then-else" blocks. We can produce pro-
grams arbitrarily large by varying the number of program points.
Therefore, the worst case was approximated.

We run the Elevator 10 times on each synthetic program, report-
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Table 2: Energy consumption for the unprotected (Plain) and protected (SIoT and Baseline) versions of applications. CI: Confidence

Interval.
Application Plain SloT Baseline
pp Energy J) CI  Energy(J) CI  EnergyJ) CI
netdb client 1.941 0.025 2452 0.014 2486 0.011
ping6 0.109  0.001 0.111  0.001 0.151 0.002
ipv6-rpl-collect udp-sender 2277 0.043 2.286 0.043 2996 0.029
ipv6-rpl-udp udp-client 3.062 0.029 3.076 0.016 3.127  0.005
udp-ipv6 client 3842 0.019 3.860 0.011 3.958 0.029
coap-client / rest-server 4.856  0.020 4.861 0.037 5.034  0.041

Figure 11: SIoT vs Baseline — energy overhead.
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Figure 12: Elevator — Runtime as a function of program size.

ing the average of these samples. From these points, i.e., size versus
runtime, we produced the chart in (Fig. 12). This figure suggests
that our algorithm has cubic complexity, as its coefficient of cu-
bic regression, given a universe of 160 samples, is 0.9955; hence,
too close of 1.0. Thus, even though we have determined an expo-
nential upper bound to the asymptotic complexity of our algorithm
(Section 3.2), in practice it has polynomial behavior, at least for
programs with around 200 pairs of sends and receives. We have
not found a single benchmark among the actual applications that
we have analyzed with more than 20 such pairs.

These complexity results are directly related to the numbers that
we have observed when analyzing actual programs. Thus, the tech-
niques that we describe in this paper are feasible in practice. Table 3
shows that SIoT’s static analysis took, on average, 66 seconds at
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compile time '° and used 170 MB'! when applied onto our bench-
marks. Once again, note that these time and memory are used in
compile time and in turn they do not degrade the code performance
once deployed. Each of these applications has more than 45,000 in-
structions, including code in the client and server side. On average,
our DDGs had approximately 75,000 nodes and 110,000 edges.

6. RELATED WORK

Code Analyses of Sensor Networks. The instance of SIoT de-
scribed in Section 4 detects memory accesses that are vulnerable to
buffer overflow attacks. The literature has a good number of solu-
tions to perform such detections in standalone programs. They are
software-based (e.g. [10,16,35]), hardware-based (e.g. [12,22]), or
hybrid (e.g. [23]). Our work differs from these existing solutions
in that we target distributed applications. In other words, none of
these works is concerned about drawing information from the net-
work’s communication structure.

This paper uses distributed control flow graph as a way to im-
prove the precision of taint analysis that tracks buffer overflow vul-
nerabilities. Taint analysis is not new. For an overview of the field,
see Schwartz et al. [34]. There are many tools and frameworks
to perform taint analyses in actual programs, including distributed
systems such as web applications [38]. However, they all model the
distributed programs in a system as individual entities, and assume
that data coming from the network may be malicious. This is also
the case of state-of-the-art tools such as TAJ [38] and F4F [37].

Cooprider et al. propose a memory safety solution for sensor
nodes named Safe TinyOS [9]. It handles array and pointer errors
before they can corrupt the RAM. Safe TinyOS is light enough to
be embedded in sensor nodes. However it also sees each program
of a distributed system individually, and the user needs to insert
annotations in the code.

There are also proposals for limited networks that analyze codes
of distributed systems based on test generation. Among these, we
highlight Kleenet [33] and T-Check [21]. These tools generates
tests based on symbolic execution (Kleenet) or model checking (T-
check) to find software defects. Their goal is to explore automati-
cally most of the execution paths within programs. If an assertion
fails, then the tool registers the test case for repeatability. But in
these solutions, the developer needs to add annotations to the code.
This step is manual, and requires knowledge of the application
logic. Moreover, the solution’s complexity depends on symbolic
inputs, assertions and the number of nodes. The authors of Kleenet,
for example, report that even with relatively small-sized symbolic
inputs and few nodes, some applications have thousands of execu-
tion paths. SIoT is complementary to Kleenet and T-Check, and
we consider our link inference engine could be used to improve the
accuracy of those tools.

%We conducted experiments on a laptop Intel Core i7 2.2GHz.
""Memory measurements have been obtained through Valgrind [24].



Table 3: Time and memory spent in SIoT’s static analysis as a function of application characteristics.

Application Instructions DDG Nodes DDG Edges Time (s) Memory (MB)
netdb client/server 57.877 95,656 139,763 66.24 210.03
ping / new-ipv6 47,422 75,899 113,900 63.58 167.36
ipv6-rpl-collect udp-sender/sink 48,800 78,365 117,416 80.08 173.37
ipv6-rpl-udp client/server 48,226 77,128 115,770 66.31 169.90
udp-ipv6 client/server 48,800 78,365 117,416 80.08 167.39
coap-client / rest-server 51,258 82,647 123,879 54.36 179.68

Inference of communication links. The inference of commu-
nication links between different modules of a distributed system is
not a new problem, and there are solutions in literature. However,
previous approaches were either too costly or semi-automatic. For
instance, Pascual and Hascoét [28] have defined a system of an-
notations which the user can employ to point out to the compiler
implicit communication channels in a distributed system. This ap-
proach, although efficient and precise — as long as the user correctly
understand the application — has the main disadvantage of burden-
ing programmers with a task that, in our understanding, should be
solved by the compiler. In the rest of this section we describe only
automatic approaches to tackle with the inference of communica-
tion links problem.

Among the fully automatic solutions, the work that is the closest
to ours is Bronevetsky’s analysis, which finds a matching between
sends and receives in an MPI program [6]. His analysis is more
precise than ours, for it takes the semantics of MPI into consider-
ation. It executes the program symbolically, separating processes
by their IDs. This precision has a cost: the channel inference may
take too long to converge, as loops, for instance, may lead to the
generation of many different symbolic sets. As a consequence of
this cost, Bronevestsky’s analysis has not, thus far, being applied
on large code bases. Our technique, on the other hand, trades pre-
cision for speed. Hence, as we have demonstrated in Section 5.4,
our asymptotic complexity in practice is cubic on the number of
sends and receives present in the target system.

Pellegrini, in his PhD dissertation [29], has expanded Bronevest-
sky’s ideas to deal with features of MPI programs that the latter
could not handle. He relies on the polyhedron model [15] to di-
vide processes into matching sets, again relying on the process ID
as a symbol with semantic value within the programming language.
Pellegrini evaluates his technique on a suite of small MPI programs.
We believe that his technique is even more precise than Bronevest-
sky’s; however, we speculate that similar to it, Pellegrini’s analysis
may not scale up to very large code bases. The difficulty is the
same: the more processes we may have, and the more complicated
is the program’s CFG, the higher the number of matches that are
possible. Instead of precise results, we provide an approximation
of the possible communication links in a distributed program. Our
results may present more false positives than Bronevestsky’s or Pel-
legrini’s approaches, but we run faster. Additionally, contrary to
these works, we bring forth formal proofs that our algorithm termi-
nates, and we describe an empirical study of its complexity.

In addition to static analyses such as Bronevestsky’s and Pelle-
grini’s, the literature also contains works that infer communication
links between programs by studying the traces of instructions that
these programs produce during execution [7,31,39]. We call such
approaches dynamic post-mortem analyses.The main advantage of
these approaches is precision: they never produce false positives,
as every link inferred over execution traces represents an actual ex-
change of messages. On the other hand, post-mortem methods have
a number of disadvantages. In particular, they are unsound, given
that they may not point out every implicit communication link in
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a distributed system. In other words, their precision depends on
the inputs that are used to test a program, and these inputs may not
cover every possible path within the program’s CFG. A second dis-
advantage is their computational cost: programs can generate very
large traces, which are difficult to store and process.

7. CONCLUSION

This paper has presented SIoT, a framework to Secure the inter-
net of Things. SIoT provides typical static analyses with a holistic
view of a distributed system. This view improves the precision of
such analyses. To validate this claim, we have used SIoT to instan-
tiate a version of tainted flow analysis that points out which mem-
ory accesses need to be guarded against buffer overflow attacks.
Our experiments have demonstrated that our approach is effective
and useful to make programs running over a network safer.

As future work, we plan to use SIoT to enable other kinds of
program analyses. In particular, we are interested in using it to
secure programs against errors caused by integer overflows. We
also want to use SIoT to enable compiler optimizations. As an
example, if we go back to Figure 2, we see that the conditional test
at line 2 of our server is unnecessary. Such an observation requires
SIoT’s global view of a distributed system.
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