
PROGRAMMING LANGUAGES LABORATORY

Universidade Federal de Minas Gerais ‐  Department of Computer Science 

VALIDATION OF MEMORY ACCESSES
THROUGH SYMBOLIC ANALYSES

Henrique Nazare 
Izabela Maffra 
Willer Santos 
Leonardo Oliveira 
Fernando Quintão 
Laure Gonnord 

The Goal of this Work 

Our goal is to prove that some 
memory accesses are safe. 

int main() {

 int v[10];

 v[0] = 0;

 return v[20];

}

Keywords: 

•  Safety 
•  Performance 

✓ 
✗ 

The ContribuNons of This Work 

•  We have designed and implemented a technique to 
prove that some memory accesses are always safe. 
–  Thus, they do not need to be guarded. 
–  Abstract interpretaNon. 

•  Implemented in LLVM and tested in AddressSaniNzer. 
–  Eliminate 50% of the guards. 
–  SPEC CPU 2006 17% faster. 

•  More effecNve than previous work. 

Our Key Insight 

•  Symbolic analyses. 
–  Symbolic range analysis (R). 

–  Symbolic region analysis (W). 

int main(int argc, char** a) {

 char* p = malloc(argc);

 int i = 0;

 while (i < argc) {

 p[i] = 0;

 i++;

 }

 return 0;

}

W(p) = [0, argc – 1]. 

R(i) = [0, argc – 1] 

R(i) fits within W(p). Therefore, p[i] is always safe! 

The Importance of Securing Memory 

•  "Unsafety" has one advantage: efficiency. 

•  But it makes room for bugs that are hard to find. 

•  Buffer overflow aiacks are possible because arrays are 
not guarded against out‐of‐bounds accesses. 

All these worms that 
plague the internet have 
much to thank that C/C++ 
allow for unsafe programs. 

SaniNzing Memory Accesses in C 

•  There are tools that saniNze memory accesses in C 
–  SAFE Code 
–  Solbounds 
–  AddressSaniNzer 
–  etc...  

•  These tools use different 
techniques 

•  But they all add an overhead 
on the programs that they 
secure. 

We want to
reduce this
overhead!

Example: AddressSaniNzer 

•  Shadow every memory allocated. 
–  For each byte, we have a bit that 
says if that byte is allocated or not. 

•  Guard every array access. 
–  For every array access, check if its 
shadow bit is valid. 

•  This approach slows down SPEC CPU 
2006 by around 25% 

We want
 to

remove t
hese

guards

We will do it
through static

analyses

Important: the techniques that we shall talk about work with tools 
other than AddressSaniNzer, and languages other than C/C++ 

The GreenArrays Framework 

•  GreenArrays is a suite of staNc analyses that we use to 
prove that some memory accesses are safe: 

Symbolic Range 
Analysis: 
finds the lower and 
upper values that 
variables can assume 

Symbolic Region 
Analysis: 
finds the lower 
and upper values 
that a pointer can 
address 

Integer Overflow 
Analysis: 
It lets us assume 
that "a < a + 1", for 
instance. 

What are the
necessary

assumptions to
ensure that p[i] is
a safe memory

access?

Overview 

1. int main(int argc, char** argv) {

2. int size = argc + 1;

3. char* buf = malloc(size);

4. unsigned index = 0;

5. scanf("%u", &index);

6. if (index < argc) {

7. buf[index] = 0;

8. }

9. return index;

10. }

Any addr
ess

from buf
 + 0

to buf +
 argc

is safe!

Inside the
branch index is
at least 0 and
at most argc-1

We know that
"argc – 1" is
less than argc

As long as

we do not

have integer

overflows!

Overview Overview 

Any addr
ess

from buf
 + 0

to buf +
 argc

is safe!

We know that
"argc – 1" is
less than argc

As long as

we do not

have integer

overflows!

Symbolic Range Analysis: 
finds the lower and upper 
values that variables can 
assume 

Symbolic Region Analysis: 
finds the lower and upper 
values that a pointer can 
address 

Integer Overflow 
Analysis: 
Which arithmeNc 
operaNons can 
overflow? 

Inside the
branch index is
at least 0 and
at most argc-1

Abstract InterpretaNon of Programs 

•  We will be solving symbolic (range / region) analysis by 
abstract interpretaNon. 

v0 = alloca(10)

i0 = 0

v1 = alloca(2)

i1 = 1

v2 = !(v0, v1)

i2 = !(i0, i1)

v3 = v2 + i2

*v3 = 0

–  Assign an abstract state 
to each variable in the 
program. 

–  Iterate the abstract 
interpreter unNl we reach 
a fixed point. 

–  Apply widening to ensure 
terminaNon. 

–  Use narrowing to recover 
precision. 

What is the
region and the
range of each

of these
variables?

Symbolic Range Analysis 

•  Symbolic range analysis associates a symbolic range, e.g., 
[l, u] with each integer variable in a program. 

R(i0) = [argc – 1, argc – 1]

R(i1) = [1, 1]

R(i2) = [min(1, argc – 1), max(1, argc – 1)]

v0 = alloca(argc)

i0 = argc - 1

v4 = v0 + i0

*v4 = 0

v1 = alloca(2)

i1 = 1

v2 = !(v0, v1)

i2 = !(i0, i1)

v3 = v2 + i2

*v3 = 0

Symbolic Region Analysis 

•  Symbolic Region Analysis associates each pointer p with 
the range of valid offsets that can use that p as base. 

v1 = alloc(n) v1

v2 = v1 + 1

W(v1) = [0, n ! 1]

v2 W(v2) = [!1, n ! 2]

v3 = v1 + n v2 W(v3) = [!n, !1]

n

Symbolic Region Analysis 

•  Symbolic Region Analysis associates each pointer p with 
the range of valid offsets that can use that p as base. 

W(v0) = [0, argc – 1]

W(v1) = [0, 1]

W(v2) = [0, min(1, argc – 1)]

v0 = alloca(argc)

i0 = argc - 1

v4 = v0 + i0

*v4 = 0

v1 = alloca(2)

i1 = 1

v2 = !(v0, v1)

i2 = !(i0, i1)

v3 = v2 + i2

*v3 = 0

W(v4) = W(v0) – R(i0) = [–argc + 1, 0]

W(v3) = W(v2) – R(i2) =
 [0, min(1, argc – 1) – max(1, argc – 1)]

Proving Safety 

•  Theorem: If 0 ∈ W(p), then *p is a safe memory access. 

v0 = alloca(argc)

i0 = argc - 1

v4 = v0 + i0

*v4 = 0

v1 = alloca(2)

i1 = 1

v2 = !(v0, v1)

i2 = !(i0, i1)

v3 = v2 + i2

*v3 = 0

This access is not safe (if argc == 0): 
W(v4) = W(v0) – R(i0) = [–argc + 1, 0]

This access is not safe, because its upper 
bound can be negaNve: 
W(v3) = W(v2) – R(i2) =
 [0, min(1, argc – 1) – max(1, argc – 1)]

•  Sparse analysis: each variable name carries only one 
piece of abstract informaNon. Fast implementaNon! 

•  To improve precision, we do live range spli=ng. 

i0 = argc - 1

(i0 < 10)?

i1 = i0 ! ["#, 9]

v1 = v0 + i1

*v1 = 0

i2 = i0 ! [10, +#]

v2 = v0 + i2

*v2 = 0

i0 = argc - 1

(i0 < 10)?

v1 = v0 + i0

*v1 = 0

v2 = v0 + i0

*v2 = 0

R(i1) = [argc – 1, max(9, argc – 1)] R(i2) = [min(10, argc – 1), argc – 1]

"Hay que mejorar la precisión, pero sin 
perder la speed jamás" 

Wrapping ArithmeNcs 

Is this
program

always ok?

int main(int argc, char** argv) {

 int index = argc + 1;

 int size = index * index;

 char* buf = malloc(size);

 return buf[index];

}

The Problem of Integer Overflows 

int main(int argc, char** argv) {

 int index = argc + 1;

 int size = index * index;

 char* buf = malloc(size);

 return buf[index];

}

index *
index

may wra
p

around.

Do you know
what malloc
will return?

Because we manipulate symbols, 
"argc + 1 < (argc + 1) * (argc + 1)" 
only in the absence of integer 
overflows 

Guarding Against Integer Overflows 

•  We find every arithmeNc operaNon that may influence 
memory alloca>on or memory indexing. 

•  We instrument the slice of instrucNons that influence 
memory to detect the occurrence of overflows. 

We find them

via program

slicing

int main(int argc, char** argv) {

 int index = argc + 1;

 int size = index * index;

 char* buf = malloc(size);

 return buf[index];

}

Pusng it all Together: GreenArrays 

I will not talk about the op,onal tainted flow analysis, 
but you can learn more about it in the paper. 

A Bit of PerspecNve 

•  Non‐RelaNonal Analyses: 
–  They associate variables with 

informaNon that do not depend 
on other variables. Examples: the 
usual data flow analyses. 

•  Semi‐RelaNonal analyses: 
–  They associate variables with 

informaNon that may contain 
other variable names. Examples: 
pentagons, symbolic range 
analysis, symbolic region 
analysis. 

•  RelaNonal analyses: 
–  They associate sets of variables 

with informaNon. Examples: 
octagons and polyhedrons. 

Chapter 9 

Precision 

Sp
ee
d 

Universidade Federal de Minas Gerais – Department of Computer Science – Programming Languages Laboratory 

EXPERIMENTS 

The Setup 

•  Implementa>on: LLVM + AddressSaniNzer 
•  Benchmarks: SPEC CPU 2006 + LLVM test suite 

•  Machine: Intel(R) Xeon(R) 2.00GHz,with 15,360KB of 
cache and 16GB or RAM 

•  Baseline: Pentagons 

–  Abstract interpretaNon 
that combines "less‐than" 
and "integer ranges".† 

†: Pentagons: A weakly relaNonal abstract domain for the efficient validaNon of array accesses, 
2010, Science of Computer Programming 

int i = 0;

unsigned j = read();

if (...)

 i = 9;

if (j < i)

 ...

P(j) = (less than {i}, [0, 8])

Percentage of Bound Checks Removed 

!"#

$%"#

%!"#

&%"#

'(
(#

)*
+*
,(
-.
/#

01
2+-
1,
(3
#

'4
-.
/#

4.
,1
50
0#

3$
67
21
8#

3.
.
12
#

9:
1,
'#

-;
<0
$#

*9
5*
2#

+<-
=>
*,
5>
.
#

.
(8
#

?@
12
*'
1#

A1,5*'4,# B211,?22*C9#

The higher, the beier. 
Pentagons: 27%. 
GreenArrays: 43% 

RunNme Improvement 

!"#$

!"%$

!"&$

'$

()
)$

*+
,+
-)
./
0$

12
3,.
2-
)4
$

(5
./
0$

5/
-2
61
1$

47
%#
32
8$

4/
/
23
$

9:
2-
($

.;
<1
7$

+9
6+
3$

,<.
=$

/
)8
$

>?
23
+(
2$

@2-6+(5-9$ A322->33+B9$ C-9+82$

The lower the bar, the faster. Time is normalized to AddressSaniNzer 
without bound‐check eliminaNon. Average speedup: Pentagons = 9%. 
GreenArrays = 16%. 

AsymptoNc Complexity 

!"!#$

!"#$

#$

#!$

!$ #!$ %!$ &!$ '!$ (!$)!$

*+,,-.++/01$ 2/-3,$.-/40151$ 6,-7/38-1$

RunNmes: 
GreenArrays: 262.6 sec 
Range Analysis: 66.9 sec 
Pentagons: 91.9 sec 

gcc, 1,046,180 instrucNons 

enc‐3des, 3,999 instrucNons 

Final Thoughts 

•  We have presented two new staNc analyses that we can 
use to prove that memory accesses are safe. 

•  And they have many uses! Take a look: 

All the code is publicly available at: 
hips://code.google.com/p/ecosoc/ 
Get in touch: fernando@dcc.ufmg.br 

