/ Universidade Federal de Minas Gerais - Department of Computer Science

VALIDATION OF MEMORY ACCESSES
THROUGH SYMBOLIC ANALYSES

Henrique Nazare
lzabela Maffra
Willer Santos
Leonardo Oliveira

Fernando Quintao
Laure Gonnord U F m G

Y SOV)
HSP ASH £ £ (({> .:“

111 (02014 SR

PU
uuuuuuu

The Goal of this Work

Our goal is to prove that some
memory accesses are safe.

int main() {

int v[10];

v[0] = 0;\/

return v[20]; X
}

Keywords: S AEE IY

e Safety
THE SAFE WAY IS
 Performance THE BEST WAY

L\

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO

The Contributions of This Work

 We have designed and implemented a technique to
prove that some memory accesses are always safe.

— Thus, they do not need to be guarded.
— Abstract interpretation.

* Implemented in LLVM and tested in AddressSanitizer.
— Eliminate 50% of the guards.
— SPEC CPU 2006 17% faster.

* More effective than previous work.

PROGRAMA DE POS-GRADUAGAO
M CIE

Our Key Insight
N 1/
\

~ > 4
* Symbolic analyses. AR/
— Symbolic range analysis (R). /XS \
— Symbolic region analysis (W).

int main(int argc, char** a) {_ ____ W(p) =[0, argc —1].
char* p = malloc(argc);<« -~ -7
int 1 = 0;
while (i < argc) {

p[i] = 0; “--__

i++; T Tmeooe-TT TS ~
} R(i) =[0, argc —-1]
return 0;

}

R(i) fits within W(p). Therefore, p[i] is always safe!

PROGRAMA DE POS-GRADUAGAO

The Importance of Securing Memory

 "Unsafety" has one advantage: efficiency.
e But it makes room for bugs that are hard to find.

* Buffer overflow attacks are possible because arrays are
not guarded against out-of-bounds accesses.

All these worms that
plague the internet have
much to thank that C/C++
allow for unsafe programs.

DCC-UFMG

Sanitizing Memory Accesses in C

* There are tools that sanitize memory accesses in C

— SAFE Code
— Softbounds
— AddressSanitizer
— etc... We want to
* These tools use different reduce this
overhead!

techniques

* But they all add an overhead
on the programs that they
secure.

EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Example: AddressSanitizer

 Shadow every memory allocated.

We want 0
— For each byte, we have a bit that omove these
says if that byte is allocated or not. f guards

 Guard every array access. «-____---"

— For every array access, check if its

shadow bit is valid. We will do j

* This approach slows down SPEC CPU through static
2006 by around 25% analyses

Important: the techniques that we shall talk about work with tools
other than AddressSanitizer, and languages other than C/C++

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DcC-

The GreenArrays Framework

* GreenArrays is a suite of static analyses that we use to
prove that some memory accesses are safe:

Symbolic Range
Analysis:

finds the lower and
upper values that
variables can assume

Integer Overflow
Analysis:

It lets us assume
that "a<a+ 1", for
instance.

What are the
necessary
assumptions to

ensure that pli] is

a safe memory

access?

Symbolic Region
Analysis:

finds the lower
and upper values
that a pointer can
address

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Overview

: C . dress
int main(int argc, char** argv) { AnY Gd 0
om buf *
int size = argc + 1; fr C
' - puf + ardc
PR 0
char* buf = malloc(size)ﬁ \\\ ; 7;/Safe!
N /7
unsigned index = 0; ST
scanf ("%u", &index); !
if (index < argc) { -7 b I"Spl,de the
<——N\ // ral’lC ind H
buf[index] = 0; ~—~ ihaex is

) (\
return index; \\/

We know that

at least 0 and
at most argc-1

As long GS

" EI - "o we do NO*
” L $ have integer

less than argc

overflows!

DCC-UFMG

Overview

Symbolic Range Analysis: - - --- ~. o address
finds the lower and upper Y T fr:\'ﬂ puf + 0
values that variables can v ro buf * argc
assume Lo s safe!

-1
Symbolic Region Analysis: --~~ |
finds the lower and upper _? Inside th L

. e

Zzléjreesszhat a pointer can branch index js

~
~

Analysis: A as
Which arithmetic | We know that As lon3

" - "o e do NO*
operations can arge - 17 1Is ﬂv\:ave integer

ess than
overflow? less than argc " serflows!

_____ at least 0 and
o R F\\df most argc-]
Integer Overflow s T~

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO

Abstract Interpretation of Programs

* We will be solving symbolic (range / region) analysis by

abstract interpretation.

— Assign an abstract state
to each variable in the
program.

— |terate the abstract

interpreter until we reach
a fixed point.

— Apply widening to ensure
termination.

— Use narrowing to recover
precision.

vo = alloca(10)
10=20

v2 = ¢(vo, V1)
12 = ¢(lo, 11)
Vi=Vy + 12

*v3 =10

v1 = alloca(2)

=1

What is the
region and the
range of each

of these
variables?

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Symbolic Range Analysis

* Symbolic range analysis associates a symbolic range, e.g.,
[¢, «] with each integer variable in a program.

vo = alloca(argc) emTTTTTT >R(1y) = [argce — 1, arge — 1]
ip=argc-1___ _._—””

v4=vo+1g

*va=0 \

l

RG) =1, 1]

v2 = ¢(vo, V1)

12 = ¢(lo, il)\
\

*v3 =10

Vi=vatiy N

-
————— e —

v

o

"= => R(i,) = [min(1, argc — 1), max(1, argc — 1)]

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Symbolic Region Analysis

* Symbolic Region Analysis associates each pointer p with
the range of valid offsets that can use that p as base.

vi=alloc(n) V] —> W) =[0,n—1]

v=v+1 V2 W) =[-1,n—-2]

Vi=vitn V2 W(v3) =[—n, —1]

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Symbolic Region Analysis

* Symbolic Region Analysis associates each pointer p with
the range of valid offsets that can use that p as base.

1o =argc - 1

*va =10

V4=votilyg = = =

vo = alloca(arge) —{- - -

RN

_____________ > W(vy) =[0, argc — 1]

------- > W(v,) = W(vo) - R(ig) = [-arge + 1, 0]

l

v2 = ¢(vo, V1) = |

12 = ¢(lo, 11)

*v3 =10

vi =alloca2) -|- -7~ -7 W(vy) =0, 1]

=1

Vi=Vvytly == ==

______________ > W(v,) = [0, min(1, argc — 1)]

> W(v3) = W(vy) —R(,) =
[0, min(1, argc — 1) —max(1, argc — 1)]

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Proving Safety

* Theorem: If 0 € W(p), then *p is a safe memory access.

vo = alloca(argc) _ - This access is not safe (if argc == 0):
1o =argc - 1 - -7 W(V4) — W(VO) — R(io) - [_argc + 19 O]
V4 = Vo t 1o e -
*V4=0—-—"’/\
v1 = alloca(2)
l
V2 = ¢(Vo, V1)
i» = ¢(io, i1) __» This access is not safe, because its upper
_ 2 bound can be negative:
Vi=V2t+1p /’ . cN
. W(v3) = W(v,) —-R(1,) =
*vi=0 ——-=-|"

[0, min(1, argc — 1) —max(1, argc — 1)]

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

"Hay que mejorar la precision, pero sin
perder |la speed jamas"”

e Sparse analysis: each variable name carries only one
piece of abstract information. Fast implementation!

* To improve precision, we do live range splitting.

1o = argc - 1 1p=argc - 1

(io < 10)? /,....—-—> (io < 10)?
V1= Vo + 1o Vo) =V + 1 11 =10 N [—o0, 9] 7i2=ioﬂ[10,-|‘00]

A e
*vi=0 *vo =0 ,’ VI =vVo+1] 27 V) =Vo Tt 12
/ 1
// *vi=0 e *v2=0
’, ’

/

-
/——————_—__————’

7
s /

R(1,) = [argc — 1, max(9, argc — 1)] R(iz)/z [min(10, argc — 1), argc — 1]

uuuuuuu

Wrapping Arithmetics

int main(int argc, char** argv) {

int index = argc + 1;

int size = index * index;
char* buf = malloc(size);

return buf[index];

Is this
program
always ok?

CIENCIA DA COMP!
DCC-UFMG

The Problem of Integer Overflows

int main(int argc, char** argv) {

int index = argc + 1; index * jndex

: : : : ra

int size = index * index; may wroP
around-

char* buf = malloc(size);

return buf[index];

} Do you know
what malloc

will return?
Because we manipulate symbols,

"argc+ 1< (argc+ 1) * (argc + 1)"
only in the absence of integer
overflows

PROGRAMA DE POS-GRADUAGAO

Guarding Against Integer Overflows

 We find every arithmetic operation that may influence
memory allocation or memory indexing.
\ \

\ \
\ |
\ |
\
. . . I
int main(int argc,\\char** argv), {
\ I

int index = argc +, 1; , We find them
' ' \) / . ogram
int size = index * 'Index; / via Pt

¥ / slicing

char* buf = malloc(size);)/

-~
-

return buf[index];«--~

* We instrument the slice of instructions that influence
memory to detect the occurrence of overflows.

Putting it all Together: GreenArrays

Original program
Efficient, but unsafe

AddressSanitizer

Instrumented program
Safe, but inefficient

if (inBounds(i, v))
int x = v[i];
else error();

If/>=0,and u <n,
then remove guard

Optimized program
afe and efficient

Integer Overflow Analysis

[nstrument the program to
prevent integer overflows
from compromising the

Tainted Flow Analysis

\Check if the index can be
controlled by an adversary.
If this is not possible,

correctness of our analyses 1L—3 avoid inserting the guard
Region Analysis Symbolic Range Analysis
Find A(v) = n, the lower Find R(i) = [/, u], the lower and
bound of the possible sizes the upper symbolic bounds of
of the memory region array index 1. Symbols are given
allocated to array v. <f——1 interms of unknown inputs.
=)

| will not talk about the optional tainted flow analysis,
but you can learn more about it in the paper.

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO

A Bit of Perspective Chapter 9
Compilers

Prisciples, Tochnigues, & Tooks

Non-Relational Analyses: A

— They associate variables with
information that do not depend
on other variables. Examples: the

usual data flow analyses. ! E
Semi-Relational analyses:
— They associate variables with
e
()
()
Q.
V)

information that may contain
other variable names. Examples:
pentagons, symbolic range
analysis, symbolic region
analysis.

Relational analyses:

— They associate sets of variables
with information. Examples:
octagons and polyhedrons.

Fe—— @ uoisaid

S
'\ Universidade Federal de Minas Gerais — Department of Computer Science — Programming Languages Laboratory PPGCC

PROGRAMA D POS-GRADU/ Agko
'EM GIENCIA DA COMPUTAGAD.
DCC-UrMG.

EXPERIMENTS

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

The Setup

* Implementation: LLVM + AddressSanitizer
 Benchmarks: SPEC CPU 2006 + LLVM test suite

 Machine: Intel(R) Xeon(R) 2.00GHz,with 15,360KB of
cache and 16GB or RAM

 Baseline: Pentagons int 1 = 0;
unsigned j = read();
— Abstract interpretation if (...)
that combines "less-than" i=29;
and "integer ranges".t if (3 < 1)

3¢

P(j) = (less than {i}, [0, 8])

t: Pentagons: A weakly relational abstract domain for the efficient validation of array accesses,
2010, Science of Computer Programming

o

MPOTAGAO

Percentage of Bound Checks Removed

5% The higher, the better.
Pentagons: 27%.
GreenArrays: 43%

50%

25% I
0% i
-
N

% Pentagon ™ GreenArrays

> ¢
PPGC‘(E

Runtime Improvement

AT

¢ N R X < ® v > . & 4
¢ c‘P(Q ~o®°0 s & 3 &6\@ S N &
,g’b(\ Q}\ @ O(Q ‘Qq' A @

¥ < W Pentagons ™ GreenArrays Unsafe

The lower the bar, the faster. Time is normalized to AddressSanitizer
without bound-check elimination. Average speedup: Pentagons = 9%.
GreenArrays = 16%.

Asymptotic Complexity
Runtimes:
GreenArrayS' 262.6 sec gcc, 1,046,180 instructions
Range Analysis: 66.9 sec Tmemm T T >4
10 Pentagons: 91.9 sec C%sé(
&
O @(JO(
O O
1 QnD ®)
O o)fe O
? Qg) STORNY- ¢ X
01 G E T
) X
X
RN ,~ ~ == enc-3des, 3,999 instructions
0.01 T 7
0) 10 20 30 40 50 60

O GreenArrays Range Analysis X Pentagons

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DcC-

Final Thoughts

 We have presented two new static analyses that we can
use to prove that memory accesses are safe.

* And they have many uses! Take a look:

int main(int argc, char **argv) {
int *a = malloc(16 * sizeof(int));
for (int 1 = 0; 1 < 16; ++1)
ali] = 1i;
for (int 1 = 0; 1 < 17; ++1)
/* bytes(&a[i]) = @ * sizeof(int) */

All the code is publicly available at:

https://code.google.com/p/ecosoc/
Get in touch: fernando@dcc.ufmg.br

/* index(&a[i]) = @ */
* . 1 *
int mainCint argc, char **argv) { ;* WARNING: g??féz}zn:nzsigréccess' *;

int *a = malloc(16 * sizeof(int)); ali] = i
for (int 1 = 0; 1 < 16; ++1) ’

ali] = 1; /—>int *b = malloc(argc * sizeof(int));

for (int i = 0; 1 < 17; ++i) for (int i = 0; 1 < argc; ++1i)

a[i] = i; b[i] = 1i;
_ _) for (int 1 = 0; i < argc + 1; ++1)
int *b = malloc(argc * sizeof(int)); /* bytes(&[i]) = @ * sizeof(int) */
for (int 1 = 0; i < argc; ++1) /* index(&b[i]) = 0 * /
b[i] = i; /* WARNING: Possibly unsafe access. */
for (int i = 0; i < argc + 1; ++1i) /* 0ff-by-one error. */
b[i] = 1i; b[i] = i;
return 0; return 0;

