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The Goal of this Work 

Our goal is to prove that some 
memory accesses are safe. 

int main() {

  int v[10];

  v[0] = 0;

  return v[20];

}
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The ContribuNons of This Work 

•  We have designed and implemented a technique to 
prove that some memory accesses are always safe. 
–  Thus, they do not need to be guarded. 
–  Abstract interpretaNon. 

•  Implemented in LLVM and tested in AddressSaniNzer. 
–  Eliminate 50% of the guards. 
–  SPEC CPU 2006 17% faster. 

•  More effecNve than previous work. 



Our Key Insight 

•  Symbolic analyses. 
–  Symbolic range analysis (R). 

–  Symbolic region analysis (W). 

int main(int argc, char** a) {

  char* p = malloc(argc);

  int i = 0;

  while (i < argc) {

    p[i] = 0;

    i++;

  }

  return 0;

}


W(p) = [0, argc – 1]. 

R(i) = [0, argc – 1] 

R(i) fits within W(p). Therefore, p[i] is always safe! 



The Importance of Securing Memory 

•  "Unsafety" has one advantage: efficiency. 

•  But it makes room for bugs that are hard to find. 

•  Buffer overflow aiacks are possible because arrays are 
not guarded against out‐of‐bounds accesses. 

All these worms that 
plague the internet have 
much to thank that C/C++ 
allow for unsafe programs. 



SaniNzing Memory Accesses in C 

•  There are tools that saniNze memory accesses in C 
–  SAFE Code 
–  Solbounds 
–  AddressSaniNzer 
–  etc...  

•  These tools use different 
techniques 

•  But they all add an overhead 
on the programs that they 
secure. 

We want to 
reduce this 
overhead!




Example: AddressSaniNzer 

•  Shadow every memory allocated. 
–  For each byte, we have a bit that 
says if that byte is allocated or not. 

•  Guard every array access. 
–  For every array access, check if its 
shadow bit is valid. 

•  This approach slows down SPEC CPU 
2006 by around 25% 

We want
 to 

remove t
hese 

guards


We will do it 
through static 

analyses


Important: the techniques that we shall talk about work with tools 
other than AddressSaniNzer, and languages other than C/C++ 



The GreenArrays Framework 

•  GreenArrays is a suite of staNc analyses that we use to 
prove that some memory accesses are safe: 

Symbolic Range 
Analysis: 
finds the lower and 
upper values that 
variables can assume 

Symbolic Region 
Analysis: 
finds the lower 
and upper values 
that a pointer can 
address 

Integer Overflow 
Analysis: 
It lets us assume 
that "a < a + 1", for 
instance. 

What are the 
necessary 

assumptions to 
ensure that p[i] is 
a safe memory 

access?




Overview 

1.  int main(int argc, char** argv) {


2.    int size = argc + 1;


3.    char* buf = malloc(size);


4.    unsigned index = 0;


5.    scanf("%u", &index);


6.    if (index < argc) {


7.      buf[index] = 0;


8.    }


9.    return index;


10. }


Any addr
ess 

from buf
 + 0 

to buf +
 argc 

is safe!


Inside the 
branch index is 
at least 0 and 
at most argc-1


We know that 
"argc – 1" is 
less than argc


As long as 

we do not 

have integer
 

overflows!




Overview Overview 

Any addr
ess 

from buf
 + 0 

to buf +
 argc 

is safe!


We know that 
"argc – 1" is 
less than argc


As long as 

we do not 

have integer
 

overflows!


Symbolic Range Analysis: 
finds the lower and upper 
values that variables can 
assume 

Symbolic Region Analysis: 
finds the lower and upper 
values that a pointer can 
address 

Integer Overflow 
Analysis: 
Which arithmeNc 
operaNons can 
overflow? 

Inside the 
branch index is 
at least 0 and 
at most argc-1




Abstract InterpretaNon of Programs 

•  We will be solving symbolic (range / region) analysis by 
abstract interpretaNon. 

v0 = alloca(10)

i0 = 0

v1 = alloca(2)

i1 = 1

v2 = !(v0, v1)

i2 = !(i0, i1)

v3 = v2 + i2

*v3 = 0

–  Assign an abstract state 
to each variable in the 
program. 

–  Iterate the abstract 
interpreter unNl we reach 
a fixed point. 

–  Apply widening to ensure 
terminaNon. 

–  Use narrowing to recover 
precision. 

What is the 
region and the 
range of each 

of these 
variables?




Symbolic Range Analysis 

•  Symbolic range analysis associates a symbolic range, e.g., 
[l, u] with each integer variable in a program. 

R(i0) = [argc – 1, argc – 1] 

R(i1) = [1, 1] 

R(i2) = [min(1, argc – 1), max(1, argc – 1)] 

v0 = alloca(argc)

i0 = argc - 1

v4 = v0 + i0

*v4 = 0

v1 = alloca(2)

i1 = 1

v2 = !(v0, v1)

i2 = !(i0, i1)

v3 = v2 + i2

*v3 = 0



Symbolic Region Analysis 

•  Symbolic Region Analysis associates each pointer p with 
the range of valid offsets that can use that p as base. 

v1 = alloc(n) v1

v2 = v1 + 1

W(v1) = [0, n ! 1]

v2 W(v2) = [!1, n ! 2]

v3 = v1 + n v2 W(v3) = [!n, !1]

n



Symbolic Region Analysis 

•  Symbolic Region Analysis associates each pointer p with 
the range of valid offsets that can use that p as base. 

W(v0) = [0, argc – 1] 

W(v1) = [0, 1] 

W(v2) = [0, min(1, argc – 1)] 

v0 = alloca(argc)

i0 = argc - 1

v4 = v0 + i0

*v4 = 0

v1 = alloca(2)

i1 = 1

v2 = !(v0, v1)

i2 = !(i0, i1)

v3 = v2 + i2

*v3 = 0

W(v4) = W(v0) – R(i0) = [–argc + 1, 0] 

W(v3) = W(v2) – R(i2) = 
          [0, min(1, argc – 1) – max(1, argc – 1)] 



Proving Safety 

•  Theorem: If 0 ∈ W(p), then *p is a safe memory access. 

v0 = alloca(argc)

i0 = argc - 1

v4 = v0 + i0

*v4 = 0

v1 = alloca(2)

i1 = 1

v2 = !(v0, v1)

i2 = !(i0, i1)

v3 = v2 + i2

*v3 = 0

This access is not safe (if argc == 0): 
W(v4) = W(v0) – R(i0) = [–argc + 1, 0] 

This access is not safe, because its upper 
bound can be negaNve: 
W(v3) = W(v2) – R(i2) = 
          [0, min(1, argc – 1) – max(1, argc – 1)] 



•  Sparse analysis: each variable name carries only one 
piece of abstract informaNon. Fast implementaNon! 

•  To improve precision, we do live range spli=ng. 

i0 = argc - 1

(i0 < 10)?

i1 = i0 ! ["#, 9]

v1 = v0 + i1

*v1 = 0

i2 = i0 ! [10, +#]

v2 = v0 + i2

*v2 = 0

i0 = argc - 1

(i0 < 10)?

v1 = v0 + i0

*v1 = 0

v2 = v0 + i0

*v2 = 0

R(i1) = [argc – 1, max(9, argc – 1)] R(i2) = [min(10, argc – 1), argc – 1] 

"Hay que mejorar la precisión, pero sin 
perder la speed jamás" 



Wrapping ArithmeNcs 

Is this 
program 

always ok?


int main(int argc, char** argv) {


  int index = argc + 1;


  int size = index * index;


  char* buf = malloc(size);


  return buf[index];


}




The Problem of Integer Overflows 

int main(int argc, char** argv) {


  int index = argc + 1;


  int size = index * index;


  char* buf = malloc(size);


  return buf[index];


}


index * 
index 

may wra
p 

around.


Do you know 
what malloc 
will return?


Because we manipulate symbols, 
"argc + 1 < (argc + 1) * (argc + 1)" 
only in the absence of integer 
overflows 



Guarding Against Integer Overflows 

•  We find every arithmeNc operaNon that may influence 
memory alloca>on or memory indexing. 

•  We instrument the slice of instrucNons that influence 
memory to detect the occurrence of overflows. 

We find them
 

via program 

slicing


int main(int argc, char** argv) {


  int index = argc + 1;


  int size = index * index;


  char* buf = malloc(size);


  return buf[index];


}




Pusng it all Together: GreenArrays 

I will not talk about the op,onal tainted flow analysis, 
but you can learn more about it in the paper. 



A Bit of PerspecNve 

•  Non‐RelaNonal Analyses: 
–  They associate variables with 

informaNon that do not depend 
on other variables. Examples: the 
usual data flow analyses. 

•  Semi‐RelaNonal analyses: 
–  They associate variables with 

informaNon that may contain 
other variable names. Examples: 
pentagons, symbolic range 
analysis, symbolic region 
analysis. 

•  RelaNonal analyses: 
–  They associate sets of variables 

with informaNon. Examples: 
octagons and polyhedrons. 

Chapter 9 

Precision 

Sp
ee
d 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The Setup 

•  Implementa>on: LLVM + AddressSaniNzer 
•  Benchmarks: SPEC CPU 2006 + LLVM test suite 

•  Machine: Intel(R) Xeon(R) 2.00GHz,with 15,360KB of 
cache and 16GB or RAM 

•  Baseline: Pentagons 

–  Abstract interpretaNon 
that combines "less‐than" 
and "integer ranges".† 

†: Pentagons: A weakly relaNonal abstract domain for the efficient validaNon of array accesses, 
2010, Science of Computer Programming 

int i = 0;

unsigned j = read();

if (...)

    i = 9;

if (j < i)

   ...


P(j) = (less than {i}, [0, 8]) 



Percentage of Bound Checks Removed 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The higher, the beier. 
Pentagons: 27%. 
GreenArrays: 43% 



RunNme Improvement 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The lower the bar, the faster. Time is normalized to AddressSaniNzer 
without bound‐check eliminaNon. Average speedup: Pentagons = 9%. 
GreenArrays = 16%. 



AsymptoNc Complexity 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RunNmes: 
GreenArrays: 262.6 sec 
Range Analysis: 66.9 sec 
Pentagons: 91.9 sec 

gcc, 1,046,180 instrucNons 

enc‐3des, 3,999 instrucNons 



Final Thoughts 

•  We have presented two new staNc analyses that we can 
use to prove that memory accesses are safe. 

•  And they have many uses! Take a look: 

All the code is publicly available at: 
hips://code.google.com/p/ecosoc/ 
Get in touch: fernando@dcc.ufmg.br 


