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Abstract

Wireless sensor networks (WSNs) are ad hoc networks comprised mainly of small sensor

nodes with limited resources, and can be used to monitor areas of interest. In this paper, we

propose a solution for securing heterogeneous hierarchical WSNs with an arbitrary number

of levels. Our solution relies exclusively on symmetric key schemes, is highly distributed,

and takes into account node interaction patterns that are specific to clustered WSNGs.
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1. Introduction

Wireless sensor networks (WSNs) are ad hoc networks comprised mainly of small sensor
nodes with limited resources and one or more base stations (BSs), which are much more
powerful laptop-class nodes that connect the sensor nodes to the rest of the world. They are
used for monitoring purposes, providing information about the area being monitored to the
rest of the system. Application areas range from battlefield reconnaissance and emergency
rescue operations to surveillance and environmental protection.

Like any wireless ad hoc network, WSNs are vulnerable to attacks [1, 2]. Besides the
well-known vulnerabilities due to wireless communication and ad hocness, WSNs face
additional problems. For instance, sensor nodes are small, cheap devices that are unlikely
to be made tamper-resistant or tamper-proof. Also, they are often deployed in unprotected,
or even hostile areas, which makes them more vulnerable to attacks. It is therefore crucial to
add security to these networks, specially those that are part of mission-critical applications.

WSNs may be organized in a variety of different ways, and a solution designed for a flat
network will unlikely be optimal for a clustered network. (In Section 2, we briefly survey
different sensor network organizations.) To be effective and efficient, a solution needs to be
tailored to the particular network organization at hand.

In this paper, we consider heterogeneous hierarchical sensor networks with arbitrary
number of levels, and devise secure protocols for their setup, operation, and maintenance.
We chose to target this class of networks because it has been shown [3] that, when com-
pared to flat networks, they present a number of advantages including increased system
throughput and decreased system delay, and increased energy savings as the number of
hierarchy levels in the network is increased.

Our solution considers networks consisting largely of highly resource-constrained nodes,
and uses exclusively symmetric key mechanisms. Lightweight group key based mecha-
nisms are used whenever possible; more expensive, BS-mediated schemes are used when-
ever necessary. Our solution prevents intruders from taking part in network activities, tam-
pering with or injecting messages into the network, as well as eavesdropping on com-
munication between legitimate nodes. It is highly distributed and takes into account node



interaction patterns specific to clustered WSNs. To our knowledge, this is the first work
focusing on securing heterogeneous hierarchical WSNs with arbitrary number of levels.

This paper is organized as follows. In Section 2, we briefly survey existing organizations
for hierarchical WSNSs, and discuss their vulnerabilities and needed security. In Section 3,
we present our network model. In Section 4, we present our solution. We evaluate our solu-
tion from security point of view in Section 5, and performance point of view in Section 6.
Finally, we discuss related work in Section 7, and conclude in Section 8.

2. Hierarchical WSNs: Organization and Security

WSNs may be organized in different ways. In flat WSNs [4], all nodes play similar roles
in sensing, data processing, and routing. In hierarchical WSNs [5], on the other hand, the
network is typically organized into clusters, with ordinary cluster members and the cluster
heads (CHs) playing different roles. While ordinary cluster members are responsible for
sensing, the CHs are responsible for additional tasks such as collecting and processing the
sensing data from their cluster members, and forwarding the results towards the BS.

Hierarchical networks can differ among themselves in various ways. They can be homo-
geneous, when all nodes except the BSs have comparable capabilities; or heterogeneous,
when some nodes (typically the CHs) are more powerful than others. In two-level net-
works, CHs are found in the top level, and their children (those that belong to the cluster
headed by a CH) in the lower level. In H-level networks (H > 2), there is a hierarchy
of H nested levels, where CHs in one level are themselves children of nodes that are one
level up [6]. CHs can be randomly chosen among the ordinary nodes of a homogeneous
network (as in LEACH [7]), or they can be more powerful nodes that compose a hetero-
geneous network [8]. Clustering can also differ from one network to another. For example,
under a k-hop clustering [9], members of a cluster are all within k-hops of each other. Al-
ternatively, a subset of nodes can probabilistically self-select CHs, and the remaining nodes
cluster around the CH that is geographically the closest [7].

Like any WSN, hierarchical WSNs are vulnerable to a number of attacks [1, 2] including
jamming, spoofing, and replay. In these networks, attacks involving CHs are particularly
damaging, because CHs are responsible for critical functions such as data aggregation and
routing. If an adversary manages to become a CH, it can stage attacks such as sinkhole [1]
and selective forwarding [10], thus disrupting potentially large fractions of the network.

Adversaries may leave the routing alone, and try to inject bogus sensor data into the
network. Or they may choose to simply eavesdrop on communication between legitimate
nodes, obtaining information that is being gathered by the BSs.

At a high level, the main security goals in a hierarchical WSN with data aggregation
are: 1) access control, i.e., allow only legitimate nodes to take part in the network (e.g.,
become CHs and join a cluster); 2) guarantee the authenticity, confidentiality, integrity and
freshness of data being passed from one member of the network to another; 3) enable data
aggregation at intermediate points as sensor reports are sent from a sensor node to a BS; and
4) guarantee availability (minimize the impact of attempts of DoS attacks). In this work,
we design our solution to meet these goals.

3. Our Model

We assume heterogeneous networks with two broad classes of nodes. The first class consists
of a large number of highly resource-constrained sensing nodes. The second class consists



of a smaller number of non-sensing nodes with various levels of resources (e.g., CPU,
transmission range, and energy) responsible for data aggregation and routing.

Each node is statically assigned a hierarchy level prior to deployment (based, e.g., on its
resource level), with ordinary sensor nodes being assigned level 1. We assume that nodes
are deployed with some care, in such a way that level-h nodes always have level-(h + 1)
nodes within their communication range. Assuming that level-(h + 1) nodes are always
more powerful than level-h nodes, if a level-(h + 1) node A is within a level-h node B’s
radio range, then B is within A’s range.

We use the hierarchy level for clustering. Nodes in one level seek to cluster around the
nodes in the next level up in such a way that the network has, at the end of the clustering
process, nested clusters where level-h nodes are CHs for level-(h — 1) nodes and children
of level-(h + 1) nodes.

Communication can then be single hop within a cluster, with the children of a cluster
communicating directly with its CH. Communication with the BS is multi-hop: a message
goes from a node to its CH successively until it reaches the BS. The BS can, however,
communicate directly with any member of the network.

A node does not move once deployed, but can become unavailable (e.g., by energy
exhaustion). When this happens, its children will try to join another cluster.

This network organization is rather static: a node’s hierarchy/resource level determines
whether it will be a CH, and the clustering structure formed at the initial setup of the
network does not change unless a CH becomes unavailable. Nonetheless, we believe it is a
reasonable starting point for investigating security in heterogeneous hierarchical WSNs.

We assume clock-driven networks: sensing reports are sent to one’s CH at regular inter-
vals. At each CH, the reports are aggregated, and only the result is passed up. Nodes have
local clocks to keep track of elapsed time, for the purposes of evaluating freshness of keys
and timing out on certain events. Local clocks do not need to be synchronized.

Attacks to WSNs may come from outsiders (those that are not legitimate members of
the network) or insiders (those that are legitimate members of the network). The solution
we propose here is meant to protect the network from attacks by outsiders only. In our
model, keys can be compromised through cryptanalysis or node tampering. We assume
that an attacker using either approach will succeed only after a non-negligible amount of
time ¢, and the network can be considered secure for ¢ units of time after deployment. We
assume that BSs are trusted.

4. LHA-SP: A Suite of Secure Protocols for Hierarchical WSNs

In this section we present LHA-SP, a suite of secure protocols for hierarchical ad hoc
WSNs as modeled in Section 3. Our goal is to address the problems discussed in Section 2
(access control; authenticity, confidentiality, integrity and freshness of communications;
and availability). We first give an overview of our solution (Section 4.1), then the protocol
details (Section 4.2), and finally the protocol implementation (Section 4.3) .

4.1 Overview

One of the first concerns in setting up a WSN is to allow only legitimate nodes to par-
ticipate in the network. To implement this access control, various cryptographic solutions
(e.g., [11, 12, 13]) have been proposed. None of them is optimized for the type of networks
we consider, mainly because of their key distribution schemes. In our model, each node



interacts with a restricted set of nodes during the initial setup. Level-h nodes interact only
with level-(h — 1) and level-(h + 1) nodes, and once the clusters are formed, this set is
further reduced: a node interacts only with its CH and children. In addition, after the initial
configuration, the set of nodes that a given node interacts with will change only when a
CH dies and its children seek new CHs. Thus we need keys that allow legitimate nodes
to recognize those that are one level up and one level down, as well as keys to protect
their communications with their CH and children. Next, we first show why existing key
distribution schemes do not adequately solve our problem, and then sketch our solution.

Given that public key mechanisms are inapplicable to WSNs (because of sensor nodes’
resource constraints), most existing solutions rely on mechanisms that predistributes sym-
metric keys. There are basically three general approaches to predistributing the keys: 1)
pairwise key sharing between the BS and each of the remaining nodes (e.g., [11]); 2) pair-
wise key sharing between ordinary nodes, which can be complete (e.g., [14]) or random
(e.g., [15]); and 3) a global group keying (e.g., [16]).

In the first approach, the BS works as the key distribution center (KDC). This is rather
costly in terms of communication, given that all nodes need to contact the BS to obtain
keys they need to share with their CHs and children. In addition, the BS is a bottleneck.

In the second approach, two nodes that share a key at deployment have a secure link
between them; those that do not, can use these links to set up their own secure links. This
approach is completely distributed, and does not suffer from high communication costs or
from having a bottleneck. However, to give a key to each CH-child link, each node would
need to be preloaded with a large number of keys (most of them unnecessary), which is
quite wasteful in the type of networks we assume.

In the third approach, everyone in the network shares the same key. This is the best in
terms of cost. Each node only stores one key, and no additional keys need to be generated
or exchanged. However, because the network depends exclusively on one single key, when
a node is compromised, all links in the network are compromised.

In this work, we use a hybrid approach. Prior to deployment, each node is preloaded
with two keys: a network-wide group key and a pairwise key it shares with the BS only. We
use the group key for setting up the network. Using this key, nodes in the network organize
themselves into clusters and exchange pairwise keys for securing the links between a node
and its CH, needed for later network operation. Once the network is set up, the group key
is discarded. The other key — shared between the node and the BS — will be used for orphan
adoption, which we explain later.

The pairwise CH-Children keys enable hop-by-hop authentication, allowing data aggre-
gation at the CHs. They also increase the network’s resilience against attacks, (avoiding a
wholesale compromise of the network if a node ever gets compromised).

Sometimes a network needs additional nodes. We handle addition of nodes the way we
handle the initial setup, but using a new group key, which is preloaded to the new nodes, as
well as propagated to all level-(h 4 1) nodes (h is the hierarchy level of the new nodes).

When a node becomes orphan, the only trust association between it and the network is
the key it shares with the BS. We use this key to get an orphan node back in the network.
This key will not only allow the orphan to join a new cluster, but also obtain a shared key
between it and its new CH. Note that even though the rejoining process depends on the
BS, we assume that only few nodes will become orphans each time, and there will not be
resource contention at the BS.



Notation

In the protocol specifications below, we use single capital letters (e.g., A, B) to denote
network nodes; calligraphic capital letters (e.g., G) to denote groups of nodes; | to denote
concatenation, and {m} i to denote “encryption of m using key K. A — B : m denotes
“A sends a message m to B in single hop”; A —— B : m denotes “A sends a message
m to B in multiple hops”; and A =- G : m denotes “A broadcasts a message m to group
G in a single hop”.

4.2 Protocol Description

In our scheme, nodes are preloaded with the following information prior to deployment:
the node’s id, the node’s hierarchy level, a network-wide group key, a key it shares with
the BS, and the current time. CHs also have information about how many keys will be used
within a cluster. We explain the need for this parameter later, when we discuss security
levels vs. key scopes.

Network Setup

The setup phase in LHA-SP consists of clustering and key distribution. They take place in
multiple stages, in a top-down fashion. First, level-({ — 1) nodes cluster around level-H
nodes (H is the highest hierarchy level of any node in the network), and keys that will
be shared pairwise between a level-(H — 1) node and its level-H CH are generated and
distributed. Then the same protocol is carried out between level-(H — 2) and level-(H — 1)
nodes, and successively, until level-1 nodes are clustered around level-2 nodes and the keys
for communication between them are set. We describe the protocol executed at each of
these stages (Fig. 1) below.

Ateach stage, level-h nodes broadcast an adoption-ad message looking for level-(h—1)
nodes within their radio range (Step 1). This message includes the hierarchy level and the
identity of the broadcasting node so that those in one level down know they are the intended
recipients and who broadcast the message.

Level-(h—1)nodes collect multiple advertisements, and use a criterion that best matches
the application to choose their CHs. For example, they could choose the source of the
strongest signal in a period of time. Once they choose a CH, they send an adoption-req
message to the chosen node (Step 2). This message includes both the ids of the requesting
node and of the chosen CH.

Upon receiving an adoption request from a node, the CH generates a symmetric key,
and sends it back to the node in a send-key message (Step 3).

Note that all these message exchanges are encrypted using the group key. At each step,
a node checks whether a received message originated from a legitimate network member
by decrypting it using the same key. The nodes proceed with the protocol only when the
check is successful.

The group key has a preset validity period (as determined by each sensor’s local clock)
after which it expires and is discarded by each of the nodes. Thus, the setup protocol should
be completed before the key expires.

At the end of this protocol (after all H — 1 stages have been executed), each node will
have acquired c + 1 pairwise keys: one shared with its CH, and the remaining ¢ shared
between it and each of its children.

Note that we do not need to use message authentication code (MAC) to guarantee mes-
sage integrity, because all communications are single hop, and the messages do not go
through intermediate nodes where they could potentially be corrupted maliciously. To han-



dle non-malicious corruptions from the environment, we use mechanisms such as CRC
(Cyclic Redundancy Check). Doing so, we avoid adding additional bytes to the original
message, and save on energy that would be spent sending these bytes.

Adoption being broadcast by level-h nodes (e.g. An, Bp):
1. An=Gr-1: {adoption-ad|h |ida}tk,
By = Gr-1: {adoption-ad| k| idB}x,

Nodes from Gy _1 (e.g., Mh—1, Np—1,0p—1) choose their CHs (e.g., By, Ap) and respond:
2. Mp_1 — By : {adoption-req| idy | idB}xg
Np_1 — A, : {adoption-req | idwy | ida}x,
On-1 — Ay :  {adoption-req | ido | ida}k,

Level-h nodes (e.g., Ap) generate and distribute pairwise keys
to be shared with each of their children (e.g. Np—1, Op—1):

3. Ap — Np—1: {send-key |ida |idn | Kan}xg
Ap — On_1: {send-key | ida | ido | Ka,0}kg

The various symbols denote:

X5 : anode X from level h
Gy, the group of all nodes from level A
h :  hierarchy level
idx : 1id of node X
Kg : the network-wide group key
Kx,y : pairwise key shared between nodes X and Y’

Figure 1: The setup protocol.

Network Operation
Once the network is set up and the normal operation begins, there will be two types of
communications: child-CH communications, which consist mainly of sensing reports; and
CH-children communications, which consist mainly of network management messages.

In child-CH communications, a child Ay, simply encrypts the message m 4 with the key
it shares with the CH Dy, ;. For freshness, a nonce n 4 can be added before encryption.

Ap — Dpyq :{sensing | na | matr, »

At each hop, the CH can decrypt messages it received, examine their content, and carry out
data aggregation before sending the aggregate result forward.

Information that flows the opposite direction, i.e., from the BS to the rest of the WSN,
can be destined to a particular node or a subset of the nodes. If the information is destined
to a single node, our pairwise keying scheme is completely adequate. In cases where the
information is destined to a larger number of nodes, it can be distributed, multi-hop, through
the intermediate CHs. Note that whenever a CH needs to send the same information to
multiple of its children, the best mechanism would be an authenticated broadcast, which



cannot be done with our CH-children pairwise keying. However, we can use the pairwise
keys to bootstrap the scheme proposed by LEAP [12], in which broadcasts are authenticated
using keys in a hash key chain. Alternately, we can group all the children in a cluster in a
few groups, and have each group share a key. E.g., given a cluster with 10 children, there
will be 10 keys if we use pairwise keys between the CH and each of its child. There will
be 5 keys if each key is shared between the CH and 2 of its children. And one key if all
members of the cluster share the same key. The idea is that, when a CH needs to broadcast
a message to multiple nodes in the cluster, it can make fewer transmissions: one for each
group that shares a key (instead of one for each child). This scheme thus trades security
(the scope of a key) with efficiency. In any case, we expect each CH to have a reasonable
small number of children (according to [3], between 4% and 10% of a network must be
composed of CHs for maximum energy efficiency). And given that there are typically few
network management messages, it is not impractical for the CHs to deliver these messages
to each child separately, encrypted with the key they share.

Network Maintenance

During the lifetime of a network, nodes come and go: existing nodes may depart from
the network (e.g., by energy exhaustion) and new nodes may be added. We handle these
changes as follows.

Adding New Nodes To securely add new nodes to the network, we follow the general
scheme used in the initial deployment. Nodes about to be added are preloaded with the
same set of data as in the initial deployment; however, the group key and the clock time
will have new values. The group key is now a newly generated key (the initial one has
expired), and the time is the current time given by the operator preloading these values.
The new group key is intended to be the trust association between the nodes being added
and those already in the network. Thus, both the new group key and the current time also
need to be known by all pre-existing level-h nodes, where & is one hierarchy level higher
than the level of nodes being added. The BS can transmit these values using single hop
communication to the intended recipients.

1. Ap=Gny1: {new-node-ad|h}x;,

2. Bpy1=Gp: {adoption-ad|(h+1) ]| idB}K&

3. An— Biy1: {adoption-req | ida | ids}x;,

Level-(h + 1) nodes (e.g., Bn+1) generate and distribute keys to the new children (e.g., Ap):
4. Bpy1 — Ap: {send-key | idp | ida | KB,A}K’Q

All symbols as previously defined; K is a newly generated group key.

Figure 2: Node addition protocol.

Fig. 2 shows the node addition protocol. Unlike the initial setup protocol, here new
nodes seeking to join the network advertise their intention through a new-node-ad mes-
sage (Step 1), which includes the hierarchy level h of the node broadcasting the message.
Those at level h + 1 that hear this broadcast reply with adoption-ad, signaling their inten-
tion to adopt. The rest of the protocol is identical to the initial setup protocol (Fig. 1).



Just like before, the new group key expires after a predefined period of time, before
which all new nodes should have joined the network.

Node A}, being adopted by node Bj 41

1. Ap= Gpi1: orphan-ad | h

2. Bpy1 —Gp: adoption-ad | (b + 1) | ids

3. Ap — Bpy1: adoption-req | m,MAC(K as,m)

4. Bpt1 — Chio: {key-req| m | np,MAC(Kas,m),MAC(Kgs,m | nB)}xze
5. Chy2 —»— S:  {key-req| m | ng,MAC(Kas,m),MAC(Kgs,m | nB)}kep

BS S authenticates A and B, and generates K 4p
6. S — Ay : key-del| {idB |nA |KAB}KAS
7. S — Bpy1: key-del | {ida | nB | KaB}Kps

Symbols as previously defined, with the following additions:
m=1ida |idB | na
nx : nonce produced by node X

Figure 3: Orphan adoption protocol.

Orphan adoption ~ We assume that the network provides means for children of a cluster
to learn the unavailability of its CH. This can be achieved, e.g., by periodically pinging the
CH, or by using mechanisms such as watchdog [10].

Whenever a CH becomes unavailable, it is desirable for the orphans to join another
cluster. Given that the pairwise key shared between an orphan and the BS is the only trust
association shared between the orphan and the network, we use the BS as an authentication
authority and KDC. The protocol (Fig. 3) works as follows.

First, the orphan nodes broadcast the orphan-ad message searching for a new CH (Step
1). This message includes the level i of the orphan. Upon receiving an orphan-ad message,
candidate CHs (i.e., those one level up) reply with adoption-ad (Step 2). Neither message
is protected, given that the communicating parties do not share any keys.

Each orphan then chooses one among all those that sent a reply, and responds with
adoption-req (Step 3). This message is authenticated by a message authentication code,
produced with the key the orphan shares with the BS. It is not destined to the chosen CH,
but will be included in the following (key-req) message the CH sends to the BS (step 4).
Note that we use a message authentication code to protect the message here, because the
message travels multiple hops before it is received by the intended recipient, and is thus
subject to malicious corruption.

For the key-req message (Step 4), the CH adds its own message authentication code
(produced using the key it shares with the BS) to the message authentication code from
the orphan. It then encrypts the result using the key it shares with its own CH. The en-
cryption offers link level security (and will be replaced at each hop), whereas the message
authentication codes are intended for the BS to verify the originators of the request.

After checking the authenticity of both the orphan and the adopting CH, the BS gener-
ates a symmetric key and sends it, single hop, to both. These messages (Steps 6 and 7) do



not include a MAC code because their transmissions are single hop (as justified earlier).
The orphan node is now back on the network, and there is a secure communication channel
between it and its CH.

4.3 Protocol Implementation

Given the resource-constraints, the protocols specified above need to have efficient imple-
mentations. Thus, cryptographic algorithms need to be chosen not only by their security
strength, but also by the amount of resource they consume. In this work, we take advantage
of the building blocks from SPINS [11], a suite of lightweight symmetric key based se-
curity protocols for highly resource-constrained WSNs. We briefly describe these building
blocks below.

To save memory, SPINS implements all cryptographic primitives using one single block
cipher; RC5 [17] was chosen because of its small code size and its efficiency. Encryption
and decryption in SPINS are stream ciphers obtained from using RCS in the counter (CTR)
mode. Message authentication code (MAC) is implemented using RC5 under the CBC-
MAC [18] mode: the target message is encrypted under CBC mode, and the message au-
thentication code is the output from the last stage. The same MAC function is used to gen-
erate pseudo-random numbers (e.g., nonces) needed by the security module. MAC(K, ¢)
produces a sequence of pseudo-random numbers if the value of c is incremented after each
generation. Following good security practice, SPINS uses different keys for different cryp-
tographic functions, all of them derived from a master key x. The MAC function is also
used for this derivation. Using different values of p in MAC(y, p), different computation-
ally secure keys can be derived from the master key. Thus, one can, e.g., derive different
keys for encryption and MAC code. Or even different keys for different communication
directions; i.e., one key for communications from A to B, and another from B to A.

We use the building blocks described above to implement our protocols. In case of
encryption and decryption, a counter value is actually needed in each operation, as they are
implemented by RCS5 under CTR mode. Because the counter value determines the one-time
pad produced by RC5, and one-time pads should not be used twice for security reasons, all
encryptions produced using a given key should use different counter values.

In our proposal, counters are dealt with differently depending on the type of keys used.
When pairwise keys are used, as e.g. in child-CH communications, counters are not sent
between the parties. Instead, they are kept at both ends of the link, and incremented af-
ter each encryption (this is the approach used by SPINS). This is feasible because when
pairwise link keys are used, the two communicating parties can keep track of counter val-
ues that have been used in conjunction with their link key. (The parties can actually get
de-synchronized. But they can either try successive increments, or execute simple syn-
chronization protocols to re-synchronize.) When group keys are used, as e.g. in the setup
protocol, counters can no longer be synchronized implicitly as above, because not all nodes
will hear all transmissions encrypted using the group key, and therefore, would not know
which counter has or has not been used. In these cases, we append the counter value being
used to each ciphertext. To prevent different nodes from using the same counter, we assign
different non-overlapping ranges of values to each node in the network. Each node is ex-
pected to start with the smallest value in its range, and successively use increasing values
in successive encryptions.



5. Security Analysis

5.1 Network setup

The security of our setup protocol depends on two assumptions: 1) that an adversary will
take a certain amount of time to compromise the group key or tamper with a node, and 2)
that this amount of time exceeds that required to set up the network.

Under these two assumptions, our protocol guarantees that only the legitimate nodes
of the network can become CHs, join a cluster, distribute keys and receive them. This is
because all message exchanges in the setup protocol are encrypted with the group key,
which is known only by the members of the network.

The pairwise keys generated by the CHs and distributed to each of their children are
encrypted by the group key before they are transmitted. Thus any network member could
potentially eavesdrop on communications intended to some other node, and learn the value
of a pairwise key it should not know. However, according to our assumptions, 1) legitimate
members of the network would not eavesdrop (misbehave, in general), unless they have
been tampered with; and 2) node tampering would take longer than the network setup time.
Thus, at the end of the protocol, every node that had the group key would have assured its
place in the network topology, and each link would have associated with it a pairwise key,
known only by the CH that generated it and the child that is its intended recipient.

Note that it is possible for an adversary to capture all this encrypted traffic for later eval-
uation, after the group key is compromised. Using this approach, the adversary can obtain
pairwise keys that were distributed, and use them for eavesdropping or impersonation. The
scope of the compromise is limited to the region within which the initial sniffing took place.

5.2 Network Operation

During the network operation, communication between any node and its CH is secured by
the pairwise key they share. This ensures confidentiality and authentication of communica-
tion between the two, prevents bogus nodes from tampering with and injecting messages,
and allows data aggregation to take place at the CH. Replay of old messages is prevented
by the use of nonces (which is actually dispensable, given that each new encryption is
produced with a different counter value).

The group key expires right after the network setup and is not used thereafter. Thus
compromise of a single node has limited scope, and would compromise only the links
protected by the keys found in the compromised node.

5.3 Network Maintenance

Adding New Nodes

The node addition protocol follows quite closely the initial setup protocol. Thus, the dis-
cussion in Section 5.1 applies here. The new group key, used to bootstrap the operation, is
known only to legitimate and interested parties: it is preloaded to the nodes being added,
and delivered securely to the relevant CHs by the BS.

Orphan Adoption
The goal of our orphan adoption protocol is to re-insert an orphan (and the subtree rooted at
it) securely into the network routing topology, and to provide it with a key to communicate
with the rest of the network securely .

Our proposal relies on the BS as an authentication authority and KDC. The BS authen-



ticates both the adoption-req message (step 3, Fig 3) from the orphan and the key-req
message (step 4, Fig 3) from the new CH, before it generates and delivers the requested
key. Both the requests and the key delivery are protected by the pairwise keys shared be-
tween the BS and the nodes. This means that 1) only requests from legitimate members of
the network will be processed; and 2) only the orphan and its new CH will learn the value
of the new key, which will be used to secure the communication between them.

Note that because the orphans do not share any trust associations (keys) with the nodes
that can potentially adopt them, the messages sent in steps 1 and 2 (Fig. 3) are not protected.
This is a source of vulnerability. For instance, a bogus node can send a large number of
orphan-ad messages to the network, and try to trigger a response to each of its messages,
with the intent of consuming the resources of some of the nodes in the network. Another
possible attack is for an intruder to impersonate a potential adopter, and send an adoption-
ad message (step 2) in response to orphan-ad messages. The intruder can simply quit
the protocol here or try to submit a key-req message (step 3). In any case, the orphan
will be left waiting for a key that will never come, and the adoption process will never be
completed. We can address the first attack by limiting the number of orphan-ad messages
a potential CH will handle per period of time. This is reasonable because we assume that
only a small number nodes will become orphans at the same time. To handle the second
attack, an orphan can set a waiting time, and if it does not hear from the BS before this time
expires, it will contact another potential adopter.

6. Performance Evaluation

In this section, we consider the overhead incurred by our protocols, as compared to a
stripped down version of the protocols without the security devices. For example, the
stripped down version of the setup protocol would consist of steps 1 and 2 (Fig. 1) only,
and the messages exchanged in these steps would not be encrypted.

Due to space constraints, we focus on the protocols for setup and network operation. In
what follows, nj, denotes the total number of level-A nodes.

6.1 Communication and Computational Overhead

For the setup protocol (Fig. 1), security incurs the following cost:

e Each adoption-ad and adoption-req message transmission incurs one encryption oper-
ation and c additional bytes for counter value. adoption-ad message sends are executed
once by all the nodes in the network, except those at level 1; and adoption-req sends
are executed once by all the nodes, except those at the highest level.

e Each adoption-ad and adoption-req message reception incurs one decryption opera-
tion and reception of ¢ additional bytes for counter value. Each level-h node receives no
more than ny, adoption-ad messages, and the set of all level-h nodes will receive a
total of ny_, adoption-req messages.

e send-key messages are exchanged only in the secure version of the protocol. Each
transmission incurs one key generation, one encryption, and the transmission itself. Each
reception incurs one decryption and the message reception itself. The set of all level-h
nodes will send a total of nj,_; such messages, whereas each node in the network (except
those at the highest level) will receive only one such message.



Our setup protocol is quite scalable. The number of interactions between a level-h node
A and level-(h + 1) nodes is bounded by 7n;,1); and that between A and level-(h — 1)
nodes is bounded by the number of children in the cluster headed by A.

In Child-CH communication, the overhead incurred by security is negligible: one en-
cryption at the sender and one decryption at the receiver. In CH-children communication,
the overhead incurred by security depends on the number of children a CH tries to reach
each time. In the best case scenario, the CH has a message destined to a single child. The
overhead is then simply one encryption at the CH and one decryption at the child. In the
worst case, the transmission from the CH is destined to all the children in the cluster. In
such scenarios, our solution is expensive. Instead of a broadcast, the CH needs to send a
separate message to each of the children (respectively, group of children), because of our
pairwise (respectively, group) keying scheme.

To be concrete, we estimate energy consumption incurred by our solution in a 2-level
network consisting of 10 Mica2 motes [19] at level 2, and 100 Mica2dot motes [19] at
level 1, deployed in such a way that each Mica2 receives 10 adoption requests, and form
clusters that has 10 Mica2dots in them. (In real deployments, the clustering will likely be
more random. However, the ideal deployment considered here can give us an initial picture
on more realistic deployments.) This 1:10 ratio between the number of CHs and the number
of ordinary nodes is within the range in which energy savings are the largest [3].

We consider the network under five different setup and operation conditions: one with
no security devices, and the rest with varying degrees of security, as determined by the
scope of the keys used in CH-children and communications. We use “-” to refer to the
scenario with no security, and “17, “2”, “5”, and “10” to refer to scenarios where 1, 2, 5,
and 10 keys are used within the cluster.

We use the following consumption rates [20]: 16.25 pJ/byte and 12.25 pJ/byte for
Mica2 mote transmission and reception, respectively; and 15 pJ for encrypting (or de-
crypting) 8 bytes of data using RC5. We consider the same values for Mica2dot mote, even
though they have lower consumption rates due to slower clock rate (4MHz vs 8MHz). We
assume 36-byte packets (the maximum used in TinyOS [21]).

Our estimates show that the LHA-SP setup protocol consumes from 344% to 836%
more energy when compared to the plain protocol (Fig. 4(a)) — note, however, that setup is
performed just once. The overhead incurred by LHA-SP in CH-Children communication is
high when 5 or 10 keys are used per cluster (Fig. 4(b)). CH-Children communications are
used for network management functions, and do no occur frequently. Thus, this high cost
is likely to be tolerable.

For Child-CH communication, which occurs the most in a WSN, LHA-SP is quite ef-
ficient: it incurs only 9% more energy. This is expected: all child-CH communications are
pairwise, and can be efficiently protected by pairwise keys.

6.2 Storage Overhead

To estimate the storage overhead incurred by security in CH-children and child-CH com-
munications, we modified the source code for Surge [22] (an application in the TinyOS dis-
tribution that periodically sends data to the BS) so that it sends and receives (RC5-based)
encrypted data, instead of plaintext. We used cryptographic code from TinySec.

Compared to the original Surge, the modified version takes 990 bytes more in ROM (of
which the motes have a total of 128KB) and 164 bytes more in RAM (of which the motes
have a total of 4KB). Storage overhead incurred by encryption is thus negligible.
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Regarding the keys, each level-h node, i > 1, needs to keep the group key, two pairwise
keys, and k keys shared with its children. In the worst case, when each child share a unique
key with its CH, k is equal to the size of the cluster. Level-1 nodes have not children, and
have to keep just three keys. The storage cost is therefore O(k) for level-h nodes (h > 1),
and O(1) for level-1 nodes.

As a whole, we conclude that LHA-SP is efficient and scales gracefully in terms of
computation, communication, and storage costs.

7. Related Work

The number of studies specifically targeted to security of resource-constrained WSNs has
grown significantly. Due to space constraints, we provide a sample of studies based on
cryptographic methods and focus on those targeted to hierarchical WSNs.

Perrig et al. [11] proposed a suite of symmetric key based security building blocks,
which we use in our solution. Eschenauer et al. [15] looked at random key distribution
schemes, and originated a large number of follow-on studies which we do not list here.
Most of the proposed key distribution schemes, probabilistic or otherwise (e.g., [12]), are
not tied to specific network organizations, although they mostly assume flat network with
multi-hop communication; thus they are not well suited to hierarchical WSNSs. Still others
(e.g., [20]) focused on detecting and dealing with injection of bogus data into the network.

Among those specifically targeted to hierarchical WSNs, Carman et al. [14] suggested
using higher powered nodes for key generation and management functions. Kong et al. [23]
devised a solution for a specific hierarchical and heterogeneous network. Their proposal
uses RSA certificates, and implements end-to-end security at transport layer. Bohge and
Trappe [13] proposed an authentication framework for a concrete 2-tier network organi-
zation, in which a middle tier of more powerful nodes between the BS and the ordinary
sensors were introduced for the purpose of carrying out authentication functions. In their
solution, apart from the ones in the lowest tier, nodes carry out public key operations. More
recently, Ferreira et al. [24] devised symmetric key based security extensions for LEACH
[7], a WSN routing protocol which dynamically and periodically rearranges its clustering.

8. Conclusion

In this paper, we proposed a solution for securing heterogeneous hierarchical WSNs with
arbitrary number of levels. Our solution provides security for network setup and reconfig-
uration, as well as for the normal network operation traffic. Our scheme sets up pairwise
keys between a CH and each of its children (or group of children) using lightweight group



key based mechanisms whenever possible, falling back on more expensive, BS-mediated
mechanisms whenever necessary.

Our solution is highly distributed, takes into account node interaction patterns that are
specific to clustered WSNs, and enables data aggregation at CHs.

We also evaluated the overhead incurred by our solution. The results showed that the
overhead incurred by our protocols in terms of energy consumption ranges from fairly
small (in cases where multiple children in a cluster share a key) to tolerable (in cases where
each child share a pairwise key with its CH). We conclude that our solution is practical.
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