Received: 1 March 2017 Revised: 17 July 2017 Accepted: 12 August 2017

DOI: 10.1002/nem.1998

SPECIAL ISSUE PAPER WILEY

NomadiKey: User authentication for smart devices based on
nomadic keys

Artur Souza™ | Ttalo Cunha | Leonardo B Oliveira

Department of Computer Science,
Universidade Federal de Minas Gerais, Summary

Belo Horizonte, Brazil The growing importance of smart devices calls for effective user authentication

Correspondence mechanisms. We argue that state-of-the-art authentication mechanisms are

Artur Souza, Department of Computer either vulnerable to known attacks or do not meet usability needs. To address
Science, Universidade Federal de Minas

_ _ this problem, we designed NomadiKey, a user-to-device authentication mech-
Gerais, Belo Horizonte, MG, 31270-901,

Brazil. anism based on nomadic keyboard keys. NomadiKey increases security level
Email: arturluis@dcc.ufmg.br by placing keys at different screen coordinates each time it is activated.
Funding information Besides, NomadiKey preserves usability by maintaining the traditional relative

CAPES; CNPQ; FAPEMIG position of keys. To increase security even further, we also design an extension
to NomadiKey that uses out-of-band channels to thwart shoulder-surfing adver-
saries. We compare NomadiKey with other user authentication mechanisms
under different attacks using statistical models and simulation. We also eval-
uate NomadiKey's usability with 20 users. Our results show that NomadiKey
increases security compared to widely deployed PIN authentication with limited
impact on authentication times.

1 | INTRODUCTION

The Internet of Things (IoT)! denotes a paradigm where users are surrounded by computing elements and sensors
attached to all sorts of everyday objects. These elements, called “things,” enable a series of new and ubiquitous applications
that impact every aspect of users’ day-to-day routine.?

With the ongoing expansion of IoT deployment and functionality, it is paramount to ensure devices are properly
secured; otherwise, adversaries will easily exploit the devices or the applications they provide.* The recent Mirai botnet
attacks,” which disrupted a large fraction of the Internet for several hours, are a clear example that IoT devices are already
considered valuable targets and that failing to ensure their security leads to severe consequences.

Notably, ensuring the security of smart IoT devices, like smartphones and tablets, is critical. These devices are vastly
more powerful than other IoT devices (like wearables or sensors) and they often serve as gateways for users to control
and manage their other IoT devices.** These 2 aspects, together with the massive (and bound to grow) amount of private
information and sensitive applications currently available on these devices turn security into a paramount concern.® In
particular, stronger user-to-device authentication mechanisms are paramount to prevent unauthorized access to personal
smart devices and, consequently, to other IoT devices.®

Usability is almost, if not equally, as important as security in authentication mechanisms. It has been shown that
users will not use stronger authentication mechanisms if they are slow or hard to use.” However, to achieve higher

*For example, see https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet.

Int J Network Mgmt. 2018;28:€1998. wileyonlinelibrary.com/journal/nem Copyright © 2017 John Wiley & Sons, Ltd. 10f19
https://doi.org/10.1002/nem.1998

https://doi.org/10.1002/nem.1998
http://orcid.org/0000-0002-6927-4275
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet.

20f19 W I L E Y SOUZA ET AL.

security, authentication mechanisms often sacrifice usability.® This implies on a trade-off between security and usability
that hinders the design of new secure authentication mechanisms.

The design is further handicapped by IoT's stronger adversary model. Adversaries may take advantage of the smart
device's functionalities (eg, their sensors or capacitive screens) to launch attacks that were not previously possible on
authentication mechanisms.’ The inherent mobility of these devices also becomes a drawback, as users may lead these
devices into unsafe areas where it is easier for adversaries to launch attacks or steal the device.’ If the adversary obtains
the authentication secret and steals the device, he can impersonate the user and access the device.'

In this paper, we consider 3 classes of attacks against authentication mechanisms (Section 2), namely, smudge, computer
vision, and shoulder-surfing attacks. Smudge attacks exploit residues left on the screen after authentication to identify
where the screen was touched and infer the numbers in a classic personal identification number (PIN) or the pattern
used to unlock the phone. Computer vision attacks use computer vision techniques to estimate the position of the fingers
(and shadows) as they approach the screen to infer when and where the screen was touched. Shoulder-surfing adversaries
observe the user authenticating, or videos of the user authenticating, to obtain everything the user input during authen-
tication. We consider these attacks because of their simplicity and effectiveness on existing authentication mechanisms.
Evaluation of these attacks shows success rates as high as 92%,"! 98%,'* and 95%,'* respectively.

To defend against the aforementioned attacks, we present a novel authentication mechanism robust to these attacks
while incurring a negligible increase in authentication speed (Section 3). NomadiKey,' as it is called, places keys at
different absolute positions on the screen each time, preventing the attacks from inferring which keys are pressed
during authentication and improving security. Besides, NomadiKey preserves usability by maintaining relative key
positions, helping users navigate the keyboard and locate keys. To increase NomadiKey's security against attacks, espe-
cially against shoulder-surfing attacks, we also present a security extension for NomadiKey that uses vibrations as
an out-of-band channel during authentication. Preventing adversaries from retrieving the entire authentication secret
through shoulder-surfing attacks.

We evaluate NomadiKey regarding its security and usability. We compare NomadiKey's security with 5 other authen-
tication schemes in face of smudge, vision, and shoulder-surfing attacks (Section 4), and we compare the usability of
NomadiKey with the usability of classic PIN authentication and of PIN authentication on random keyboards. Our results
indicate that NomadiKey strikes an interesting trade-off between security and usability. With the usability of NomadiKey
being almost as good as that of classic PINs and its security several times higher. We believe the small usability overhead
may discourage security-oblivious users from adopting NomadiKey,”"* but we claim it is an interesting solution for users
that require stronger security and are willing to sacrifice usability for it.

We make the following contributions:

present worst-case scenario models of existing attacks on user authentication mechanisms;

the conception of NomadiKey, a new authentication mechanism on smart devices;

the design of a security extension to NomadiKey to protect users against shoulder-surfing attacks;

analytical and empirical analysis of security and usability of NomadiKey with and without the security extension and
a comparison with other known authentication mechanisms.

A

The rest of this paper is organized as follows: Section 2 presents a background on user authentication on smart devices.
Section 3 describes NomadiKey, our solution. Sections 4 and 5 present, respectively, security and usability evaluations of
NomadiKey as well as a comparison with other known authentication mechanisms. Finally, in Section 6, we conclude
this work.

2 | BACKGROUND

In this section, we discuss recent research on user authentication mechanisms for smart devices (Section 2.1) and attacks
developed to circumvent these mechanisms (Section 2.2).

2.1 | User authentication mechanisms

User to device authentication mechanisms can be divided into 3 categories: (1) something the user has, (2) something the
user is, and (3) something the user knows. In this section, we highlight the state of the art of each category.

SOUZA ET AL. Wl L EY 3 0f19

TABLE1 Summary of user authentication categories

Category Authenticator Security Usability Flexibility Privacy
Physical Token Low High Low High
Biometric ~ Biometric features Very High High Very Low Low
Knowledge Secret Low to high Medium tolow High High

Table 1 summarizes the work presented in this section regarding the type of secret used, usability, and security lev-
els, flexibility (how easy it is to create, change, or delete secrets), and privacy of the solution (how much information is
disclosed through the secret).

2.1.1 | Something you have

Users can authenticate using a physical authenticator they have, like a token or smart card. In this category, Bojinov and
Boneh!® have proposed two token based authentication mechanisms for smartphones. In the first mechanism, the user
carries a token capable of modulating a digital signal through changes in a magnetic field. The user authenticates by
triggering the signal using his token. The second mechanism works in a similar fashion but uses sound generated by a
buzzer to transmit signals to the smartphone instead.

Limitations. While the authentication process is often simple, there are a few drawbacks to token-based
authentication.'” First, users are required to carry their token at all times, which may become a hassle. Second, if a user for-
gets or loses his token, he is locked out of his device. Third, if an adversary wishes to impersonate the user, he may simply
simultaneously steal the authenticator and the smart device. Finally, it is not easy to replace a lost or stolen authenticator.
Few works propose token-based authentication for smart devices, possibly because of the aforementioned drawbacks.

2.1.2 | Something you are

Users can also authenticate through their own biometric features like fingerprint, voice, or behavior.'®# Pan et al,* for
instance, propose using hand characteristics like skin tone, palm length, finger valleys, and finger width to authenticate
users. They rely on an RGB-NIR camera pair to retrieve information from users’ hands.

Mock et al*! propose an authentication mechanism based on iris recognition. The authors propose using a commercial
eye tracker to continuously scan the user's iris to achieve continuous authentication. That is, the device locks itself at any
time if it decides that the current user is not legitimate. As a complement to their work, the authors suggest combining
iris recognition with gaze tracking for more precise authentication.

Zhang et al* use phonemes to ensure liveness for voice authentication. The authors use smartphones' microphones to
obtain users' voice samples and compare it to a stored recording for the sake of authentication. Their proposed system
is able to differentiate live users from recordings based on nuances of the human speech producing process. Since live
users and recorders generate sounds differently, their system is able to determine when the voice sample comes from a
recording and deny authentication.

Jakobsson et al'? propose analyzing the smartphone usage to authenticate users implicitly. In their scheme, the device
creates a usage pattern based on the actions the user often conducts in his routine to, later, authenticate the user based on
this routine. They create the usage pattern based on user location, phone activity (when the phone is used) and application
activity (which applications are used and when). Their authentication mechanism is continuous and implicit.

Similarly, De Luca et al’® analyze touch patterns to improve pattern-based authentication. The authors claim that
the way in which users draws their patterns is unique and can be used to strengthen pattern-based authentication.
To construct the user's touch pattern, they consider the touch size, movement speed, gesture time, pressure applied, and
touch coordinates.

Finally, Jie et al*® propose a sensor-based authentication scheme. They expand on existing gesture-based authentication
by using the device's sensors. Their scheme uses touch sensors to identify gesture movements and hand geometry, size,
and movement. At the same time, the device's accelerometer and gyroscope are used to record device displacement and
rotation during authentication. All the information extracted is combined to form a user fingerprint model, later used
during authentication. To optimize authentication, the authors suggest 2 gestures that help sensors extract the maximum
amount of information possible.

Limitations. Biometric mechanisms usually require simple actions from users during authentication and are vulner-
able only to few attacks, which makes them an interesting option for smart devices. These mechanisms, however, require

40f19 W I L E Y SOUZA ET AL.

user's biometric features to be stored as secrets in the device. This raises privacy concerns as stealing this secret means
stealing private user information, such as the user's fingerprint. Besides, attacks have been shown to be successful on
biometric schemes by tricking the authenticator using, for instance, photos, videos, or fake fingerprint models.** Lastly,
biometric factors are often unique and final, meaning a user cannot change the secret (his biometric features) once they
are leaked and must use the same secret on all systems that rely on the same feature.

2.1.3 | Something you know

Users can also authenticate themselves by inputting some secret previously configured on the device.”** This type of
authentication is the most common on smart devices.* The security and usability of these mechanisms are heavily affected
by the secret chosen; complex secrets increase security but impair usability.*? Previous work, similar to ours, try to achieve
a better trade-off between security and usability. To achieve this, some authors propose novel authentication mechanisms,
while others propose improvements on existing mechanisms.

Chen et al,* for instance, propose a novel rhythm-based authentication mechanism. In their mechanism, users authen-
ticate by performing a series of taps and slides on the device screen, following a rhythm. The mechanism also takes
in consideration behavioral metrics during authentication, being a combination of biometric and knowledge-based
authentication.

Dunphy and Yan* have proposed an improvement on graphical password schemes based on background images.
They claim that users often choose weak or predictable graphical passwords that undermine the security of the
authentication mechanism. To address this issue, they propose adding background images to discourage predictable
drawings.

Uellenbeck et al** aim to improve pattern-based authentication by motivating users to create stronger patterns.
The authors identify that most users create similar patterns by making default choices, for instance, starting the pattern
in the top-left button. They show that this biases the patterns created and enables dictionary attacks. To address this, they
propose several different layouts for the distribution of dots on the screen. They aim for layouts that do not compel users
to follow predictable patterns, leading to stronger and more diverse patterns.

Similarly, Haque et al*’ try to improve password-based authentication by motivating users to create stronger passwords.
They claim that users often avoid adding special characters on smart devices passwords because of the hassle of adding
them. To address this, they design a new keyboard layout that facilitates the input of special characters during password
creation and entry, to motivate users to include special characters more often.

Krombholz et al*® propose using pressure sensitive touchscreens to improve PIN-based authentication. The authors
propose a PIN-based authentication mechanism that allows users to press keys in 2 different intensities. When creating
and entering their PINs, users can press a key strongly or lightly. The goal of their solution is to thwart shoulder-surfing
adversaries if adversaries are unable to observe the pressure applied to the touches.

Similarly, Arif and Mazalek’ propose an improvement to PIN-based authentication based on strokes. They propose an
authentication mechanism that allows users to stroke keys in a certain direction, rather than simply tapping the keys.
Their solution increases the password character space from 10 to 50 distinct entries.

Yue et al® propose an attack on authentication mechanism and, based on the attack, design 2 authentication mech-
anisms as countermeasures. The attack proposed is the computer vision attack we consider in this work (Section 2.2).
To thwart this attack, they propose 2 novel keyboard layouts. Their first mechanism simply randomizes the position of
each key in the keyboard, preventing computer vision attacks from recovering the touched key. The second mechanism
not only randomizes key positions but also applies a Brownian motion to them, making keys move around the screen in
a fixed region. Both attacks succeed in preventing computer vision attacks at the expense of high usability loss.

Limitations. While there is much work on novel or improved user authentication mechanisms, we argue that existing
mechanisms still do not fully address the user's needs. In particular, existing knowledge-based mechanisms either fail to
protect the user from known attacks (Section 2.2) or fail to provide good usability to users. We conceive NomadiKey and
its security extension to address these shortcomings, ie, provide both security and usability at a reasonable level.

2.2 | Attacks against authentication mechanisms

We consider authentication mechanisms based on what the user knows, ie, mechanisms where the user inputs a secret
by touching the device's screen. We model attacks against these authentication mechanisms in the following 3 classes of
increasing sophistication.

SOUZA ET AL. Wl L EY 50f19

TABLE 2 Worst-case model of information
available to adversaries

Touch information

Attack Location Order Content
Smudge .

Vision ° .
Shoulder-surfing e . .

Smudge attacks use digital image processing on a photograph of the phone's screen to identify touch locations.'!**
Smudge attacks have been evaluated against PIN*® and pattern'"> authentication, with success rates as high as 70% and
92%, respectively. Our worst-case model considers that smudge attacks can reliably and accurately identify touch locations
after authentication.

Vision attacks exploit videos of users during authentication to reverse-engineer the authentication secret.* Videos need
not capture the screen contents, just the screen and the user's hand.!>*¢ Videos also need not be high quality, as previous
work has shown successful attacks using recordings of a reflection of the device's screen.*’ Vision attacks have been shown
to achieve success rates as high as 94% and 98% for direct recordings'**® and 78% for reflections or low-quality recordings.”’
Our worst-case model considers that vision attacks can reliably and accurately identify both touch locations and touch
order.

Shoulder-surfing attacks exploit images captured from a privileged position to obtain screen contents along with user
hand movements."**¥ While the conventional definition of this attack assumes the adversary is physically standing behind
the user and observing the screen, variations include adversaries analyzing recordings made from hidden or public
cameras," with success rates higher than 95%. Our worst-case model considers that shoulder-surfing attacks can identify
touch positions, touch order, and screen contents. Our models are summarized in Table 2.

Finally, smart devices are equipped with various sensors that allow the design of alternative authentication mecha-
nisms (eg, using rhythm).? Unfortunately, sensors can also be used to perform attacks on authentication mechanisms,
for instance, by using the motion sensor, ambient light sensor, camera, and microphone to detect when the user touches
the screen and to infer the touch position from properties like device orientation and movement.***° In this paper, we do
not consider sensor-based attacks directly. We note, however, that sensor-based attacks are likely to fit in the smudge or
vision categories (Table 2).

3 | NOMADIKEY

The PIN and pattern-based authentication have high usability and are the most common authentication mechanisms
used on smart devices.*! Unfortunately, they are vulnerable to the attacks described in Section 2.2. A classic PIN keyboard
is shown in Figure 1. An alternative to classic PIN authentication is password encryption key,*® which randomizes the
number on each key for each authentication. Figure 2 shows an example of random keyboard. Privacy enhancing keyboard
increases security level, but it also degrades usability as users are no longer able to build a visual map of their PIN on the
keyboard, taking twice as much time to unlock the screen.® It has been observed that a typical user will not adopt more
secure authentication mechanisms if they introduce complexity.’

In what follows, we present NomadiKey, a new authentication mechanism for smart devices that targets what we believe
is a good balance between security and usability. The essence of NomadiKey is an algorithm that allocates positions for
keys on the screen as freely as possible but under the constraint that the relative order among them is the same as in a
traditional keyboard. In other words, NomadiKey can be seen as a middle ground between classic PIN authentication and
random keyboard PIN authentication.

More precisely, NomadiKey places keys at random absolute positions while constraining the relative position of keys.
Figure 3 shows an example keyboard built by NomadiKey. Keys are in random positions, but observe that keys on the first
line (1, 2, and 3) are above other keys and keys on the first column (1, 4, and 7) are to the left of other keys. As we will
show in Sections 4 and 5, random absolute positions result in a higher security level against smudge and vision attacks,
while classic relative key positions allow users to authenticate almost as quickly as on a normal keyboard.

sot19 | \A/[p EY

SOUZA ET AL.

FIGURE1 Classic keyboard

FIGURE 2 Random keyboard

4139
1 2 3
4 5 6
7 8 9

9198
0 8 6
3 7 2
5 1 9

SOUZA ET AL. Wl L EY 7 of 19

0991

FIGURE 3 NomadiKey

3.1 | NomadiKey: key position algorithm

NomadiKey partitions the screen in a grid with as many rows and columns as the authentication keyboard (4 rows and 3
columns for a traditional numeric keyboard). Columns and rows are placed at random locations, and keys are placed in
a random location in their corresponding grid cells. We show pseudocode for NomadiKey in Algorithm 1.

Let S, and Sj, be the screen width and screen height, respectively; and let B, and B, be the button width and button
height, respectively; let C and R be the number of columns and rows in the keyboard, respectively. We consider the top-left
corner of the screen is the origin, ie, the point (0, 0).

NomadiKey partitions the screen into columns and randomizes the coordinate x(c) where each column ¢ € [1, C] starts.
For each column c € [1, C], NomadiKey computes its minimum possible starting coordinate xmpin(c) as

Xmin (¢) =x(c — 1) + aB,,. (€8]

The aB,, term in Equation 1 ensures that there is space for placing keys in column ¢ — 1, where a > 1 is a factor that
defines the minimum width of a column as a function of the button width B,,. We set x(c — 1) = Xmin(c — 1) if column
¢ — 1 has not been placed yet. This makes xy;,(c) the smallest coordinate that still reserves at least aB,, for each unplaced
column to the left of column c. We define x(0) = —aB,,. Similarly, the maximum possible starting coordinate xmax(c) for
column c is

Xmax (€) =x(c+ 1) — aB,,. 2)

To cover the case where ¢ = C, we define x(C + 1) = Sy, + aB,,.
NomadiKey then chooses coordinate x(c) where column c starts uniformly distributed between xyn(c) and Xxpax(c):

x(€) = Umin (), Xmax (©)). (3)

NomadiKey repeats this computation exchanging x for y, C for R, and B,, for B, to compute y,,;,(r) and y,,,.(r) for
each row r € [1,R] (see Algorithm 1). NomadiKey then chooses the coordinate y(r) where each row r starts uniformly
distributed between y,;,(r) and y... ().

8of 19 WI LEY SOUZA ET AL.

Algorithm 1 Key placement

1: C < number of columns

2: R < number of rows

3: B, < button width

4. By < button height

s: U(a, b) < uniformly distributed random number between a and b
6: procedure COMPUTE Xy (€)

7 if column ¢ — 1 has been placed then

8 return x(c — 1) + aB,,

9

else
10: return X, (c— 1) + aB,,
11: procedure COMPUTE Yyux (¥)
12 if row r + 1 has been placed then
13: return y(r + 1) — aB,,
14: else
15: return yn,x (r + 1) — aB,

{Procedures for xXyax and ymin are analogous}
16: procedure NOMADIKEY
17: for ¢ € random(1, C) do

18: x(¢) < U(Xmin (€), Xmax (€))

19: for r € random(1, R) do

20: Y(r) < U¥min (1), Ymax (1))

21: forc e [1,C] do

22: forr € [1,R] do

23: place key in column ¢, row r at position

Ux(e),x(c+ 1), UQm),y(r+1)

The algorithm ensures each grid cell is at least aB,, units wide and at least a B, units high, which guarantees NomadiKey
can place all keys. NomadiKey chooses the x coordinates of keys on column ¢ uniformly distributed between x(c) and
X(c + 1), similarly for y coordinates.

NomadiKey has decreasing flexibility (more constraints) to place any remaining columns as more columns are placed.
Left unchecked, this decreasing flexibility could bias columns placed last to specific regions on the screen. This same
behavior applies to rows. To avoid this bias, NomadiKey places columns and rows in random order on each execution.

3.2 | NomadiKey ++: shoulder-surfing protection

By randomizing the keys' absolute position, NomadiKey strikes a higher security level against smudge and vision attacks
(Section 4). However, NomadiKey remains vulnerable to shoulder-surfing adversaries that can identify where each key is
placed. To protect the user against this type of attack, we have designed an extension to NomadiKey based on out-of-band
channels.

Adversaries perform shoulder-surfing attacks by positioning themselves near unsuspecting users and observing them
authenticate. To protect against this type of attack, we designed an extension to NomadiKey, called NomadiKey ++,
that uses vibrations as an out-of-band channel during authentication. Because adversaries are unable to detect the vibra-
tions by observing the user authenticate, they are no longer able to discover the entire authentication secret through
shoulder-surfing attacks.

NomadiKey ++ provides increased protection against shoulder-surfing, smudge, and computer vision attacks at the
cost of lower usability. Because of this extra usability impact, we conceived it as an extension, rather than a standalone
authentication mechanism. That is, it is not meant to be used as the sole authentication mechanism of the device; instead,
it is activated when the user wishes for stronger authentication. For instance, when the user thinks someone might be
observing him use his device.

NomadiKey ++ works as follows. When it is triggered, the user is presented with a NomadiKey keyboard, as described
in Section 3.1. As soon as the keyboard appears, NomadiKey++ starts highlighting keys one by one. In 2 random digits,

SOUZA ET AL. Wl L EY 9 of 19
IE3E3

FIGURE 4 NomadiKey ++

the device vibrates while highlighting the key. After all keys have been highlighted, the user authenticates himself by
entering his secret and the 2 keys indicated by the vibrations. The extra keys can be included in any order and position,
even between digits of the secret. Figure 4 shows an example of NomadiKey++ highlighting the key 2.

For example, suppose the device vibrates on digits 4 and 7 and the user's secret is 1331. To authenticate, the user may
enter any string that includes the original secret and the 2 extra digits in any order and position (eg, 133147, 471331,
143371, etc). An adversary attempting a shoulder-surfing attack will see only the entered sequence (eg, 143371) and will
not know which digits belong to the user's PIN and which are random digits included by NomadiKey ++.

In the following sections, we evaluate and compare the security and usability of NomadiKey and NomadiKey ++
with other authentication mechanisms. In Section 4, we show an analytical evaluation and in Section 5, an empirical
evaluation.

4 | ANALYTICAL EVALUATION

In this section, we compare the security of NomadiKey and NomadiKey ++ with classic and random PIN keyboard
layouts, pattern-based authentication (Figure 5), LG's new Knock Code' (Figure 6), and Samsung's Digital Door Lock*
(Figure 7). Before presenting the comparison, we briefly explain LG's Knock Code and Samsung's Digital Door Lock.

LG's Knock Code allows users to authenticate by performing a series of taps (“knocks”) on the device's screen. These
taps can be performed in 1 of 4 quadrants (top left, top right, bottom left, and bottom right) and the user may use from 3 to
8 taps. Knock Code allows users to perform the taps anywhere on the screen, as long as the quadrants are clearly defined.

Samsung's Digital Lock uses random digits to increase the security of its PIN-based authentication against smudge
attacks. When the user begins its authentication process, Digital Lock lights up 2 of its digits. To authenticate, the user first
presses the 2 lit digits and a confirmation button and then enters his PIN. The goal of this feature is to prevent adversaries
from retrieving the user's PIN from fingerprint marks left on the door lock, ie, it aims to prevent smudge attacks.

http://www.lg.com/us/mobile-phones/knockcode
*http://www.samsungdigitallife.com/DigitalDoorLock.php

http://www.lg.com/us/mobile-phones/knockcode
http://www.samsungdigitallife.com/DigitalDoorLock.php

10 of 19 Wl L EY SOUZA ET AL.

Vivo
Draw your unlock pattern

FIGURE 5 Pattern authentication

Vivo
Tap knock code sequence to unlock

FIGURE 6 Lg's Knock Code

SOUZA ET AL. Wl LEY 11 of 19

8

0

SAMSUNG

FIGURE 7 Samsung's Digital Lock

TABLE 3 Security coefficient under different attack models

Security coefficient
echanism e operation Smudge attac ision attac oulder-su
Mechani Saf ti Smudge attack Visi ttack Should rfing
. n n!
Classic PIN 10 T 1 1
. 10 n! 10!
Random Keyboards 10 (7) T T 1
. n n!
NomadiKey 10 P T P 1
Pattern <2 2 1 1
©-n)!
Knock Code 4n ! 1 1
[T, !
. . n n+f n!
Digital Lock 10 Gf o 1 1
. n n+f n! n+f n+f
NomadiKey ++ 10 Gf * PHL o Gf * P Gf

n = secret length d = distinct keys r; = repetitions of keyi f=number of random digits added

We compare all these authentication mechanisms through their security coefficient, their number of possible distinct
authentication secrets. The inverse of the security coefficient gives the probability of authenticating successfully by enter-
ing a random secret. We compare the security coefficients under safe operation (“no attack™) as well as under smudge,
vision, and shoulder-surfing attacks, as defined in our attack models in Section 2. Each attack provides information about
the user's secret; they allow an adversary to prune the set of possible secrets and decrease each mechanism's security
coefficient.

Table 3 shows closed formulas for the security coefficient of the evaluated mechanisms under safe operation and under
each attack. We express security level as a function of the secret lengthn, the number of distinct keys d, the repetitions r;
of a key i and the number of random digits f added by NomadiKey ++ and Digital Lock. We consider as keys the digits
in PINs, NomadiKey, and Digital Lock; the knocks in Knock Code; and dots for pattern authentication. Note that we
consider a more generic version of Digital Lock that adds f random digits instead of 2.

12 of 19 Wl LEY SOUZA ET AL.

4.1 | Security under safe operation

Under safe operation, the security coefficient of keyboard authentication grows exponentially with secret length. We note
Knock Code's security level is equivalent to that of a 2 X 2 keyboard. The exponent's base is the number of possibilities for
each PIN digit or screen quadrants for knocking. The security of pattern-based authentication, in turn, depends on the
number of dots available for pattern continuation, which is given by the n permutation of the 9 possible dots.

Note that the security coefficient for pattern-based authentication is lesser or equal to the n permutation of 9 dots.
This is because not all patterns are possible for every dot subset. For instance, a pattern starting at the top-left dot followed
by the bottom-right dot, without passing through at least 1 other dot first, is impossible. Also note that the extra digits
added by Digital Lock and NomadiKey ++ do not increase security under safe operation because an adversary has to
guess only the n original PIN digits.

4.2 | Security under smudge attacks

Smudge attacks allow adversaries to identify the location where the screen was touched but not the order. Because of their
predictable layout, classic PIN, pattern, and Knock Code authentication are vulnerable to smudge attacks. For classic PIN
authentication, each touch allows the adversary to identify 1 number in the PIN. After identifying the numbers in the
PIN, the adversary needs to guess the order in which they should be entered.

With no repetitions, the adversary needs to try all n! permutations of the numbers. With repetitions, we divide by the
number of permutations of each repeated key, as they are equivalent. Again, Knock Code's security is equivalent to that
of a 2 x 2 keyboard.

For PIN authentication on random keyboards, knowing where the user touched the screen does not provide any infor-
mation on which keys were pressed. The only information revealed to the adversary is the number of distinct digits in the
secret. For any d distinct touch points, the adversary needs to try all (1;) key combinations. For each key combination,
the adversary has to try all possible orderings, as in classic PIN authentication. Since knowing the touch position does
not provide any information about the pressed key on random keyboards, changing the absolute position of keys does not
increase its security.

NomadiKey is a middle-ground between PIN authentication on classic and random keyboards. The random absolute
position of NomadiKey's keys prevents an adversary from discovering exactly which keys were pressed based on smudge
touches. As in random keyboards, the adversary must try a number of key combinations P and all possible orderings for
each key combination. The number of key combinations P, however, is less than random keyboard's (1;> because the
adversary can ignore key combinations that contradict NomadiKey's restriction on keeping the relative position of keys.
For instance, if the smudge reveals 2 perfectly aligned touches in a vertical line, the adversary can infer that the pressed
keys belong to 1 column and prune the set of possible values for each key. Any PIN that does not fit in the pruned set can
be ruled out as incompatible with the pressed keys. The value of P depends on the inputs to Algorithm 1; in particular,
P depends heavily on key width and key height, as they determine intervals for column and row start positions
(Equations 1 and 2). The value of P also depends on secret length, as longer secrets allow for more key combinations but
also give away key placement. In Section 5, we show empirical values of P for different secret lengths.

For pattern-based authentication under smudge attacks, we note that each dot can only be visited once, ie, the pattern
is a Hamiltonian path. An adversary can authenticate by inputting the pattern seen in the smudge in forward and reverse
directions. We also note that although drawing the pattern may lead to intersections (eg, drawing the 2 diagonals intersect
at the center), each dot is visited the first time it is touched and the order of the touches can be easily identified in the
smudge trail. An attacker needs only try which direction the dots must be connected.

In Digital Lock and NomadiKey ++, f random digits are entered together with the PIN during authentication.
When analyzing the smudge, an adversary is unable to distinguish the digits belonging to the PIN from the random
digits added by the authentication mechanism. To discover the user's secret, the adversary must first discover which digits
belong to the user's PIN.

The number of possibilities for the adversary to remove the random digits from the user's PIN is given by the number
of distinct combinations of f digits that can be removed from the n + f digit set, where some of the digits repeat and others
do not. We note that the number of possibilities for removing f digits from the n + f'set is the same as the possibilities of
choosing the real n PIN digits from the n + fset. The number of possible combinations can be calculated using generating
functions.*

SOUZA ET AL. Wl LEY 13 of 19

r; .
With generating functions, the combinations can be modeled as a product of equations of the form) x!, where 7; is
i=0
the number of repetitions of the key i. The expanded form of this product is an equation of order n + f. The number of
combinations of f elements that can be taken from a set of n + f elements is given by the coefficient of the ¥’ component
in the expanded form of the equation.
For instance, consider that the smudge attack reveals the n + fset 135578, with n = 4 and f = 2. The number of

combinations of ftaken from n + f can be computed with the equation:
A4+x+x) % 1+ =x 450 + 11x* + 14x° + 11x% + 5x + 1. 4)

Since the coefficient of x/=2 is 11, there are 11 distinct combinations of 2 digits in this set.

In our evaluation, we use G}Hf to express the number of possibilities of choosing fdigits from an n+fsubset, considering
key repetitions.

Finally, the security coefficient under smudge attacks of Digital Lock is given by the number of combinations G and
the number of permutations of n. That is, the adversary has to, first, discover which are the real digits from the user's PIN
and, second, discover the real order of the digits on the real PIN. For NomadiKey ++, the security coefficient is given by
G™ the permutations of n, and the parameter P. That is, the adversary has to test all the permutations of all the G
combinations of all the n + f sets that do not contradict NomadiKey's restrictions, based on the touches revealed by the
smudge attack.

4.3 | Security under vision attacks

Our model for vision attacks gives additional information compared to smudge attacks, so all authentication mechanisms
have reduced security coefficients. Vision attacks allow an adversary to know where the screen was touched and in which
order. Classic PIN authentication, pattern-based authentication, Knock Code, and Digital Lock have “static keys,” so
vision attacks give full information over which keys were pressed and in which order. Besides, Digital Lock's random
digits are always entered before the user's real PIN digits, allowing an adversary to know which digits do not belong to
the user PIN. Hence, the security coefficient of these mechanisms is 1.

NomadiKey and PIN on random keyboards provide some security against vision attacks as an adversary does not know
exactly which keys were pressed. In NomadiKey, the adversary has to try all possible P key combination for a given set of
touch points; similarly, an adversary has to try n permutations of 10 keys for PIN authentication on random keyboards.

Unlike Digital Lock, the random digits of NomadiKey ++ can be added at any point during authentication, meaning,
an adversary cannot distinguish random digits from real PIN digits based on the touch position and order. In NomadiKey
++, the adversary still has to decide which digits belong to the user's secret for all possible keyboard configurations of
NomadiKey.

4.4 | Security under shoulder-surfing attacks

Our model for shoulder-surfing attacks allows an adversary to identify the exact keys touched in NomadiKey and random
keyboards, completely revealing the authentication secret. NomadiKey ++ is the only mechanism that provides a
nontrivial security coefficient. NomadiKey ++ uses vibrations during authentication to communicate random extra
digits to the user, which are entered together with the real PIN during authentication. A shoulder-surfing adversary
cannot distinguish the numbers that vibrated from the numbers that were just highlighted and, thus, cannot distinguish
between random and real PIN digits. Because of this, the security coefficient for NomadiKey ++ under shoulder-surfing
remains G*.

Finally, we recall that the nomadic keys of NomadiKey and the out-of-band channel of NomadiKey ++ can be
combined with other existing authentication mechanisms to increase their security level and robustness against attacks.
For instance, NomadiKey and NomadiKey ++ can be combined with pressure-sensitive touchscreens,* doubling the
possibilities for each digit of the secret and increasing robustness against all aforementioned attacks. NomadiKey and
NomadiKey ++ can also be combined with strokes, where a user may stroke a key in four directions (up, down, left,
or right) instead of simply touching it.” Strokes increase the possibility for each digit to 50 instead of 10. It is expected,
however, that combining these mechanisms will increase NomadiKey's security level at the expense of usability.

14 of 19 Wl LEY SOUZA ET AL.

5 | EMPIRICAL EVALUATION

In this section, we present results of our empirical evaluation of NomadiKey and NomadiKey ++. We complete our
security analysis by assessing the value of the parameters P and G™ . We also evaluate and compare the usability of
NomadiKey, NomadiKey ++, classic PIN keyboards, and random PIN keyboards using prototypes we developed for each
mechanism.

5.1 | Security evaluation

To complete our security evaluation of NomadiKey and NomadiKey ++, we evaluate the values of P and G}Hf empirically.

Recall that P is the number of possible key combinations given a set of touch positions. Also, recall that G" is the number

of possibilities for the adversary to remove the random digits from the user's PIN in NomadiKey ++ and Digital Lock.

To estimate P, we implemented a purpose-specific program that simulates a computer vision attack on NomadiKey.
Our simulator receives a set of touch positions and the order of these touches as input (the information obtained through
a computer vision attack). Based on this information, it prunes the set of possible user secrets to remove all secrets that
are not possible (eg, 5-digit secrets when there were only 4 touches) or that contradict NomadiKey's button placement
restrictions. The number of remaining possible secrets represents the mechanism’s security coefficient and, in this case,
the parameter P.

To evaluate the distribution of P, we generate up to 10° distinct random secrets out of the 10!/(10 — d)! possible secrets
with d distinct keys, for d varying from 1 to 7. We then generate 100 different keyboard layouts for each secret using
Algorithm 1 with @ = 2, ensuring each row (column) is at least 2 buttons wide (high). Finally, we simulate a computer
vision attack on each of the 107 (secret, layout) pairs using our simulator.

The size of the buttons used by NomadiKey greatly impact its security and usability. Bigger buttons are easier to find
and reach, leading to fewer errors and shorter authentication time, consequently, better usability. Conversely, smaller
buttons are easier to distribute throughout the screen, leading to a more diverse set of keyboard layouts, consequently,
better security. Because of the impact of button size on security, we evaluate P with small and big buttons.

Figure 8 shows the distribution of P for large keys that are the same size as keys in keyboards used for classic PIN
authentication (Figure 1). The PIN-sized keys do not allow any overlap in column start positions and adversaries can
automatically infer the column of each key from the touch position, a conservative configuration scenario for NomadiKey.
We note, however, that even with fixed columns, NomadiKey can still yield a remarkable higher security level than classic
keyboards.

Figure 9 shows the distribution of P for small keys that are the same size as keys in Android's portrait mode typing
keyboard (Figure 3). We observe that, as key size decreases and NomadiKey flexibility increases, security increases signif-
icantly. For PINs with 4 distinct keys, NomadiKey increases the security coefficient by more than 50 times in the median
case. Vertical trends for d = 1 and d = 2 happen for touch positions where an adversary would have to try all possible
d-key combinations, as for PIN authentication on random keyboards.

To conclude the evaluation of the security level of NomadiKey ++, we show in Table 4 the average value of G,
We generate all possible combinations of secret length () and extra values (f) and compute the average. As expected, the
security level increases together with both n and f, with fincreasing the security level more sharply than n. That is, there
is a sharper increase on G}”f between columns than between rows.

2 a _

o = prm—
2 _I—E'_'_'_‘
& |

%" =" :

T

i 4'_5_1—,—

o - st
Frage | a=2
e - d=3
EN m d=4
35 | .dns
go r W d=7
Gey 2 4 6 8 10 12

FIGURE 8 Empirical evaluation of the number P of possible key combinations in NomadiKey for a given set of touch positions and large
(PIN-size) keys

SOUZA ET AL. Wl LEY 15 0f 19

aaaaa

Cumulative Fraction of Secrels
00 02 04 06 08 1.0
| - ';ln & L B =

aa

150 200

=}
o |
o
==
o
=]

FIGURE 9 Empirical evaluation of the number P of possible key combinations in NomadiKey for a given set of touch positions and small
(qwerty-size) keys

TABLE 4 Average number of combinations

Extra Digits (f)

Secret Length (n) 1 2 3

3 2.4 4.57 7.18
4 286 591 10.67
5 319 753 14

6 3.6 9.05 19.1

5.2 | Usability evaluation

To evaluate the usability of NomadiKey and NomadiKey ++, we compare them to PIN authentication on classic and
random keyboards. We measure usability as the authentication delay, how long it takes for users to authenticate. We
implemented the 4 authentication mechanisms in an Android application. We considered PINs of 4 digits, based on
average secret length of 4.5 digits found in previous work.*?

We asked volunteers to authenticate in our developed application using each of the 4 authentication mechanisms. For
each mechanism, the user was presented with 5 different random secrets. The user authenticated 3 times with each of the
5 secrets for a total of 15 authentications per mechanism. For each authentication, the user presses a button to display the
keyboard and start the test. The application stores the time from the start of the test until the user enters the entire secret or
makes a mistake. Experiments where the user makes a mistake are ignored in the evaluation of the authentication delay.

We used 2 devices to perform usability experiments: an LG G3 and an LG G4. Both devices have screens of 5.5".
Before starting a usability experiment with a user, we gave a brief overview of the experiment and a brief explanation
of NomadiKey and NomadiKey ++. Users did not have any previous experience with either. We performed usability
experiments with 20 volunteers: 10 females and 10 males. User age varied from 18 to 70 years.

We evaluated versions of NomadiKey with keyboard-size and PIN-size keys, the same sizes used in our empirical secu-
rity evaluation (Figures 1 and 3). Recall that larger keys lead to better usability, while smaller keys lead to better security
but lower usability. We also evaluate NomadiKey ++ with smaller keys but not larger keys. Because NomadiKey ++ is
meant to be a security extension, only triggered when further security is needed. Hence, we only consider a version with
the more secure smaller keys. We argue the usability loss from smaller keys and NomadiKey ++ is reasonable, given the
security gain and sporadic use.

Figure 10 shows authentication delay for NomadiKey on large keys. We observe users authenticate almost as fast on
NomadiKey as on a traditional keyboard, with approximately 6% increase in delay in the median case. Similar to authen-
tication on a random keyboard, minimum authentication times for NomadiKey are not as fast as for traditional keyboards
(authentication delays for NomadiKey are at least 1500 milliseconds). We conjecture this is because of the nomadic nature
of the keys. By spreading the keys throughout the entire screen, NomadiKey makes it harder for users to (1) locate the
first key they need to type and (2) reach each key. In the median case, users can authenticate on NomadiKey 40% faster
than on random keyboards.

Figure 11 shows similar results for NomadiKey using small keys. As expected, decreasing key size results in longer
authentication delays. We remark, however, that even with small keys, users can still authenticate faster on NomadiKey
than on random keyboards (authentication delays are approximately 4000 milliseconds).

Figure 12 shows results for NomadiKey ++. Recall that we evaluate NomadiKey ++ with small keys only. It can be
noted that authentication delays on NomadiKey ++ are much higher than authentication delays on other authentication

16 of 19 Wl LEY SOUZA ET AL.

B 2
g -
@O
F o)
T o
5
o
3 s
2
woo]
E =
T o = Standand Keyboard
g e = Momadiey
a = W Random Keyboard
= . . . >
1 2 3 4 & 1]
Time (s)

FIGURE 10 Usability of NomadiKey and PIN authentication on large keys

1

Standard
HomadiKey
Random

Cumulative Fraction of Tests
0 02 04 06 08

Time (s)

FIGURE 11 Usability of NomadiKey and PIN authentication on small keys

1

Einmadir.céf

Nomadikey++ [discounting highlighting)

Homadikey++
T

Cumulative Fraction of Tests
0.2 04 06 08

1]

15 20 25 20
Time (s)

=]
L)
[
o

FIGURE 12 Usability of NomadiKey ++

mechanisms (Figure 11). There are mainly 2 reasons for this. First, PINs entered for NomadiKey ++ are longer (6 digits
instead of 4) because users must enter their PIN and the 2 random digits from NomadiKey ++. Logically, longer PINs
lead to higher authentication delays. Second, in NomadiKey ++, the user often waits for all keys to be highlighted before
he can authenticate. This process alone takes 4500 milliseconds, with each key being highlighted for 400 milliseconds.

We also show in Figure 12 the authentication delay of NomadiKey and NomadiKey ++ without considering the
highlighting period. Ignoring the highlighting period, the usability of NomadiKey ++ is close to that of NomadiKey.
We note that, while it is possible to speed up the highlighting period, doing so leads to lower usability (albeit lower
authentication delays) as it becomes harder for users to determine which key was highlighted when the vibration occurred.

Finally, we argue that the combination of NomadiKey and NomadiKey ++ strikes a good trade-off between security and
usability. Even for the lower usability variant of NomadiKey (ie, with smaller keys), the mechanism's usability remained
at least as good as the usability of random keyboards. Being on average only 1.3 seconds slower than traditional keyboards
and with a higher security coefficient. While, despite presenting lower usability, NomadiKey ++ presents a considerably
higher security level, being the only mechanism with nontrivial security coefficient under shoulder-surfing attacks.

We believe, however, that users may consider NomadiKey cumbersome and refuse to adopt it. In particular, a significant
fraction of users do not use any authentication mechanism on their smartphone' and most users are unwilling to use more
secure mechanisms if they impact usability.” We claim, however, that NomadiKey looks not only viable but a powerful
solution for users who are especially concerned with their privacy.

SOUZA ET AL. Wl LEY 17 of 19
6 | CONCLUSION

Smart devices are ubiquitous and the amount of personal, often sensitive, information they carry impose a need for higher
security. Unfortunately, users are reluctant to use stronger security mechanisms if they impact usability. To address this
issue, we proposed NomadiKey, a new user authentication mechanism that seeks to achieve a better trade-off between
security and usability through what we call nomadic keys. We also proposed a security extension to NomadiKey, called
NomadiKey ++, that can be triggered to provide better protection against attacks, especially against shoulder-surfing
adversaries. We evaluated both NomadiKey and NomadiKey ++ regarding their security level and usability and com-
pared our solutions to existing authentication mechanisms. We believe both NomadiKey and NomadiKey ++ strike an
interesting trade-off between security and usability, providing better protection for the user without becoming a nuisance.

ACKNOWLEDGEMENTS

We thank Leonardo Cotta, Leandro T. C. Melo, Luiz Felipe Z. Saggioro, Frederico Martins, Antonio L. Maia Neto, and
Antonio A.F. Loureiro for their valuable contributions. We also thank the IJNM reviewers for their suggestions and
comments. This work is partially funded by CAPES, CNPQ, and FAPEMIG.

ORCID

Artur Souza"*' http://orcid.org/0000-0002-6927-4275

REFERENCES
1. Ashton K. That ‘Internet of Things’ thing. RFiD J. 2009;22(7):97-114.

2. Stergiou C, Psannis KE. Recent advances delivered by mobile cloud computing and Internet of Things for big data applications: a survey.
Int J Network Manage. 2017;27(3).

3. Kaur R, Kaur N, Sood SK. Security in IoT network based on stochastic game net model. Int J Network Manage. 2017;27(4):e1975.

4. Neto ALM, Souza AL, Cunha I, et al. AoT: authentication and access control for the entire iot device life-cycle. In: Sensys. Stanford, CA,
USA; 2016.

5. Wang D, Lo D, Bhimani J, Sugiura K. Anycontrol-IoT based home appliances monitoring and controlling. In: COMPSAC. Taichung,
Taiwan; 2015:487-492.

6. Clarke NL, Furnell SM. Authentication of users on mobile telephones—a survey of attitudes and practices. Comput Secur.
2005;24(7):519-527.

7. Arif AS, Mazalek A. A tap and gesture hybrid method for authenticating smartphone users. In: MobileHCI. Munich, German; 2013:
486-491.

8. Yue Q, Ling Z, Fu X, Liu B, Ren K, Zhao W. Blind Recognition of touched keys: attack and countermeasures. CoRR. 2014;abs/1403.4829.
9. Fischer IT, Kuo C, Huang L, Frank M. Short paper: smartphones: not smart enough? In: SPSM. Raleigh, North Carolina, USA; 2012:27-32.

10. Wiedenbeck S, Waters J, Sobrado L, Birget J-C. Design and evaluation of a shoulder-surfing resistant graphical password scheme. In: Avi.
Venezia, Italy; 2006:177-184.

11. Aviv AJ, Gibson K, Mossop E, Blaze M, Smith JM. Smudge attacks on smartphone touch screens. In: WOOT. Washington, DC; 2010.
12. Shukla D, Kumar R, Serwadda A, Phoha VV. Beware, your hands reveal your secrets! In: CCS. Scottsdale, Arizona, USA; 2014:904-917.

13. Maggi F, Volpatto A, Gasparini S, Boracchi G, Zanero S. Poster: fast, automatic iPhone shoulder surfing. In: CCS. Chicago, Illinois, USA;
2011:805-808.

14. Cotta L, Fernandes AL, Melo LTC, et al. NomadiKey: user authentication for smart devices based on nomadic keys. In: Icc. Kuala Lumpur,
Malaysia; 2016:1-6.

15. Andriotis P, Tryfonas T, Yu Z. Breaking the android pattern lock screen with neural networks and smudge attacks. In: WiSec. Oxford,
United Kingdom; 2014.

16. Bojinov H, Boneh D. Mobile token-based authentication on a budget. In: HotMobile. Phoenix, Arizona; 2011:14-19.

17. Furnell S, Clarke N, Karatzouni S. Beyond the PIN: enhancing user authentication for mobile devices. Comput Fraud Secur.
2008;2008(8):12-17.

18. De Luca A, Hang A, Brudy F, Lindner C, Hussmann H. Touch me once and I know it's you!: implicit authentication based on touch screen
patterns. In: CHI; 2012.

19. Jakobsson M, Shi E, Golle P, Chow R. Implicit authentication for mobile devices. In: Hotsec. Montreal, Canada; 2009:9-9.

20. Liu J, Wang Z, Zhong L, Wickramasuriya J, Vasudevan V. uWave: accelerometer-based personalized gesture recognition and its
applications. In: PerCom; 2009;5(6):657-675.

21. Mock K, Hoanca B, Weaver J, Milton M. Real-time continuous iris recognition for authentication using an eye tracker. In: CCS. Raleigh,
North Carolina, USA; 2012:1007-1009.

http://orcid.org/0000-0002-6927-4275
http://orcid.org/0000-0002-6927-4275

18 of 19 Wl LEY SOUZA ET AL.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.
32.
33.
34.

35.

36.

37.

38.

39.
40.
41.
42.

Pan S, Chen A, Zhang P. Securitas: user identification through RGB-NIR camera pair on mobile devices. In: SPSM. Porto, Portugal;
2013:168-185.

Wang H, Lymberopoulos D, Liu J. Sensor-based user authentication. In: EWSN. Scottsdale, Arizona, USA; 2015:51-62.

Zhang L, Tan S, Yang J, Chen Y. VoiceLive: a phoneme localization based liveness detection for voice authentication on smartphones. In:
CCS. Vienna, Austria; 2016:1080-1091.

Meng W, Wong DS, Furnell S, Zhou J. Surveying the development of biometric user authentication on mobile phones. IEEE Commun
Surv Tutorials. 2015;17(3):1268-1293.

Chen Y, Sun J, Zhang R, Zhang Y. Your song your way: rhythm-based two-factor authentication for multi-touch mobile devices. In:
INFOCOM. Kowloon, Hong Kong; 2015:2686-2694.

Haque SMT, Wright M, Scielzo S. Passwords and interfaces: towards creating stronger passwords by using mobile phone handsets. In:
SPSM. Berlin, Germany; 2013:105-110.

Jermyn I, Mayer A, Monrose F, Reiter MK, Rubin AD. The design and analysis of graphical passwords. In: USENIX Security. Monterey,
California, USA; 1999.

Wiedenbeck S, Waters J, Sobrado L, Birget J-C. Design and evaluation of a shoulder-surfing resistant graphical password scheme. In: AVI.
Venezia, Italy; 2006:105-110.

Krombholz K, Hupperich T, Holz T. Use the force: evaluating force-sensitive authentication for mobile devices. In: SOUPS'16. Austin,
Texas; 2016.

Egelman S, Jain S, Portnoff RS, Liao K, Consolvo S, Wagner D. Are you ready to lock? In: CCS. Scottsdale, Arizona, USA; 2014:750-761.
Dell'’Amico M, Michiardi P, Roudier Y. Password strength: an empirical analysis. In: INFOCOM. San Diego, CA, USA; 2010:1-9.
Dunphy P, Yan J. Do background images improve draw a secret graphical passwords? In: CCS. Alexandria, Virginia, USA; 2007:36-47.

Uellenbeck S, Diirmuth M, Wolf C, Holz T. Quantifying the security of graphical passwords: the case of android unlock patterns. In: CCS.
Berlin, Germany; 2013:161-172.

Zhang Y, Xia P, Luo J, Ling Z, Liu B, Fu X. Fingerprint attack against touch-enabled devices. In: SPSM. Raleigh, North Carolina, USA;
2012:57-68.

Yue Q, Ling Z, Fu X, Liu B, Ren K, Zhao W. Blind recognition of touched keys on mobile devices. In: CCS. Scottsdale, Arizona, USA;
2014:1403-1414.

Raguram R, White AM, Goswami D, Monrose F, Frahm J-M. iSpy: automatic reconstruction of typed input from compromising reflections.
In: CCS; 2011:527-536.

Schaub F, Deyhle R, Weber M. Password entry usability and shoulder surfing susceptibility on different smartphone platforms. In: MUM.
Chicago, Illinois, USA; 2012:527-236.

Simon L, Anderson R. PIN skimmer: inferring PINs through the camera and microphone. In: SPSM. Berlin, Germany; 2013:67-78.
Spreitzer R. PIN skimming: exploiting the ambient-light sensor in mobile devices. In: SPSM. Scottsdale, Arizona, USA; 2014:51-62.
Rosen KH. Discrete mathematics and its applications. AMC. 2007;10(12):824.

Harbach M, von Zezschwitz E, Fichtner A, Luca AD, Smith M. It's a hard lock life: a field study of smartphone (un)locking behavior and
risk perception. In: SOUPS; 2014.

Artur Souza received his BSc in Computer Science from the Federal University of Minas Gerais (UFMG), Brazil,
in 2016. He is currently a PhD student in Computer Science at the Federal University of Minas Gerais. He has
coauthored papers published in SenSys and IEEE ICC and is inventor of a patent for an authentication scheme for
IoT. His research interests include security, applied cryptography, Internet of Things, and vehicular-to-everything
communication (V2X).

Italo Cunha is an assistant professor at the Computer Science Department at UFMG, Brazil since 2012. He
developed his PhD research at Technicolor Research and Innovation Paris and graduated from UPMC Sorbonne
Universités in 2011. His research focuses on improving network performance and reliability. His contributions pro-
vide better visibility on Internet topology and routing dynamics, help network operators troubleshoot failures and
performance problems, and empower other researchers. talo has served on the technical committee of flagship
networking conferences such as ACM IMC and ACM SIGCOMM.

Leonardo B Oliveira has been awarded the Microsoft Research PhD Fellowship Award, the Intel Strategic
Research Alliance Award, and the IEEE Young Professional Award. He led projects funded by companies like
Intel Labs and LG Electronics Mobile Research. He published over a hundred scientific papers in refereed venues
like IEEE/ACM IPSN and ACM Sensys and he is the inventor of an authentication scheme for IoT (USPTO No.
62287832). His Google citation count and h-index are approximately 2000 and 20, respectively. He is a member of

SOUZA ET AL. Wl LEY 19 of 19

the Technical Committee of Identity Management (CT-GId) of the Brazilian National Research and Educational
Network (RNP), holds a position in the Advisory Board of the Special Interest Group on Information and Computer
System Security (CESeg) of the Brazilian Computer Society, and served as General and TPC Chair of the Brazilian
Symposium on Security (SBSeg) in 2014 and 2016, respectively. His research interests include security and applied
cryptography for IoT/Cyber-Physical Systems.

How to cite this article: Souza A, Cunha I, B Oliveira L. NomadiKey: User authentication for smart devices
based on nomadic keys. Int J Network Mgmt. 2018;28:€1998. https://doi.org/10.1002/nem.1998

https://doi.org/10.1002/nem.1998

	NomadiKey: User authentication for smart devices based on nomadic keys
	Abstract
	INTRODUCTION
	BACKGROUND
	User authentication mechanisms
	Something you have
	Something you are
	Something you know

	Attacks against authentication mechanisms

	NOMADIKEY
	NomadiKey: key position algorithm
	NomadiKey ++: shoulder-surfing protection

	ANALYTICAL EVALUATION
	Security under safe operation
	Security under smudge attacks
	Security under vision attacks
	Security under shoulder-surfing attacks

	EMPIRICAL EVALUATION
	Security evaluation
	Usability evaluation

	CONCLUSION
	References

