Secure-TWS: Authenticating Node
to Multi-user Communication in
Shared Sensor Networks

Leonardo B. Oliveira (Unicamp/Brazil), Aman Kansal,
Bodhi Priyantha, Michel Goraczko, and Feng Zhao

Microsoft Research

Shared Sensors, Directly Connected
to the Internet

Multiple sensors
from many
vendors:

Power meter by
Utility,

Fire Sensor,

Motion Sensor by | €

Security Co,

Air quality sensor
by City,

Soil sensor by
Landscaping Co.,
Medical sensor,

Shared
sensor

Sensor
Owner

Remote
Users

Local Users

Multiple users:
Home owner,
Utility Co,

Fire Station,
Healthcare SP,
Travelling user,
Area Visitors,
Landlord, etc.

* |P Layer: [Dunkels, Mobisys’03], [Hui & Culler, Sensys’08]
* App Service: [Priyantha et al, Sensys'08]

Example Attack

Landlord,
Resident,

Demand-response auctions
A

I
I
I

Utility Co.

Problem: Data Authentication

e Authenticate data received from sensor
— Ensure data not modified by gateway, network

— Assumption: Users trust sensors but not network
and gateway

Challenges

e Sensors are resource constrained

— Traditional web authentication methods may not
directly be ported

* Multiple users, sporadic users

— Cannot establish secure keys with each user

Secure-TWS

Design a node-to-multiuser authentication
solution

Compare two sighature schemes for

communication and computation overhead

Authentication protocol stack
implementation: over Tiny Web Services

Solution Design

Authentication

e Authentication implies:
— Data authentication: data is not-modified

— Source authentication: data originated from
claimed sensor

— Non-Repudiation: cannot dispute own data
* Two methods to authenticate:

— Message authentication codes
— Digital signatures

Message Authentication Codes

m - Exchange SecretKey & |
q

(using out of band comm,
key exchange protocol)

y
Sensor user-1

Message Authentication Codes

-« — — 4
N

Data packets with
Shared-Secret-1 auth. code computed

using shared secret A—
Sensor user-1

Shared-Secret-1

Message Authentication Codes

K
o mEE = o &
] 4

Shared-Secret-1

A
Shared-Secret-2] 1] Sensor user-1
- Shared-Secret-1
Shared-Secret-n . I
A" “
il 4
« £
4 —
Sensor user-2
— Shared-Secret-2

Sensor user-n
Shared-Secret-n

Digital Signatures

Certificate Authority (CA)

Public Key . Certified tr‘l‘zte;hstzrkey Is from

Private Key

Published globally

Digital Signatures

Message sighed] < 4 |
with private key Public Key
—

Bl <
@] . Public Key

Private Key S

Public Key

Digital Signature Overheads

Signature Computation Communication

i T

ECDSA 1 pt multiply 2 point mult 40
BLS 1 pt multiply 2 pairings 20
DSA 1 exp 2 exp 40
ldentity 2 pt multiply 1 pt multiply +1 40
Based pairing

Choose between ECDSA and BLS.

Implementation and Evaluation

Platform and Software

Secure-TWS

App. Data Interface || Private Key Store

ECDSA or BLS
MIRACL Arithmetic SRS
Optimizations

Tiny Web Services 5 Measurement

TCP/IP Stack Instrumentation

Platforms:
1. MSP-430: 16bit, 16MHz, 8kB RAM, 116kB ROM
2. ARM: 32 bit, 60MHz, 32kB RAM, 512kB ROM (no floating pt unit)

Implementation Parameters

 RSA-1024 equivalent security

— Geared for Internet use, higher security than used
in many WSN solutions

 ECDSA: use Mersenne prime (form 2P-1):
reduces computation overhead

— elliptic curve y2= x3 - 3x+157 with the prime based
on p — 2160_2112+ 264+ 1

— Pre-compute parts independent of data

* BLS: No special prime, no precomputation

Measurement Setup

|

Oscilloscope

GPIO

N N
~ ~
N N
N N
S S
~ ~
~ ~
N N
N N
N N
~ ~
S S
~ ~
N N
N N

N N
N N

Data Logging Computer

MSP 430 Processor

ARM LPC 2138
Processor

IEEE 802.15.4 Radio

MSP: Storage

Algorithm Memory Used

BLS 2.9 kB
RAM ECDSA 2.9 kB
ECDSA+Precomp. 2.9 kB

Algorithm Code Space

BLS 47.0 kB
ECDSA 31.3 kB
ECDSA+Precomp. 31.9 kB

ROM

With Tiny Web Service stack: 47.6kB for ECDSA with precomputation, 62.7k for BLS

MSP: Computation

2000
1590
1500 -
-
E 1000 S
()]
E 496 340
-] o
. e ,
ECDSA ECDSA-PRE BLS

* ECDSA-Precomp is 4.7x faster than BLS
— Precomputation makes ECDSA 31.4% faster

MSP: Total Energy

ECDSA ECDSA-PRE BLS

c
2
5
E = 40.0
EE 300
o >

o0
+ 5 20.0
c C
o * 10.0 -
S
> 0.0 -
o
=
o
O

e Communication is
— ECDSA: 0.23mlJ
— BLS: 0.15mJ

ARM: Storage

Algorithm Memory Used

BLS 9.22 kB
RAM ECDSA 9.22 kB
ECDSA+Precomp. 9.22 kB

Algorithm Code Space

BLS 61.63 kB
ECDSA 48.59 kB
ECDSA+Precomp. 49.23 kB

ROM

- Without assembly optimization, use 5.9kB more ROM.
- ROM footprints different than MSP: commercial compiler used for MSP,
different assembly opit.

ARM: Computation

120
98.4
100
—_ 80
£
j; 60
= 40.4
= 40 -
19
o L
0 - I
ECDSA ECDSA-PRE BLS

16x faster than MSP

ARM: Total Energy

wal

ECDSA ECDSA-PRE

N
o

[EEY
(9

Energy (m))
[N
o

Ul

o

Communication (same radio as with MSP)
— ECDSA: 0.59 mJ
— BLS: 0.40 mJ

Related problems

If gateway is trusted and resource rich

— Shared key between sensor and gateway, digital signature
from gateway

Node to node or node to one user (few users)
— Message Authentication Codes (MACs), symmetric crypto

Node to multiple nodes
— LEAP (Zhu 2003)

User to multiple nodes
— UTESLA (Perrig 2001)

Conclusions

* Digital signatures preferred for authentication
with shared sensors

* Even though BLS has lower communication
overhead and the same underlying operation,
ECDSA has lower total energy

— Same level of security

— Implementation optimizations matter

Background

Elliptic Curve Cryptography

Security of cryptosystems rely on hard
problems

Traditional cryptosystems (RSA/DSA) rely on
subexponential problems (e.g. DLP)

ECC relies on fully exponential problems

Parameters in ECC are then much smaller than
RSA/DSA

The most important underlying operation in
point multiplication is ModMult

ECDSA

Signature generation

— One point multiplication
Signature verification

— Two point multiplications

Signature length
— 40 bytes
Cons

— ECDSA’s signature is as long as DSA’s
— Certificate-based scheme

Boneh-Lynn-Shacham Scheme

Signature generation

— One point multiplication
Signature verification

— Two pairings

Signature length

— Around 20 bytes

Cons
— Pairings are expensive
— Certificate-based scheme

Chosen schemes

e ECDSA and BLS

* They both are based on certificates
— Certificates solve the key authentication problem
— A public key of B held by A does in fact belong to B

e Due to the direction of the communication
(node-to-users) that is not a problem here

Chosen schemes’ costs summary

Signature Computation Communication
Scheme

ECDSA 1 point mult 2 point mult 320 bits

BLS 1 point mult 2 pairings around 170 bits

* Verification in BLS may be very expensive

Chosen schemes’ costs summary

Signature Computation Communication
Scheme

ECDSA 1.2s 2.4s 320 bits

BLS 1.2s 16.8s around 170 bits

e Andin factitis!

* |n our scenario, only users are required to verify
signatures

Introduction
Goal
Solution
Results
Conclusion

Outline

What

Authentication

 Source authentication

—Ensures a receiver that the message
originates from the claimed sender

* Data origin authentication

—Ensures a receiver that the msg from the
sender is “fresh” and its content was
unchanged (integrity)

Why

Security in WSNs

 Due to the nature of WSNs, attackers can
easily
— Take part in the network activities
— Inject bogus data
— Alter the content of genuine messages

— Impersonate other nodes

* Authentication the most important security
property in WSN communication

How

Authentication in WSNSs

* Node-to-Node/Node-to-User
— Message Authentication Codes (MACs)

e Node-to-Nodes
— LEAP (Zhu 2003)

e User-to-nodes
— UTESLA (Perrig 2001)

MACs

 Symmetric scheme
 Computation is negligible even for motes
e Communication overhead is about 16-20 bytes

SENDER RECEIVER
| MESSAGE MESSAGE |
MAC MAC
Ly L) = Algorithm Ll = Algorithm
+@+
v
MAC: Decision: If same then
Message Authetication Code authentic and integrity checked
else something is wrong!

Authentication in WSNSs

Node-to-Node/Node-to-User
— MACs

Node-to-Nodes
— LEAP (Zhu 2003)

User-to-nodes
— UTESLA (Perrig 2001)

Node-to-Users
—7?

Why node2multi-user?

Nodes may want to send the same
information to multiple users

A WSN w/ multiple base stations

A tiny web server reporting data to multiple
users over the web

And so on

Introduction
Goal
Solution
Results
Conclusion

Outline

Goal

e Authenticate node to multi-user
communication in WSNs

Authentication in WSNSs

Node-to-Node/Node-to-User
— MACs

Node-to-Nodes
— LEAP (Zhu 2003)

User-to-nodes
— UTESLA (Perrig 2001)

Node-to-Users
— Multiple unicasts using MACs? Hum...

Multiple Authenticated Unicasts

* A node generates and sends multiple MACs
using different keys

— Each key is shared w/ a different user

* Each user checks the legitimacy of a msg as it
does for any other msg

— Generates a MAC and check if it matches the
received one

Problems

e Each pair (user,node) needs to agree in a
common key

— Key predistribution
* Users need to be known a priori

— Key agreement protocol
* Probably demands PKl/certificates

* Nodes need to store multiple keys
* Not efficient for a large number of users

Why many users?

Fire Alarm Application

Fire alarm system is based on sensor nodes

Fires are rare and comm. between nodes and
users might not even take place

It Is one way communication

— Users do not query sensors about fires

But in case of a fire, every user wants to aware
(and be sure that is serious!)

Introduction
Goal
Solution
Results
Conclusion

Outline

Authenticated Broadcast

* Group secret key
— Symmetric scheme (Cheap!)

— All principals of the communication share the
same key

* Digital signature
— Sender uses its pvt key to sign msgs

— Receivers verify the signature using sender’s pub
key

Group key-Based
Authenticated Broadcast

* M: message

« K: shared key @K
M, MAC(K,My

Bob

M, MAC(K,M)

K

Group key-Based
Authenticated Broadcast

* M: message

« K: shared key @K
M, MAC(K,My

o—
K

MAC(K,) K

M, MAC(K,M)

Digital signatures

 Asymmetric scheme
— Each principal has a pvt/pub pair of keys
 Computation and communication overhead are
usually high
* Properties
— Source authentication

— Data origin Authentication
— Non-repudiation

Digital Signature Schemes

DSA
ECDSA
ID-based

Certificateless
BLS

DSA

Traditional public key cryptosystem
The standard signature scheme
Parameters are large

— Expensive computation, communication, keys and
storage

Problem
— Costs
— Known to be inadequate for WSNs

ECDSA

* Signature generation
— One point multiplication
* Signature verification

— Two point multiplications

* One-slide overview of ECC

Elliptic Curve Cryptography

Security of cryptosystems rely on hard
problems

Traditional cryptosystems (RSA/DSA) rely on
subexponential problems (e.g. DLP)

ECC relies on fully exponential problems

Parameters in ECC are then much smaller than
RSA/DSA

The most important underlying operation in
point multiplication is ModMult

ECDSA

Signature generation

— One point multiplication
Signature verification

— Two point multiplications

Signature length
— 40 bytes
Cons

— ECDSA’s signature is as long as DSA’s
— Certificate-based scheme

ldentity-Based Sighatures

Shamir 1984
No need of certificates
Costs varies depending on the scheme

— Today schemes rely mostly on pairings

One-slide overview of PBC

Pairings

* Abilinear map of groups (37 X Gy — G
* First used in the context of cryptanalysis

— Map the ECDLP into the DLP
* It has the property of bilinearity

— e(aPbQ)=e(P.Q)"

— Consider sID as pvt keys, where s is a mater key

— e(sAlice,Bob) = e(Alice, Bob)* = e(Alice, sBob)

ldentity-Based Sighatures

Shamir 1984

No need of certificates

Costs varies depending on the scheme
— Today schemes rely mostly on pairings

Cons

— Pairings are expensive

Problem
— Requires a Trusted Authority

Certificatless

Al-Riyami and Paterson 2003

Neither certificates nor TAs

Sighature generation

— One pairing and two point multiplications
Signature verification

— Four pairings

Four pairings is a problem for resource
constrained devices

Boneh-Lynn-Shacham Scheme

Signature generation

— One point multiplication
Signature verification

— Two pairings

Signature length

— Around 20 bytes

Cons
— Pairings are expensive
— Certificate-based scheme

Chosen schemes

e ECDSA and BLS

* They both are based on certificates
— Certificates solve the key authentication problem
— A public key of B held by A does in fact belong to B

e Due to the direction of the communication
(node-to-users) that is not a problem here

Chosen schemes’ costs summary

Signature Computation Communication
Scheme

ECDSA 1 point mult 2 point mult 320 bits

BLS 1 point mult 2 pairings around 170 bits

* Verification in BLS may be very expensive

Chosen schemes’ costs summary

Signature Computation Communication
Scheme

ECDSA 1.2s 2.4s 320 bits

BLS 1.2s 16.8s around 170 bits

e Andin factitis!

* |n our scenario, only users are required to verify
signatures

Figures?

Implementation

 Based on the Multiprecision Integer and
Rational Arithmetic C Library (MIRACL)

— Scott, MIRACL's author, is coauthor of the etat
pairing (Barreto et al. 2006)

* ESI hot paper (0.1% most cited paper in category)

— Support for various node processors
 AVR, ARM, and MSP430

* Prime fields
* RSA 1024-bit security level

Evaluating Platform

e M-Platform

— MSP430F2418
* 16-bit 16 MHz processor, 8KB of RAM, 116 of ROM

— ARM LPC2138
e 32-bit processor, 32kB RAM and 512kB ROM
* Radio
— CC2420 (802.15.4)

Introduction
Goal
Solution
Results
Conclusion

Outline

MSP430

Storage

 RAM
— Around 3KB, but most from the stack

— After signature generation, virtually all memory is
available for applications

 ROM
— Around 40KB

— In ECDSA, if precomputation is used, then it takes
more ~/2 KB

Computation Time

1800
1600
1400

o 1200

< 1000

800
496

600 340

400

0 T T

ECDSA ECDSA-PRE BLS

1590

m

Time

ECDSA can make use of a special prime which speeds up the
reduction (x mod p)

ECDSA also allows precomputation

BLS needs to hash and map msgs into a point of the curve (a
bit expensive, too)

ECDSA is around 4.7X faster than BLS

Communication

ECDSA BLS

* Energy cost to transmit a signature

* |In our implementation, BLS’s signature has exactly
half the length of ECDSA’s

* Here we also assume radio start-up

Overall Energy Consumption

60

50

40

30

20

10

ECDSA BLS

 The overall energy consumption is dominated by the
computation

— The energy cost to generate a signature in BLS is about 100x higher
than the cost to transmit that

— While it takes 1.5s to generate a signature it is sent in only 1.7ms
 ECDSA turned out to be more than 4x cheaper

Overall Energy Consumption

T B BLS
I —— ECDSA
1 10 100

1000 10000

o = N w B &)

* Overall consumption as function of the payload size
* The security costs are fixed whatever the payload size
— (To tell the truth, the hash function cost varies a bit)
* For alarge payload, cost is dominated by its transmission

Discussion

e User needs rather than security costs may be
the most important criteria

 ECDSA can compute part of a signature
generation offline
— Response time will be even faster

* BLS provides signature aggregation
— Sigl + Sig2 = Sigl,2
— Users may store signatures aggregated thus saving
storage

ARM

Computation

Estimates based on liu et al. 2007

ARM is able to compute ECDSA faster

— 11.8ms

We assumed the same ratio to estimate BLS
— ECDSA signature generation 4.7x faster than BLS's

Signature generation is now 20x more expensive
than its transmission
— Remember signatures need to be received as well

Multi-hop/Single Signature

B BLS
— ECDSA

= N w B

1 5 10 15 20 25

Hops

Overall energy consumption for generating a signature and
sending it over multiple hops

BLS aggregates signatures

Computation is carried only once, signatures are (re)sent over
multiple hops

Break even point is at the 12t hop

Multi-hop/Multiple Signatures

I BLS

] I — ECDSA
L
jn . N N m =

1 5 10 15 20 25

Hops

Now every node over the path also generates and send a
signature

BLS makes use of signature aggregation
Break even point is the 12t
Beyond that point BLS scales far better

Routing tree/Multiple Signatures

B BLS

)
14 — ECDSA
] , I , [] a e - -_l

10 15 20 25

1 5

Hops

* Now assuming a (ternary) tree routing protocol
* Break even point is at the 10t hop
* Again, beyond that point, BLS scales much better

Introduction
Goal
Solution
Results

Conclusion

Outline

Conclusion

We compared BLS and ECDSA schemes for
authenticating node to multi-user communication

First figures for BLS in resource-constrained nodes
Figures for signature communication overhead

Signature computation dominates the costs in
signature schemes

— As opposed to symmetric schemes, where communication
is the “bottleneck”

Powerful processors are more energy efficient when
generating signatures

Conclusion

Schemes should be chosen based on the network
idiosyncrasies

ECDSA allows optimizations that makes it more
efficient for small-scale WSNs

BLS aggregate signature feature seem to be a useful
feature in multi-hop WSNs

For a large amount of data, the security costs may
become negligible

— The chosen scheme should be driven by the user side
needs

Future Directions

* I[mplement critical times routines in assembly

— Computation costs as a whole should decrease

— The difference between ECDSA’s and BLS’s costs
probably will decrease, too

e Other BLS implementation
— Under GF(3™)

Thank you

leob@ic.unicamp.br

