
Secure-TWS: Authenticating Node
to Multi-user Communication in

Shared Sensor Networks

Leonardo B. Oliveira (Unicamp/Brazil), Aman Kansal,
Bodhi Priyantha, Michel Goraczko, and Feng Zhao

Microsoft Research

Shared Sensors, Directly Connected
to the Internet

• IP Layer: [Dunkels, Mobisys’03], [Hui & Culler, Sensys’08]

• App Service: [Priyantha et al, Sensys’08]

Local Users
Shared

sensor

Remote
Users

Sensor
Owner

Internet

Multiple sensors

from many

vendors:

Power meter by

Utility,

Fire Sensor,

Motion Sensor by

Security Co,

Air quality sensor

by City,

Soil sensor by

Landscaping Co.,

Medical sensor,

Multiple users:

Home owner,

Utility Co,

Fire Station,

Healthcare SP,

Travelling user,

Area Visitors,

Landlord, etc.

Example Attack

100 kWh

70 kWh Internet

Utility Co.

Landlord,

Resident,

Demand-response auctions

Problem: Data Authentication

• Authenticate data received from sensor

– Ensure data not modified by gateway, network

– Assumption: Users trust sensors but not network
and gateway

Challenges

• Sensors are resource constrained

– Traditional web authentication methods may not
directly be ported

• Multiple users, sporadic users

– Cannot establish secure keys with each user

Secure-TWS

Design a node-to-multiuser authentication
solution

Compare two signature schemes for
communication and computation overhead

Authentication protocol stack
implementation: over Tiny Web Services

Solution Design

Authentication

• Authentication implies:

– Data authentication: data is not-modified

– Source authentication: data originated from
claimed sensor

– Non-Repudiation: cannot dispute own data

• Two methods to authenticate:

– Message authentication codes

– Digital signatures

Message Authentication Codes

Sensor

Sensor user-1

Exchange Secret Key

(using out of band comm,

key exchange protocol)

Message Authentication Codes

Sensor

Sensor user-1

Shared-Secret-1

Shared-Secret-1

Data packets with

auth. code computed

using shared secret

Message Authentication Codes

Sensor

Sensor user-1

Shared-Secret-1

Shared-Secret-1

Sensor user-2

Shared-Secret-2
Sensor user-n

Shared-Secret-n

Shared-Secret-n

Shared-Secret-2

…

…

Digital Signatures

Certificate Authority (CA)

Sensor

Public Key

Private Key

Published globally

Certified that this key is from

“sensor”

Digital Signatures

Sensor

Private Key

Public Key

Public Key

Public Key

…

Message signed

with private key

Digital Signature Overheads

Signature
Scheme

Computation Communication
(Bytes)

Generation Verification

ECDSA 1 pt multiply 2 point mult 40

BLS 1 pt multiply 2 pairings 20

DSA 1 exp 2 exp 40

Identity
Based

2 pt multiply 1 pt multiply + 1
pairing

40

Choose between ECDSA and BLS.

Implementation and Evaluation

Platform and Software

TCP/IP Stack

Tiny Web Services

MIRACL Arithmetic
Assembly

Optimizations

ECDSA or BLS

Measurement
Instrumentation

App. Data Interface Private Key Store

Secure-TWS

Platforms:

1. MSP-430: 16bit, 16MHz, 8kB RAM, 116kB ROM

2. ARM: 32 bit, 60MHz, 32kB RAM, 512kB ROM (no floating pt unit)

Implementation Parameters

• RSA-1024 equivalent security

– Geared for Internet use, higher security than used
in many WSN solutions

• ECDSA: use Mersenne prime (form 2p-1):
reduces computation overhead

– elliptic curve y2= x3 - 3x+157 with the prime based
on p = 2160-2112+ 264+ 1

– Pre-compute parts independent of data

• BLS: No special prime, no precomputation

Measurement Setup

Oscilloscope

Data Logging Computer

MSP 430 Processor

IEEE 802.15.4 Radio

ARM LPC 2138
Processor

GPIO GND GPIO GND

MSP: Storage

Algorithm Memory Used

BLS 2.9 kB

ECDSA 2.9 kB

ECDSA+Precomp. 2.9 kB

With Tiny Web Service stack: 47.6kB for ECDSA with precomputation, 62.7k for BLS

Algorithm Code Space

BLS 47.0 kB

ECDSA 31.3 kB

ECDSA+Precomp. 31.9 kB

RAM

ROM

MSP: Computation

• ECDSA-Precomp is 4.7x faster than BLS

– Precomputation makes ECDSA 31.4% faster

496 340

1590

0

500

1000

1500

2000

ECDSA ECDSA-PRE BLS

Ti
m

e
 (

m
s)

MSP: Total Energy

• Communication is

– ECDSA: 0.23mJ

– BLS: 0.15mJ

14.9
10.3

47.3

0.0

10.0

20.0

30.0

40.0

50.0

ECDSA ECDSA-PRE BLS

En
e

rg
y

(m
J)

C
o

m
p

u
ta

ti
o

n
 +

 C
o

m
m

u
n

ic
a
ti

o
n

ARM: Storage

Algorithm Memory Used

BLS 9.22 kB

ECDSA 9.22 kB

ECDSA+Precomp. 9.22 kB

- Without assembly optimization, use 5.9kB more ROM.

- ROM footprints different than MSP: commercial compiler used for MSP,

different assembly opt.

Algorithm Code Space

BLS 61.63 kB

ECDSA 48.59 kB

ECDSA+Precomp. 49.23 kB

RAM

ROM

ARM: Computation

• 16x faster than MSP

40.4

19

98.4

0

20

40

60

80

100

120

ECDSA ECDSA-PRE BLS

Ti
m

e
 (

m
s)

ARM: Total Energy

• Communication (same radio as with MSP)

– ECDSA: 0.59 mJ

– BLS: 0.40 mJ

7.5
3.9

17.3

0

5

10

15

20

ECDSA ECDSA-PRE BLS

En
e

rg
y

(m
J)

Related problems

• If gateway is trusted and resource rich

– Shared key between sensor and gateway, digital signature
from gateway

• Node to node or node to one user (few users)

– Message Authentication Codes (MACs), symmetric crypto

• Node to multiple nodes

– LEAP (Zhu 2003)

• User to multiple nodes

– uTESLA (Perrig 2001)

Conclusions

• Digital signatures preferred for authentication
with shared sensors

• Even though BLS has lower communication
overhead and the same underlying operation,
ECDSA has lower total energy

– Same level of security

– Implementation optimizations matter

Background

Elliptic Curve Cryptography

• Security of cryptosystems rely on hard
problems

• Traditional cryptosystems (RSA/DSA) rely on
subexponential problems (e.g. DLP)

• ECC relies on fully exponential problems

• Parameters in ECC are then much smaller than
RSA/DSA

• The most important underlying operation in
point multiplication is ModMult

ECDSA

• Signature generation
– One point multiplication

• Signature verification
– Two point multiplications

• Signature length
– 40 bytes

• Cons
– ECDSA’s signature is as long as DSA’s

– Certificate-based scheme

Boneh-Lynn-Shacham Scheme

• Signature generation
– One point multiplication

• Signature verification
– Two pairings

• Signature length
– Around 20 bytes

• Cons
– Pairings are expensive

– Certificate-based scheme

Chosen schemes

• ECDSA and BLS

• They both are based on certificates

– Certificates solve the key authentication problem

– A public key of B held by A does in fact belong to B

• Due to the direction of the communication
(node-to-users) that is not a problem here

Chosen schemes’ costs summary

Signature
Scheme

Computation Communication

Generation Verification

ECDSA 1 point mult 2 point mult 320 bits

BLS 1 point mult 2 pairings around 170 bits

• Verification in BLS may be very expensive

Chosen schemes’ costs summary

Signature
Scheme

Computation Communication

Generation Verification

ECDSA 1.2s 2.4s 320 bits

BLS 1.2s 16.8s around 170 bits

• And in fact it is!

• In our scenario, only users are required to verify
signatures

Outline

• Introduction

• Goal

• Solution

• Results

• Conclusion

What

Authentication

• Source authentication

– Ensures a receiver that the message
originates from the claimed sender

• Data origin authentication

– Ensures a receiver that the msg from the
sender is “fresh” and its content was
unchanged (integrity)

Why

Security in WSNs

• Due to the nature of WSNs, attackers can
easily

– Take part in the network activities

– Inject bogus data

– Alter the content of genuine messages

– Impersonate other nodes

• Authentication the most important security
property in WSN communication

How

Authentication in WSNs

• Node-to-Node/Node-to-User

– Message Authentication Codes (MACs)

• Node-to-Nodes

– LEAP (Zhu 2003)

• User-to-nodes

– uTESLA (Perrig 2001)

MACs

• Symmetric scheme

• Computation is negligible even for motes

• Communication overhead is about 16-20 bytes

Authentication in WSNs

• Node-to-Node/Node-to-User

– MACs

• Node-to-Nodes

– LEAP (Zhu 2003)

• User-to-nodes

– uTESLA (Perrig 2001)

• Node-to-Users

– ?

Why node2multi-user?

• Nodes may want to send the same
information to multiple users

• A WSN w/ multiple base stations

• A tiny web server reporting data to multiple
users over the web

• And so on

Outline

• Introduction

• Goal

• Solution

• Results

• Conclusion

Goal

• Authenticate node to multi-user
communication in WSNs

Authentication in WSNs

• Node-to-Node/Node-to-User

– MACs

• Node-to-Nodes

– LEAP (Zhu 2003)

• User-to-nodes

– uTESLA (Perrig 2001)

• Node-to-Users

– Multiple unicasts using MACs? Hum…

Multiple Authenticated Unicasts

• A node generates and sends multiple MACs
using different keys

– Each key is shared w/ a different user

• Each user checks the legitimacy of a msg as it
does for any other msg

– Generates a MAC and check if it matches the
received one

Problems

• Each pair (user,node) needs to agree in a
common key

– Key predistribution

• Users need to be known a priori

– Key agreement protocol

• Probably demands PKI/certificates

• Nodes need to store multiple keys

• Not efficient for a large number of users

Why many users?

Fire Alarm Application

• Fire alarm system is based on sensor nodes

• Fires are rare and comm. between nodes and
users might not even take place

• It is one way communication

– Users do not query sensors about fires

• But in case of a fire, every user wants to aware
(and be sure that is serious!)

Outline

• Introduction

• Goal

• Solution

• Results

• Conclusion

Authenticated Broadcast

• Group secret key

– Symmetric scheme (Cheap!)

– All principals of the communication share the
same key

• Digital signature

– Sender uses its pvt key to sign msgs

– Receivers verify the signature using sender’s pub
key

Group key-Based
Authenticated Broadcast

Alice

Bob

K

K

M, MAC(K,M)

Malice

K

M, MAC(K,M)

• M: message

• K: shared key

Group key-Based
Authenticated Broadcast

Alice

Bob

K

K

M, MAC(K,M)

Malice

K

M, MAC(K,M)

• M: message

• K: shared key

M', MAC(K,M')

Digital signatures

• Asymmetric scheme

– Each principal has a pvt/pub pair of keys

• Computation and communication overhead are
usually high

• Properties

– Source authentication

– Data origin Authentication

– Non-repudiation

Digital Signature Schemes

• DSA

• ECDSA

• ID-based

• Certificateless

• BLS

DSA

• Traditional public key cryptosystem

• The standard signature scheme

• Parameters are large

– Expensive computation, communication, keys and
storage

• Problem

– Costs

– Known to be inadequate for WSNs

ECDSA

• Signature generation

– One point multiplication

• Signature verification

– Two point multiplications

• One-slide overview of ECC

Elliptic Curve Cryptography

• Security of cryptosystems rely on hard
problems

• Traditional cryptosystems (RSA/DSA) rely on
subexponential problems (e.g. DLP)

• ECC relies on fully exponential problems

• Parameters in ECC are then much smaller than
RSA/DSA

• The most important underlying operation in
point multiplication is ModMult

ECDSA

• Signature generation
– One point multiplication

• Signature verification
– Two point multiplications

• Signature length
– 40 bytes

• Cons
– ECDSA’s signature is as long as DSA’s

– Certificate-based scheme

Identity-Based Signatures

• Shamir 1984

• No need of certificates

• Costs varies depending on the scheme

– Today schemes rely mostly on pairings

• One-slide overview of PBC

Pairings

• A bilinear map of groups

• First used in the context of cryptanalysis

– Map the ECDLP into the DLP

• It has the property of bilinearity

– e(aP,bQ)= e(P,Q)ab

– Consider sID as pvt keys, where s is a mater key

– e(sAlice,Bob) = e(Alice, Bob)s = e(Alice, sBob)

Identity-Based Signatures

• Shamir 1984

• No need of certificates

• Costs varies depending on the scheme

– Today schemes rely mostly on pairings

• Cons

– Pairings are expensive

• Problem

– Requires a Trusted Authority

Certificatless

• Al-Riyami and Paterson 2003

• Neither certificates nor TAs

• Signature generation

– One pairing and two point multiplications

• Signature verification

– Four pairings

• Four pairings is a problem for resource
constrained devices

Boneh-Lynn-Shacham Scheme

• Signature generation
– One point multiplication

• Signature verification
– Two pairings

• Signature length
– Around 20 bytes

• Cons
– Pairings are expensive

– Certificate-based scheme

Chosen schemes

• ECDSA and BLS

• They both are based on certificates

– Certificates solve the key authentication problem

– A public key of B held by A does in fact belong to B

• Due to the direction of the communication
(node-to-users) that is not a problem here

Chosen schemes’ costs summary

Signature
Scheme

Computation Communication

Generation Verification

ECDSA 1 point mult 2 point mult 320 bits

BLS 1 point mult 2 pairings around 170 bits

• Verification in BLS may be very expensive

Chosen schemes’ costs summary

Signature
Scheme

Computation Communication

Generation Verification

ECDSA 1.2s 2.4s 320 bits

BLS 1.2s 16.8s around 170 bits

• And in fact it is!

• In our scenario, only users are required to verify
signatures

Figures?

Implementation

• Based on the Multiprecision Integer and
Rational Arithmetic C Library (MIRACL)
– Scott, MIRACL’s author, is coauthor of the etat

pairing (Barreto et al. 2006)
• ESI hot paper (0.1% most cited paper in category)

– Support for various node processors
• AVR, ARM, and MSP430

• Prime fields

• RSA 1024-bit security level

Evaluating Platform

• M-Platform

– MSP430F2418

• 16-bit 16MHz processor, 8KB of RAM, 116 of ROM

– ARM LPC2138

• 32-bit processor, 32kB RAM and 512kB ROM

• Radio

– CC2420 (802.15.4)

Outline

• Introduction

• Goal

• Solution

• Results

• Conclusion

MSP430

Storage

• RAM

– Around 3KB, but most from the stack

– After signature generation, virtually all memory is
available for applications

• ROM

– Around 40KB

– In ECDSA, if precomputation is used, then it takes
more ~½ KB

Computation Time

496
340

1590

0

200

400

600

800

1000

1200

1400

1600

1800

ECDSA ECDSA-PRE BLS

T
im

e
 (

m
s
)

• ECDSA can make use of a special prime which speeds up the
reduction (x mod p)

• ECDSA also allows precomputation
• BLS needs to hash and map msgs into a point of the curve (a

bit expensive, too)
• ECDSA is around 4.7X faster than BLS

Communication

• Energy cost to transmit a signature

• In our implementation, BLS’s signature has exactly
half the length of ECDSA’s

• Here we also assume radio start-up

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ECDSA BLS

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J

)

Overall Energy Consumption

• The overall energy consumption is dominated by the
computation
– The energy cost to generate a signature in BLS is about 100x higher

than the cost to transmit that

– While it takes 1.5s to generate a signature it is sent in only 1.7ms

• ECDSA turned out to be more than 4x cheaper

0

10

20

30

40

50

60

ECDSA BLS

Overall Energy Consumption

0

1

2

3

4

5

1 10 100 1000 10000

BLS

ECDSA

• Overall consumption as function of the payload size

• The security costs are fixed whatever the payload size

– (To tell the truth, the hash function cost varies a bit)

• For a large payload, cost is dominated by its transmission

Discussion

• User needs rather than security costs may be
the most important criteria

• ECDSA can compute part of a signature
generation offline
– Response time will be even faster

• BLS provides signature aggregation
– Sig1 + Sig2 = Sig1,2

– Users may store signatures aggregated thus saving
storage

ARM

Computation

• Estimates based on liu et al. 2007

• ARM is able to compute ECDSA faster

– 11.8ms

• We assumed the same ratio to estimate BLS

– ECDSA signature generation 4.7x faster than BLS’s

• Signature generation is now 20x more expensive
than its transmission

– Remember signatures need to be received as well

Multi-hop/Single Signature

-

1

2

3

4

1 5 10 15 20 25

Hops

BLS

ECDSA

• Overall energy consumption for generating a signature and
sending it over multiple hops

• BLS aggregates signatures
• Computation is carried only once, signatures are (re)sent over

multiple hops
• Break even point is at the 12th hop

Multi-hop/Multiple Signatures

-

1

2

3

4

1 5 10 15 20 25

Hops

BLS

ECDSA

• Now every node over the path also generates and send a
signature

• BLS makes use of signature aggregation

• Break even point is the 12th

• Beyond that point BLS scales far better

Routing tree/Multiple Signatures

-

1

2

3

4

1 5 10 15 20 25

Hops

BLS

ECDSA

• Now assuming a (ternary) tree routing protocol

• Break even point is at the 10th hop

• Again, beyond that point, BLS scales much better

Outline

• Introduction

• Goal

• Solution

• Results

• Conclusion

Conclusion

• We compared BLS and ECDSA schemes for
authenticating node to multi-user communication

• First figures for BLS in resource-constrained nodes
• Figures for signature communication overhead
• Signature computation dominates the costs in

signature schemes
– As opposed to symmetric schemes, where communication

is the “bottleneck”

• Powerful processors are more energy efficient when
generating signatures

Conclusion

• Schemes should be chosen based on the network
idiosyncrasies

• ECDSA allows optimizations that makes it more
efficient for small-scale WSNs

• BLS aggregate signature feature seem to be a useful
feature in multi-hop WSNs

• For a large amount of data, the security costs may
become negligible
– The chosen scheme should be driven by the user side

needs

Future Directions

• Implement critical times routines in assembly

– Computation costs as a whole should decrease

– The difference between ECDSA’s and BLS’s costs
probably will decrease, too

• Other BLS implementation

– Under GF(3m)

Thank you

leob@ic.unicamp.br

