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Abstract—A Buffer Overflow (BOF) continues to be among
the top open doors to worms and malware. Earlier in 2014, the
security world was taken by surprise when researches unveiled
a BOF in OpenSSL. Languages like C and C++, widely used
for system development and for a large variety of applications,
do not provide native Array-Bound Checks (ABC). A myriad
of proposals endeavor memory protection for such languages by
employing both software- and hardware-based solutions. Due to
numerous reasons, none of them have yet reached the mainstream.
In this work we propose a novel approach to achieve an array
bound-check and a memory access (when allowed) within a single
instruction. We discuss how it can be implemented on variable-
length ISAs and provide a reference implementation. Our results
indicate that our solution can run programs 1,79x faster than the
software-based approach.

I. INTRODUCTION

A Buffer Overflow (BOF) takes place whenever a system
allows data to be accessed out of the bounds of an array [1]-
[4]. An adversary can leverage that to overwrite memory
space that guides program’s execution flow, divert it towards a
malicious code, and thus take system control. BOFs are con-
sidered one of the most challenging sources of vulnerabilities
in computing systems [1].

The Morris worm [5] is a good case in point of how
devastating BOF attacks might be. Back in 1988, the worm
made use of the then-novel technique of buffer over-write,
a sort of BOF, and compromised approximately 10% of the
computers connected to the Internet.

Earlier in 2014, Internet users were taken by surprise
when the security community found a new BOF vulnerability
named Heartbleed [6], which allowed attackers to over-read
an array. Half a million web servers were affected by it. The
worsening factor was because the hole was found in OpenSSL,
a widely used security library. Heartbleed is deemed by some
as the worst security flaw that has been ever discovered on the
Internet.

BOF attacks are still frequent because languages like C and
C++, commonly used for system programming, do not prevent
out-of-bounds memory accesses [7], [8]. Those languages are
inherently unsafe, since their semantics legitimately allow
this sort of “illegal” memory access: an array[i] access is
considered safe if (a) the variable 7 is greater than or equal to
zero; and (b) the variable ¢ is less than the defined length of
array.

Table 1. UNPROTECTED (LEFT) AND PROTECTED (RIGHT) VERSIONS OF

A PROGRAM IN C.

#define BUFSIZE 512 #define BUFSIZE 512
int main() {
int buffer[BUFSIZE];
int a,1i, j;

int main() {
int buffer [BUFSIZE];
int a, i, j;
for (i;i<j;i++) |
if(i >= 0 && i < BUFSIZE)
buffer([i] = a;

for(i;i<j;i++) {

buffer[i] = a;

Operating systems and compilers writers have developed
over time a series of defense mechanisms to protect against
a few memory-violation issues. The most notable ones are
Address Space Layout Randomization (ASLR) and Data Exe-
cution Prevention (DEP) — also known as the No-eXecute bit
(NX). That eventually led to more advanced attacks such as
the Return-to-1ibC attack [9] and its variations like Return
Oriented Programming [10]. Current defenses against those
are not totally efficient [11].

A myriad of proposals endeavour to mitigate BOF vul-
nerabilities by resorting to the so-called Array-Bound Checks
(ABCs), which are tests performed at runtime to ensure that a
particular array access is safe. An ABC check is demonstrated
on the right-hand side of Table I.

ABCs can either be implemented in software, by instru-
menting code with assertion statements, or in hardware, via
a combination of multiple general-purpose instructions. How-
ever, both approaches tend to degrade programs performance
and, consequently, do not provide a satisfying solution against
BOFs.

Software-based approaches usually consist of two passes.
Initially, a program’s assembly is scanned to find code snippets
containing potential vulnerabilities. Afterwards, in a second
pass, ABCs are inserted to the selected places. While effective
in preventing BOFs from happening, such approaches typically
slow down the resulting program by a significant amount
of time. For instance, AddressSanitizer [12], a popular tool
maintained by Google, is known to cause 70% time and 200%
memory consumption overhead.

Hardware-based approaches (e.g., [13]-[16]) offer new
specific machine instructions for bound-checking purposes.
They differ from each other in a variety of factors: the overall
format and content of an instruction, the number of instructions



necessary to complete a safe array access, the number of
cycles a particular check takes, whether both the upper and
lower limits are checked at once, and the required supporting
hardware components.

Evaluation of hardware-based ABC solutions can be guided
by distinct fronts: energy consumption, hardware size, hard-
ware design and implementation complexity, Instruction Set
Architecture (ISA) and compiler related friendliness. Ulti-
mately, performance of a bound-checking enabled program
is evaluated. Nevertheless, results are usually difficult to re-
produce and subjected to characteristics and limitations of
a particular simulation/emulation environment [17]-[20] or
tightly coupled with a particular hardware architecture imple-
mentation.

Our contribution. In this work, we present Secure Move —
SMOV, a hardware-based solution for BOFs which consists of
a pair of secure load and secure store instructions. The novelty
in our instructions is the fact they perform an ABC and a
memory access, when allowed, altogether. Our key observation
is that a subtraction is an operation fast enough to be computed
in sequence to an addition of the Arithmetic Logical Unit
(ALU) operation without disturbing the normal pipeline.

We present our solution from a practical but still gen-
eral perspective, accompanied by the formalism necessary to
hardware design. Although our instructions have an x86-like
format, they can easily be extended to any architecture which
allows variable-length instructions. Given the subtleness in-
volved in hardware performance evaluation, along with details
that are highly simulation/emulation environment dependent,
we prefer to focus our discussion on the overall modeling of
SMOV and to describe how it can be implemented, since this is
an important aspect not covered in previous work. On the other
hand, in order to keep our ideas tangible, we implemented a
synthesizable Verilog for an academical processor which could
be used for real evaluations.

Organization. The remainder of this paper is organized as
follows. Section II introduces the necessary computer archi-
tecture background for understanding our work. As a follow
up, Section III presents the technical details about SMOV
and describe our reference implementation. In Section IV,
evaluation results are discussed. Related work is available in
Section V and we conclude in Section VI.

II. BACKGROUND

In this section we discuss the relevant background for
understanding our work. We first describe in more details what
an ABC is and, afterwards, we recall the fundamentals of
processor pipelining.

A. Array-Bound Checks (ABCs)

The naive way to protect a C program against a BOF is
to always check that a particular index variable is greater than
zero and less than the length of a array. Due to the performance
impact of extra execution branches and, occasionally, to code
styling conventions, this test is frequently avoided by program-
mers in contexts where that index is supposedly known to be
valid. Of course, there are also situations in which the test is
simply forgotten.

From a memory point of view, this test can be expressed
in the following way. There is a memory location M which
corresponds to the array’s base address, i.e. array[0]. We
will refer to this location as the lower bound of the valid
memory region. Analogously, we refer to the upper bound as
the memory location My, which corresponds to the address
of one past-the-end of the array’s allocated memory. Finally,
under this notation, array [i], where 1 is the desired index
to be accessed, is designated by M.

What an ABC must ensure is that M; — M >= 0 and
that My — M > 0. If this condition is not met, execution of
the program must be terminated.

When the above check is written in software, the per-
formance cost might be prohibitive. In fact, there are works
showing that such software-based ABCs can cause an overhead
of up to 70% in execution time [12]. Therefore, most of the
research in this area has led toward a solution directly in the
hardware level. As presented in Section V, such proposals
typically consist of extending the ISA with bound-checking
purpose instructions. None of those, however, introduce a sin-
gle instruction that performs both bound-checking and memory
access, along with a description on how to implement it on a
particular processor.

B. Processor Pipelining

There are numerous variations in processor design and
implementation. It is unfeasible to investigate every particular
aspect of them here. Having that in mind, we briefly review
the fundamentals of processor pipelining as it is typically
studied [21], [22]. Sustained by this content, our technical
presentation of SMOV in Section III should apply without any
loss of generality.

A classic pipeline is composed by the following five stages:

1)  Fetch: The value of the Program Counter (PC) is
loaded and the instruction to be executed is fetched.
Afterwards, PC is updated to the next sequential
PC. In architectures with fixed-length instructions
this value is known in advance, while in the case
of variable-length instructions this will be computed
based on the length of the fetched instruction. Later
on, the PC might be updated again in the case of a
branch.

2)  Decode: Registers specified in the instruction are
read. Depending on the design, it might already
be possible to perform an equality test and even
complete a branch.

3)  Execute: The Arithmetic Logic Unit (ALU) per-
forms the operation specified in the instruction. In
a load-store architecture, this is normally one of
the following operations, as specified in the ALU’s
function code of the instruction’s opcode: a register-
register operation; a register-immediate operation; or
a memory-reference operation. The later, an operation
that adds a base register and a supplied offset to
form an effective memory address, is the one we are
particularly interested in this work.

4)  Memory: A load instruction causes data from memory
to be placed into a register. A store instruction causes
a register value to placed back into memory.



5)  Write back: Final computed values are finally saved
into registers.

Within a pipeline a new instruction is initiated at every
clock cycle. Consequently, a few issues need to be taken
care of, the so-called hazards. There are three kinds of them:
structural hazards, data hazards, and control hazards. Data and
control hazards are not influenced anyhow by our changes. But
we make an observation in the scope of structural hazards.

The register file of an architecture is commonly accessed at
two distinct pipeline stages. In the fetch stage, the values of the
registers specified in the instruction are read, and in the write-
back stage, computed values are saved. For that reason, it is a
reasonable assumption that a register file contains at least two
read ports and two write ports, otherwise the pipeline would
frequently be in stall. In additional, it may also be the case
that the register being read and the register being written is
actually the same register. A convention such as writing in the
first half of the clock cycle and reading in the second half is
therefore typically established [21]. As it will become clear
in Section III, our approach requires a register file that allows
four simultaneous reads.

1. SMOV

In this section we present SMOV, a hardware-based solu-
tion against BOF attacks. To the best of our knowledge, this
is the first work that demonstrates the idea and feasibility of
performing an array bound-check and a memory access as part
of a single instruction.

Hardware performance benchmarks are often difficult to
reproduce due to hardware implementation variations. While
cycle-accurate simulators and emulators [18], [20] do exist, re-
sults become more subjective on how we extend the underlying
platform to consider new hardware components and datapath
changes. In-house simulators and tools have also been used
for hardware-based ABC proposals [15], but those are even
less accessible in the sense of validation and adoption. An
interesting alternative would be open-source hardware [23],
but unfortunately there does not seem to exist a full-blown
x86 implementation available [24].

The strategy we have taken to realize SMOV is to im-
plement it on top of the publicly available Y86 research
architecture [22]. The Y86 is a 32-bit ISA inspired by x86.
It has fewer data types, instructions, and addressing modes,
but it is complete enough to allow us to execute real programs
in a five-step pipelined processor. Due to space limitations we
do not make a fully-comprehensible introduction to the Y86,
but only to aspects which are relevant within the context of
our work. Nevertheless, the reader familiar with Intel’s x86
should find it easy to bridge the two ISAs. For those who
need a thorough introduction, please refer to [22].

A. Design

SMOV relies on two new instructions, one is a secure load
and the other is a secure store. They are derived from the
following standard move operations from Y86:

e mrmovl: Load (memory — register);

e rmmovl: Store (register — memory),

Our central idea is to embed two extra registers, one for the
upper bound and another for the lower bound, in the standard
move operations so they can be used for bound-checking. The
memory access is only allowed if the particular address being
indexed is within the allocated memory region for the array in
question. Otherwise, program execution is terminated.

The impact of adding those registers to the instruction,
performing the valid memory region computation, and eventu-
ally allowing the memory access, is observed under different
perspectives. We individually analyze all of them.

Instruction Fetch and Encoding. We use two extra
registers, rU and rL, to store the upper and lower bounds
of an array, respectively. This means one byte larger than
the largest standard Y86 instruction. As long as the archi-
tecture allows us to read this extra byte without an in-
creased cycle, there should exist no collateral effect, since
the Y86 uses variable-length encoding. When compared
to the standard Y86 load and store instructions, rmmovl
rA,D (rB) and mrmovl D (rB), rA, our corresponding se-
cure versions look like srmmovl rA,D (rB), rU, rL and
smrmovl D(rB),rA,rU, rL.

Register File. In order to have the secure registers decoded
together with the other two registers that are part of a standard
move operation, the register file must support four simultane-
ous read ports. In the worst case, a convention could require
that bound registers are always read in the second half of the
clock cycle and impose a constraint that reading and writing
to bound registers within a single cycle is illegal.

ALU and Bound-Checking. Bound-checking requires that
two subtractions are made: M; — M, and that My — M,
or in Y86 notation, rU — D (rB) and D (rB) - rL. At this
moment, the ALU is already busy computing an addition of
a register-indirect memory address. Therefore, we insert two
specific-purpose subtractors to check the bounds. We also need
a flagging mechanism that immediately points out whether the
subtractions’ result is zero, greater than zero, or negative - this
can be achieved with a combination logic circuit. Addition and
subtractions are relative fast operations and can normally be
cascaded without any overhead. In particular, it is worth to
recall that a Translation Lookaside Buffer (TLB) miss leads
to a penalty of several cycles and main memory access is a
well-known limiting factor of a pipeline.

Table II. PROCESSING REQUIRED FOR smrmovl AND srmmov 1

INSTRUCTIONS.

Stage srmmovl rA,D(rB),rU,rL
smrmovl D(rB),rA, rU, rL
Fetch icode : ifun < M1 [PC]
rA 7B+ M[PC +1]
valC < M4[PC + 2]
rU : rL < M;[PC + 6]
valP +— PC + 7
PC < valP
valA < R[r AJ (srmmovl)
valB <+ R[rB]
valU « R[rU]
valL «+ R[rL]
valFE <+ valB + valC
UB « (valU — valE > 0)
LB « (valE — valL > 0)
UB && LB ? My[valE] < valA : Except (srmmovl)
UB && LB ? valM < Mgy[valE] : Except (smrmovl)
R[rA] < valM (smrmovl)

Decode

Execute

Memory

Write back




To summarize, Table II shows how our secure instructions
evolve through the pipeline stages. A few of the operations
performed are just the same as those from the original Y86
rmmovl and mrmovl instructions. The portions highlighted
in red are the ones we introduced. A visual representation
of the srmmovl and smrmovl encodings, along with the
meaning of each field, is illustrated by Figure 1. Finally, the
entire pipeline, registers, and major components are presented
by Figure 2. The parts in red are again our own additions.
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Complete pipeline and associated components with our additions

B. Programming Interface and Capabilities

We identify a few prominent aspects that, although not
intrinsically tight to our ABC proposal, are relevant to be
discussed. In this regard, we raise attention to the fact that

SMOV is a high-level proposal to achieve bound-checking
and memory access within a single instruction. Specifically,
it consists of a secure load and a secure store operations,
combined with a technical reference on how to implement it on
a variable-length ISA pipeline, accompanied by a deep analysis
on the involved aspects.

SMOV is not to be thought of as a complete memory
protection platform such as Intel’s MPX [16]. In fact, given
the extent and flexibility of x86, we claim that our com-
bined bound-checking and memory access secure instructions
could augment MPX’s programming interface that is currently
composed of only two bound-checking instructions, namely
bndcu and bndcl, that independently check the upper and
lower bound of an array, and without completing till the
mMemory access.

As an orthogonal aspect, MPX provides a way to store and
load array bounds that are kept in a Bound-Register Table. In
fact, this is reflected at the Application Binary Interface (ABI)
level which comes with bound-preserving calling conventions.
Such a concept could be equally implemented on an architec-
ture that implements SMOV’s secure instructions. A similar
observation concerns the bound-specific registers provided by
MPX, to which SMOV would impose no restrictions.

A particularly useful characteristic of our secure instruc-
tions is that they carry underneath all the data necessary to
perform a non-secure load or store. Without knowing how
exactly an Intel processor transforms (through microcode) an
MPX instruction into a NOP, when running on unsupported
hardware, we imagine that a similar transformation could be
employed to convert a secure load/store instruction into a
standard load/store.

IV. EVALUATION

In this section we present our experiments with SMOV.
We describe our methodology in Section IV-A and analyze the
results in Section IV-B. In Section IV-C we discuss a Verilog
synthesis of SMOV and estimate the hardware overhead when
compared to the original Y86 architecture.

A. Methodology

To evaluate our work we use three programs from the
Stanford [25] benchmark: Bubblesort, Quicksort and Perm.
They were slightly modified to make the Y86 assembly code
generation more convenient. The programs were compiled
using gcc version 4.8.2. We currently have an on-going effort
to create what would be the first Y86 compiler, but it is not
ready yet. Therefore we converted the 32-bit x86 assembly
code into Y86 using an in-house “transliterate” script. We then
obtained a binary compatible with our simulator by using a
modified assembler that understands SMOV instructions. For
each program, we considered three variations:

Unprotected, where each array access is done without
bound-checks.

Software-based, corresponding to the safe version of the
program, but with additional software ABCs - implemented
with conditional branches inserted before all load and store
instructions that involved array accesses.



SMOV, our hardware-based solution. In the assembly code,
all unprotected versions of load and store instructions that
manipulate arrays were replaced by a SMOV instruction. The
identification of such loads and stores is simplified by the fact
that the arrays from the evaluation programs are global. This
makes gcc use the variable’s name as a displacement, simu-
lating a compiler intelligence for the array-bounds tracking.
Table III illustrates the identification of unprotected global
array accesses (left) and their SMOV replacement (right).

Table III. IDENTIFICATION OF GLOBAL ARRAY ACCESSES (LEFT) AND
THEIR SMOV REPLACEMENT (RIGHT).
Bubble: Bubble:

mrmovl -4 (%$ebp), %eax mrmovl -4 (%ebp), %eax

iaddl $1, %eax iaddl $1, %eax

rrmovl %eax, %edi rrmovl %eax, %edi

sall $2, %edi sall $2, %edi
irmovl lowerBound, %ebx
irmovl upperBound, %ecx

mrmovl list (%edi), %edx
mrmovl -4 (%ebp), %eax
rrmovl %eax, %edi

sall $2, %edi

smrmovl list (%edi), %$edx, $ecx, $ebx
mrmovl -4 (%ebp), %eax

rrmovl %eax, %edi

sall $2, %edi

irmovl lowerBound, %ebx

irmovl upperBound, %ecx

srmmovl %edx,list (%edi), %$ecx, $ebx

rmmovl]l %$edx, list (%edi)

We ran each program with our simulator and collected
the reported number of instructions and cycles. Results are
discussed in the next section.

B. Results

In this section we present and discuss our results (Ta-
ble IV).

The first column of Table IV shows the variation of the
evaluated program. In the following columns we have the total
number of cycles needed to run the program and the number
of cycles per instruction (CPI). To compute the execution time,
showed in the next column, we consider a hypothetical 8Mhz
processor. Finally, we have the runtime overhead caused by
the insertion of ABCs when we compare each safe version
against the unprotected (original) code. The results assume
the architecture implements our design accordingly, without
increasing the pipeline cycle duration.

Table IV. EVALUATION RESULTS FOR DIFFERENT WAYS TO GUARD
MEMORY ACCESSES.

Bubblesort Cycles CPI  Runtime (s)  Overhead
unprotected 432722716 1.32 54.09 -

software 1079582716  1.47 134.94 149%
SMOV 528562716 1.25 66.07 22%
Quicksort Cycles CPI Runtime (ms) Overhead
unprotected 2650117 1.31 331.27 -

software 5096217 1.39 637.03 92%
SMOV 3056717 1.26 382.09 15%
Perm Cycles CPI  Runtime (s)  Overhead
unprotected 258538417 1.26 32.32 -

software 500452417 1.37 62.56 94%
SMOV 298857417 1.22 37.36 16%

In Bubblesort, SMOV reached a 22% runtime overhead,
while the software-based yielded an overhead of 149%. This
represents a runtime overhead improvement of 85% against the

software-based variation. In terms of execution time, consid-
ering the 8Mhz processor, the software-based ABC variation
would run in 2.45min and the SMOV variation would be
executed in 1.1min.

Looking at Quicksort, we can see that the software-based
ABC variation caused a 92% runtime overhead, while the
overhead imposed by SMOV was only 15%. It means that
SMOV consumes 40% less cycles, representing 382.090ms
of execution time, against 637.027ms of the software-based
approach.

For the last program, Perm, SMOV reduced the runtime
overhead caused by the software-based ABC variation by 83%.
The runtime overhead of the later was 94%, against 16%
of SMOV. In terms of execution time, the SMOV variation
runs in 37.357s and the software-based approach in 1.04min,
considering the hypothetical 8Mhz processor.

Figure 3 provides a visual comparison between the different
runtime overheads imposed by all secure approaches. SMOV
had its best relative results in the Bubblesort program. This
happened because Bubblesort contains a higher number of
array accesses. Thus, its implementation requires more bound
checks, which is exactly where SMOV thrives.
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Bubblesort Quicksort Perm
Figure 3. Runtime overhead caused by different security approaches.

In all case studies, the software-based solution has caused
an increase in Cycles per Instructions (CPI). This is due to
the “extra” conditional branches which can, sometimes, lead
to mispredictions or inherently delays in the pipeline. Our
solution, in the contrary, reduced the CPI because memory
access instructions are completely parallelizable within the
pipeline. Consequently, they do not cause interruptions.

Another comparison parameter that can be inferred from
the results is the speed-up obtained by our solution. This gives
an idea about how faster the runtime of a program is, when
we change from a software-based ABC to SMOV. In fact,
SMOV gives us an acceleration of 104%, 66%, and 67% on
the runtime for Bubblesort, Quicksort and Perm programs,
respectively.

Our results tell us that, on average, SMOV has a runtime
overhead of 18%, reducing this factor from the software-based
approach by 83%. The average speedup found indicates that
our solution can run programs 1,79x faster than when the
ABCs are implemented in software.



C. Hardware Cost

To estimate the hardware cost of our solution we have
synthesized both architectures, the original Y86 and SMOV
enhanced version. The Verilog code, which can be deployed
to an Altera FPGA, implements our hardware project using
only 3.59% more logical elements than the original version,
which demonstrates the simplicity of SMOV and its low design
impact.

V. RELATED WORK

The literature contains a vast number of techniques to
protect computational systems(e.g. [2], [7], [12], [13], [15],
[16], [26]-[39]). In this section we shall focus on the most
prominent ones and those which directly relate to our work,
hardware-based protection against BOFs.

As mentioned before, hardware-based approaches
(e.g., [13]-[16]) typically offer new machine instructions for
specific bound-checking purposes. They differ from each other
in a variety of factors. We analyze them over the following
aspects: whether the checking method is explicit or implicit;
whether both the upper and lower limits are checked together,
whether the memory access can be combined into the check;
the required hardware support; and backwards compatibility.

Scheduled to emerge in the market this year is the Intel’s
Memory Protection Extension [16] (MPX). MPX introduces
a family of instruction to store, recover and verify bounds
of arrays. The supporting hardware comes with four special
bound registers, machinery to index bound tables efficiently,
and other integration features. MPX’s programming interface
to perform bound-checking is composed by two instructions:
bndcu to check the upper bound and bndcl to check
the lower bound. A violation triggers an exception and the
program is terminated. Otherwise, execution flow continues
and a standard mov instruction may be performed. We believe
that one of reasons for such independent checks is due to
backwards compatibility: if a program is running on unsup-
ported hardware, those instructions are converted to NOPs. We
imagine that a similar mechanism could be employed with
the SMOV instructions, since we carefully designed them in
a way that the data necessary for a non-secure mov instruc-
tion is embedded into the secure version. In addition, x86
has powerful addressing modes and variable-length encoding,
which makes this idea feasible. Having that in mind, SMOV is
the only work that allows an architecture to combine security
(through bound-checking), memory access, and backwards
compatibility altogether.

WatchdogLite [15] is another work, similar in principle to
MPX, where the bound-checking method is explicit. However,
instead of extending the hardware with special registers, it
relies on general propose registers for bounds-checking. The
programming interface adds a single instruction, SChk, that
checks both lower and upper bounds of an array. WatchdogL ite
also requires a standard mov instruction to access memory. It
does not address backwards compatibility aspects.

The other category of hardware-based ABC is through
an implicit method. This is adopted by HardBound [13] and
Watchdog [14]. Under this method, the program must inform,
through special instructions (setbounds in HardBound and

setident in Watchdog) the lower and upper portions of
memory that represent arrays. With this information, the
hardware takes care of checking the bounds before any access
to this marked memory is performed. To support the implicit
method, these proposals have to augment the pointer data type
with metadata to keep track of the size of the allocated regions.
This requires deep changes in a typical computer architecture,
like the addition of a cache of meta data and a new, or aug-
mented, register file, resulting in an expensive hardware. Once
the bounds are implicitly checked by the hardware, one can
say that the memory access is also performed. It is not totally
clear whether this is a kind of two-phase microcode operation.
These works do not mention backwards compatibility either.

Table V summarizes the features found on each discussed
solution, including ours. The table also shows runtime infor-
mation and hardware overhead assumptions. SMOV is not as
fast as Hardbound, at the price of more flexibility and simpler
hardware.

Table V. COMPARISON OF HARDWARE-RELATED APPROACHES THAT
PROTECT AGAINST BOFs.
MPX WatchdogLite ~ HardBound  Watchdog = SMOV
checking explicit explicit implicit implicit explicit
method
register v no v v no
file ct
bound check no no no no v
+
access
addressed v no no no v
backwards
compatibility
runtime N/A 29% 9% 25% 18%
overhead
hardware N/A N/A N/A N/A 3.6%

overhead

VI. CONCLUSION

Programming languages that do not natively provide ABCs,
such as C or C++, are susceptible to BOFs. There are
both software- and hardware-based approaches that aim at
providing memory protection to programs written in those
languages. This is normally done by instrumenting the source
with assertion or in hardware, via a combination of dedicated
instructions. However, those proposals end up causing a high
runtime overhead, compromising programs’ performance, or
incurring on a significant hardware size/cost penalty. This work
proposes SMOV, a novel hardware-based approach able to
perform ABCs and memory access within a single instruction.
SMOV consists of a pair of secure load and secure store
instructions. We present our solution from a practical but still
general perspective, accompanied by the formalism necessary
to hardware design. We focus on demonstrating how it can be
implemented on a typical variable-length ISA architecture and
discuss all relevant hardware details, an aspect which is not
covered by previous work. Our proof of concept, implemented
on top of an academical architecture, presented an overhead
of 3.6% in terms of hardware size compared to the original
processor. In our experimental results, SMOV could secure



the considered programs causing a runtime overhead of 18%,
running, on average, 1.79 times faster than a corresponding
program with software-based ABC. We discuss how Intel’s
MPX could incorporate SMOV into its bound-checking suite
of instructions. We believe that SMOV is a step towards deliv-
ering users secure, reliable, and, ultimately, efficient systems.
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